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Flow fluctuations in wormlike micelle fluids†

Paul F. Salipante,∗a Steven Meek,b and Steven D. Hudsona

We investigate the unstable flow of wormlike micelle solutions in pressure driven capillary flow,
with a focus on the effect of entrance geometry on the fluid fluctuations. The flow is measured at
different points in the capillary using particle image velocimetry while simultaneously measuring
the pressure drop across the entire capillary. The fluctuations are characterized by rapid flow
rate jumps that correspond with a decrease in the pressure drop followed by a longer recovery
period. Velocimetry measurements in the entrance region show a transition to unstable flow
above a critical flow rate, where large flow circulations are observed in the tapered geometry and
localized jets are observed in an abrupt contraction. The transition to this unstable flow is shown
to occur at a similar dimensionless extension rate normalized by the micelle relaxation time. A
rapid breakdown in micelle alignment is observed in polarized light microscopy at the onset of the
flow rate jump, indicating the importance of rapid micelle structural changes on the fluctuations.
We characterize the system by analyzing the power spectral densities and develop a dynamical
systems model to describe the relationship between pressure and flow rate. These developments
provide understanding to control flow fluctuations and motivation for more detailed study of the
coupling of fluid microstructure transitions and flow fluctuations.

1 Introduction
The pressure driven flow of non-Newtonian fluids through pipes
is common in industrial processing and high shear rate rheolog-
ical measurements1–3. These fluids often have viscoelastic prop-
erties, making them particularly susceptible to instabilities due
to the nonlinear coupling with elastic stresses, even when iner-
tia is negligible4–9. The need for understanding instabilities in
pipe flow has focused on applications where flow fluctuations are
undesirable, such as polymer extrusion10,11 or in material mea-
surements including capillary rheology12–14 and time-averaged
scattering experiments15,16. Although such instabilities are usu-
ally avoided, certain applications may benefit from flow instabil-
ities, such as those that require mixing at small length scales in
microfluidic devices17,18.

High shear rate viscosity measurements are frequently per-
formed on capillary rheometers, where pressure and flow rate
are measured across a narrow test capillary to determine viscos-
ity as a function of shear rate19. Recently, the need for high shear
rate measurements of small fluid volumes has motivated the de-
velopment of microfluidic rheometers and small capillary geome-

aNational Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD,
USA. Fax: XX XXXX XXXX; Tel: 1-301-975-2820; E-mail: paul.salipante@nist.gov
b Address, Address, Town, Country.
† Electronic Supplementary Information (ESI) available: [details of any
supplementary information available should be included here]. See DOI:
10.1039/cXsm00000x/

tries20–22. These devices typically have reductions and expan-
sion in the capillary diameter, introducing extension and curva-
ture to the streamlines where elastic instabilities are predicted to
develop5,23,24. The onset and characteristics of these instabilities
in small devices motivates this study.

Wormlike micelles (WLM) are a system of particular interest for
capillary flow because of their susceptibility to instabilities arising
from structural changes above a critical stress threshold which ini-
tiates strong shear-thinning behavior25–28. The semi-dilute con-
centrations are of particular interest because of their shear band-
ing behavior, which can produce a 2 to 3 order of magnitude in-
crease in shear rate near a critical shear stress15,29–31. Pressure
driven flow measurements have been used to measure shear rate
dependent viscosity in capillary rheometers and their flow profiles
in capillary tubes32,33. More recently, some aspects of the micelle
structure at high shear rates obtainable in pressure driven flow
have been measured using small angle neutron scattering3,34,35.

A number of pressure driven flow experiments using WLM so-
lutions have reported persistent flow rate fluctuations which have
hampered rheological and structural measurements under cer-
tain conditions13,30,32,33,36. The source of instabilities in pres-
sure driven flows has however not received as much attention
as those in rotational flows37–39. The characteristics of unsta-
ble rotational flow have been studied using both stress and shear
rate controlled rheometry in combination with flow field visual-
izations7,40,41. Theoretical explanations of the spatio-temporal
behavior comprise coupled evolution equations for flow and mi-
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crostructure42. These instabilities in wormlike micelle (WLM)
solutions have also been studied in the context of elastic turbu-
lence43,44. Turbulent behavior has also been observed in curvi-
linear flows of polymer solutions in microfluidic channels45,46.

Experimental studies on pressure driven flow of WLM so-
lutions in various microfluidic geometries have revealed other
spatial instabilities in straight channels with rectangular cross-
sections47,48, as well as in curved channels and microfluidic con-
tractions49,50. These spatial instabilities are typically observed in
semi-dilute WLM solutions, which may exhibit shear banding31.
The rectangular cross sections have been shown to be important
for producing a spatial instability because of the varying wall
stress, which leads to a jetting flow instability in an intermediate
flow regime48. At higher flow rates, spatial undulations at the
interface between shear bands have been predicted and observed
for WLM solutions in rectangular cross sections51–53.

The temporal fluctuations that have been observed in previous
capillary measurements demonstrate that instabilies in axisym-
metric flow geometries differ compared with those in rectangu-
lar cross sections. This difference in behavior may arise because
axisymmetric geometries lack a preferred position for instabili-
ties, and thus the flow structure fluctuates in time. For example,
Hashimoto et al. (2006) investigated flow instabilities of worm-
like micelles into an abrupt contraction for different surfactant
and salt concentrations54. They observed fluctuations of the vor-
tex region and development of turbid regions. Other investiga-
tions of the flow of WLM solutions through abrupt axisymmet-
ric contractions include small angle neutron scattering and nu-
merical simulations55,56. The rapid changes in flow behavior of
wormlike micelles in axisymmetric contractions is similar to rate
dependent behavior of WLM solutions observed in extensional
flow57,58, motivating this study of entrance flow.

Recent investigations of mixed flow conditions have shown the
importance of the extensional flow components to unstable flow
behavior. In particular, the flow around a cylinder and the motion
a sedimenting sphere have been shown to produce rapid changes
in flow rate, attributed to the breakdown of micelles resulting
from extenstional flow59–61. The breakdown in micelle structure
has been visualized with studies birefringence measurements and
compared to the flow field62.

In this paper, we observe the instability of wormlike micelle so-
lutions in various capillary constriction geometries including ta-
pers and abrupt contraction. We use synchronized pressure mea-
surements and particle image velocimetry (PIV) to measure the
transition to unstable flow and to characterize the pressure and
flow rate fluctuations. Flow field instabilities in the entrance re-
gion are observed using PIV and compared to simultaneous mea-
surements of the pressure drop. Considering relaxation times
determined from rotational rheology measurements for different
surfactant systems and the geometry of the constriction, the tran-
sition to unstable flow is characterized by the extension rate Weis-
senberg number in the entrance region. Next, we characterize the
fluctuations by measuring the magnitude of flow rate jumps, time
between jump events, and pressures at which an instability event
is triggered. The power spectral density (PSD) of the flow rate
and pressure drop data are compared to the PSD of two-sided

exponential pulses. The unstable flow of WLM solutions in the
entrance is compared to the flow behavior of polymer solutions.
Finally, we introduce a simple model to describe the relationship
between flow rate and pressure drop and compare it to experi-
mental observations.

2 Experimental
We select three surfactant systems that form wormlike micelle
structures and have been previously observed to produce spa-
tiotemporal instabilities25,37,39,63. The first system is an equimo-
lar concentration of 50 mmol/L cetyltrimethylammonium bro-
mide (CTAB) and cosurfactant sodium salicylate (NaSal) in water.
The second system is 50 mmol/L cetyltrimethylammonium tosy-
late (CTAT) in 100 mmol/L sodium chloride (NaCl). The third
system is a 100 mmol/L cetylpyridinium chloride and 60 mmol/L
NaSal in water. Two polymer based fluids are measured for com-
parison with the WLM solutions. The first polymer is 300 µg/g
polyacrylic acid (PAA) in glycerol with 50 mass% water. The sec-
ond system is 0.2 mass% Carbopol with enough NaOH (150 uL)
to achieve pH 6.

The fluid properties are measured in a Couette geometry on a
strain controlled rheometer (ARES-G2, TA Instruments) ∗. The
steady shear rheology measurements are shown in Figure 1. The
relaxation time, λ , are determined from the onset of shear thin-
ning for the three surfactant systems. They are measured to be
14 s for CTAB, 4 s for CPCL, and 2.5 s for CTAT. These three solu-
tions each have a similar plateau stress or critical stress for shear
banding.

10-2 100 102
10-1

100

101
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CPCL
CTAB
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PAA

Fig. 1 Steady shear rheology of fluids in this study measured in Couette
flow.

Capillary test sections with tapered entrance are made by

∗Certain commercial materials and equipment are identified in this paper in order to
adequately specify the experimental procedure. In no case does such identification
imply recommendation or endorsement by the National Institute of Standards and
Technology, nor does it imply that these are necessarily the best available for the
purpose.
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Capillary narrow section narrow section taper section
radius r (mm) length L (mm) length l (mm)

C1 0.065 10 8
C2 0.150 1.0 8
C3 0.075 20 -

Table 1 Dimensions of capillary test sections represented in Figure 2.

pulling a 1.1 mm inner diameter capillary tube with a gravity
driven pipette puller (Nirashige PP-83) and prevented from break-
ing. The range of the puller and applied heat are adjusted to
make sections with different geometry. One capillary, denoted
C1, is pulled to have a narrow section of approximately 0.13 mm
diameter, 10 mm in length, and tapered regions of approximately
8 mm in length on both sides. Another capillary, denoted C2, is
pulled to have a narrow section of approximately 0.30 mm diam-
eter, 1.0 mm in length, and tapered regions of approximately 8
mm. A third test section with an abrupt contraction/expansion,
denoted C3, is made by attaching a 1.1 mm inner diameter cap-
illary with epoxy to a 0.150 mm diameter thick-walled capillary
(3 mm outer diameter). The test sections are placed between
two glass slides and fixed in place using optical adhesive (Nor-
land NOA 68), which nearly eliminates optical distortion, which
would otherwise occur.

Fig. 2 Instrument setup for flow through a (tapered) capillary. The pres-
sure difference between two pressure sensors is used to determine the
pressure drop across the capillary. Images are recorded from fluorescent
particles seeded in the fluid and the flow field is determined from particle
image velocimetry.

The extension rate in the entrance region, ε̇, is used to deter-
mine Weissenberg number, Wi = ε̇λ . To approximate the local
extension rate, we measure the radius of the capillary as a func-
tion of axial position in the entrance region and assume incom-
pressible flow. We then estimate the maximum velocity along the
centerline by integrating the shear rates from the measured shear
rheology (Figure 1) to construct a velocity profile which matches
the volumetric flow. The change in velocity along the center line
is computed as ε̇ = dV

dx for each fluid at a given flow rate. For
the abrupt contraction, since the reduction in radius is large for
R1 ≈ 8R2, where R1 and R2 are the upstream and downstream
capillary radii, we estimate the extension rate using the Samp-

son result for the Newtonian flow into a hole in a half plane64,
ε̇ = Qx

π(R2
2+x2)2 .

The flow for most of our experiments is controlled using a
pneumatic pressure control system (Fluigent). We also drive flow
with a syringe pump (Harvard Apparatus) to assess the effect of
flow control on instability behavior. The fluid is delivered to the
device using 1.6 mm inner diameter Tygon tubing with 1.6 mm
wall thickness. The capillary ends are connected with tubing to a
luer T-junction with pressure sensors inserted into one port (XP5-
2BS Instrument Specialties) and the remaining port connected
to the fluid reservoir. The pressure sensor readings are recorded
through a data acquisition module (National Instruments). The
fluids are seeded with 3 µ m fluorescent microparticles at less
than 1 mL/L. Fluorescent images of the particles in flow are gath-
ered on an inverted microscope (Olympus IX71) with a 4x objec-
tive and a ccd camera (IDT vision NR4-S2). We gather images
in the straight 1.1 mm diameter portion of the capillary either
upstream or downstream of the tapered section. PIV is used to
measure the flow field in these sections and then flow rate is de-
termined by integrating the velocity field in the radial direction65.
Images are also taken in the entrance region to examine the flow
field there and to compare pressure data.

The fluid is loaded through the entire flow system and checked
for any trapped air. After loading, the flow control is turned off
and the system is allowed to relax for at least 1 minute. Ex-
periments are performed by incrementally increasing the applied
pressure starting from the lowest test value. Observations are
made at each driving flow condition after long term transient be-
havior is no longer observed in the pressure data, typically after
about 1 min. Recordings are initiated using software that simul-
taneously triggers the camera to acquire an image sequence and
initiate recording pressure data.

3 Results and Discussion
As the applied flow is increased in our test system, we observe a
transition from steady to temporally unstable pressure drop and
flow rate for all capillary sections and surfactant solutions tested.
The mean flow rate where this transition occurs and the char-
acteristics of the fluctuations depend on system parameters. At
any given flow condition above this critical value, the unstable
behavior persists throughout the duration of our observation.

3.1 Flow Field in Taper

Visualization of the velocity field in the mixed-flow tapered region
provides insight into the instability. We focus the microscope on
the center plane of the tapered region of the capillary and perform
PIV analysis on the particles that are in focus. We do not deter-
mine the volumetric instantaneous flow rate from the measured
velocity field in the taper because the field is highly asymmetric.
Synchronization between the camera and pressure sensors shows
the relationship between the flow field and the pressure drop be-
fore, during, and after an instability event.

Representative velocity fields of CPCL surfactant flowing
through the C1 capillary during one instability cycle are shown in
Figure 3. The first time point shown, Fig 3(a), demonstrates the
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Fig. 3 Velocity field (of the CPCL solution) in the tapered region of the capillary (C1) at three different time points indicated on the plot of pressure. The
maximum Weissenberg number calculated from the mean flow rate is Wi = ε̇λ ≈10. (a) The flow is asymmetric with the dominant flow directly along
the bottom side of the taper and a recirculation region on the top. (b) At peak pressure an instability event is triggered and a high velocity region forms
along the bottom side of the capillary wall indicated by the arrow. The event triggers an increase in velocity throughout the tapered region as fluid is
pulled in by the high velocity jet. (c) After the pressure has decreased, the high velocity region has decreased in magnitude and also changes location
to the top wall.

lowest magnitude velocity field through the cycle. The primary
flow in the taper is asymmetric, located along the bottom portion
with a recirculation region along the top side. This flow condition
persists as the pressure builds without significant change until an
instability event is triggered, see Figure 3(b). The dominant di-
rection of the flow through the taper remains along the bottom
wall of the taper, but the velocity magnitude there increases dra-
matically. The high velocity region narrows, pulling fluid from the
upstream portion of the channel and expanding the recirculation
zone. Immediately after the spurt event, the pressure decreases
for approximately 0.3 s. The subsequent flow field following this
pressure decrease phase is shown in Fig 3(c), when the location
of high flow switches to the top side. The velocity magnitude also
decreases relative to the previous frame, but is still larger than
the lowest velocity condition. The flow magnitude continues to
decrease as the pressure increases again and the velocity field
returns to a condition similar to that shown in Figure 3(a) ex-
cept the primary flow direction along the top side is maintained.
Only after an instability event does a shift to a new location occur,

which can be from any orientation angle. The lack of a preferred
direction is a consequence of the axisymmetric geometry, which
does not have regions of high stress that can trigger the instability
to form in a specific location.

Here we do not measure the full 3D flow field, and so we can-
not model the instantaneous stress state. However, this repeated
instability likely arises from internal stress imbalances and exten-
sional flow, as described earlier.

3.2 Simultaneous Flow Rate and Pressure Drop Measure-
ments

The instability in the tapered region influences the flow through
the entire system. The rigid glass geometry and incompressibility
of the fluid allow for the flow rate to be measured in the straight
1.1 mm diameter section of the capillary. We are therefore able to
compare fluctuations of two lumped variables, pressure drop and
flow rate, that describe the instability in the tapered region.

Examples of these simultaneous measures at various mean flow
rates, given in terms of Wi number, are shown for the CTAB sys-
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tem in the C1 capillary in Figure 4. The Wi numbers reported here
refer to the condition in 1.1 mm diameter portion of the capillary.
The corresponding Wi in the narrow section of the capillary is
much higher. The lowest Wi number (e.g. Wi=2) exhibits steady
flow rate and pressure drop. At higher Wi number (e.g., Wi=9,
Figure 4a(ii)), the flow in the taper is unstable and both flow
rate and pressure drop fluctuate. At this Wi number, the fluctua-
tions are quasi-periodic with a period of approximately 4 s. The
relationship between pressure and flow rate fluctuations is most
evident in this condition and is clearly shown in a pressure-flow
phase plot of the same data (Figure 4(b)). In particular, a large
jump in flow rate, which has been referred to as a “spurt”, co-
incides with the peak of the pressure. This jump in flow rate
matches the increased velocity observed in the taper at the max-
imum pressure, Fig 3(b). The flow rate rapidly reaches a maxi-
mum once the “spurt" is triggered, approximately 0.1 s after the
initial increase. The pressure does not significantly decrease as
the flow rate is increasing, noticeable by the flat top of the phase
plot. After reaching the maximum flow rate, the pressure and
flow rate both begin to decrease. The pressure reaches a mini-
mum approximately 1 s after the maximum, while the flow rate
continues to decrease gradually until the next spurt is triggered.
The growth in pressure is nonlinear, following an exponential de-
cay towards a plateau value. After approximately (4 to 5) s, the
spurt is triggered again at the pressure maximum, beginning the
cycle again. The pressure at which the unstable event is triggered
remains fairly constant over time, indicating that a critical value
is only exceeded at the maximum of the pressure cycle.

The volume of fluid released during each “spurt” event can be
estimated by integrating the flow rate during each period. The
volume for the data shown in Figure 4c is approximately 0.2 µL.
This is comparable with an estimate for the volume of the flu-
idized fast-moving region in the taper of 0.25 µL (figure 3b),
having approximate dimensions of (0.3 x 0.3 x 2.5) mm3. The
comparable volumes suggest that each spurt cycle is related to a
portion of the entrance region that becomes fluidized. This sug-
gests that the characteristics of the entrance region are important
for understanding the unstable behavior.

A feature observed for all surfactant systems in the C1 capillary
at flow rates just above the transition to unsteady flow is a slight
increase in the flow rate before a spurt is triggered. In this case
the flow rate minimum does not always correspond to the begin-
ning of the spurt cycle. An example of the flow rate data is shown
in Figure 4(c). This is the only condition where both flow rate
and pressure drop are increasing simultaneously, which is observ-
able in Figure 4(a) ii-iii. We investigate the causes for this in our
dynamical systems model in Section 4.

As mean flow rate is increased, the fluctuations switch from
a quasi-peroidic to chaotic behavior. The average time between
spurt events decreases and a broader distribution of wait times
between spurts is observed. The pressure maxima are more var-
ied and appear as sharp changes rather than slowly approaching
a plateau as seen in the quasi-periodic behavior. The magnitude
of flow rate jumps also varies, although the general characteris-
tics of spurt events followed by decrease in pressure and flow rate
persists. The coupling between pressure and flow rate is evident
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Fig. 4 (a) Time series of pressure and flow rate measurements at in-
creasing values of Wi number. With increasing Wi number, the flow tran-
sitions from steady to quasiperiodic to chaotic. (b) Phase plot for the
quasiperoidic behavior at Wi = 9. (c) Detail of flow rate data for Wi = 9
showing sequence of spurts events with short increase in flow rate before
spurt.

in that the magnitude of the flow rate jump is related to the mag-
nitude of the pressure peak. Larger magnitude flow rate jumps
occur at higher pressure maxima and large spurt events are of-
ten followed by smaller flow rate fluctuations as the pressure de-
creases. This relationship will be investigated in more detail in
the following section.

As Wi number increases, the long duration pressure growth pe-
riods and corresponding large magnitude flow rate jumps become
less frequent. These periods are completely absent at the highest
Wi number shown in Figure 4(a), which is characterized by only
small and rapid pressure fluctuations. The flow rate fluctuations
at this Wi are also rapid, but remarkably, the absolute magnitude
of the fluctuations remain at a similar magnitude as the lower Wi
number behavior.

3.3 Analysis of Instability Threshold
The flow field in the taper, described above in Figure 3, is remi-
niscent of elastic flow instabilities observed in polymeric solutions
and melts. Elastic instabilities result from the stretching of poly-
mer molecules along curved streamlines66,67. Coupling between
the normal stress and velocity gradients along curved streamlines
leads to the amplification of secondary flows. The flow through
the entrance is a mixed flow, with a large extensional component
at the centerline and a maximum shear rate at the wall. In the
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context of mixed flow, it is difficult to apply the Pakdel-McKinley
criterion to predict the onset of instability, since it assumes a flow
dominated by shear68,69. The application of the criterion is fur-
ther complicated for strongly shear thinning fluids, which changes
the local velocity gradients, velocity magnitude, and polymer re-
laxation time, all of which affect the onset of elastic instabilities.
Despite the difficulty in predicting the onset of elastic instabili-
ties, in this section we present evidence that the onset of unstable
flow arises from the extensional flow at the centerline, similar to
other work of flow past a sphere or cylinder60–62

Measurements of WLM solution extensional rheology using op-
posing jets are difficult because of the onset of instabilities at high
Weissenberg numbers70. Upon increasing extensional rate, the
extensional viscosity first at increases substantially (Trouton ra-
tios sometimes reach tens of thousand58). A drop in extensional
viscosity at higher rates has been shown to correspond to an onset
of micelle breakage71. This decrease in viscosity under elonga-
tional flow has also been measured using filament stretching58,
and is predicted in the context of the Vasquez–Cook–McKinley
model72. Adjusting a parameter in that model that relates to
scission energy changes the degree of extensional thickening,
but breakage and associated thinning occur at similar extension
rates73.

The value of Wi along the tapered portion of the capillary is
plotted in Figure 5a at the onset of unstable flow for CTAB in
channel C1. There is variation along the capillary due to the
change in curvature and the increasing velocity along the en-
trance. The largest value for Wi occurs approximately 3 mm into
the entrance.

We estimate the critical Wi value for each for various surfac-
tant solutions and channel combinations. The critical Wi value
is shown as a function of mean flow rate at the transition for the
each system. The error bars show the range of values between the
stable and unstable observations. Even though each system tran-
sitions to unstable flow at different flow rates, the critical Wi is in
the range of 6 to 12 for each system. The abrupt entrance, C3, has
the shortest entrance region and therefore the relatively fastest
extensional flow. Although we might suppose that the breakage
rate itself might be an appropriate rate for extensional thinning,
previous work that measures micelle breakage in extension shows
that it occurs at rates modestly above the extension rate required
to align the micelles71.

The experiment with CPCL in the C1 channel is repeated with
flow driven by a syringe pump. We observe negligible difference
in the flow rate and Wi number where the system goes unstable.
The critical Wi number is therefore not sensitive to how the flow
through the system is controlled. We will show in the next section
that such control does affect the magnitude of the fluctuations.

To explore further the relationship of extensional flow, align-
ment and micelle breakage to trigger the unstable flow we ob-
serve the flow in the taper using a polarized light camera (CRYSTA
PI-1P, Photron USA, Inc.). In this experiment, the sample is illu-
minated with circularly polarized light and the polarization sen-
sitive image is then analyzed to compute the optical retardation.
An image sequence of retardation magnitude is shown in Figure
6. We note that the measured signal includes birefringence from
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Fig. 5 (a) Local extensional Wi number along the channel for CTAB sur-
factant in channel C1, where the X coordinate is the streamwise direction
starting at the entrance to the tapered region. (b) Maximum value of Wi in
the entrance region at the onset of unstable flow. The uncertainty range
indicates the measurement values of flow rate and Wi below and above
the transition to unstable flow.

the stress-optic rule and the variation of the transmission path
length due to the taper in the capillary. Quantification of the bire-
fringence to get stress is therefore challenging, but a comparison
of the retardation at the same point in the video will indicate local
stress changes. A strongly birefringent signal is initially observed
throughout the taper and it surprisingly develops a cleavage at
0.16 s across the entire cross section, indicated by an arrow in Fig-
ure 6b). The subsequent frames illustrate a redistribution of the
birefringent signal as the flow redistributes the micelles through
the taper, before the process repeats.

The sharp change in birefringent signal across the entire chan-
nel cross-section shows that a breakdown in micelle structure oc-
curs through the center line of the channel. Loss of birefringence
is not anticipated by merely breaking, if the micelles maintain
alignment. A rapid relaxation is thus observed here to occur in
at least a portion of the fluidized volume. The breakdown of
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Fig. 6 Retardation magnitude images of CPCL in the capillary entrance (C1) at t=0, 0.16 s, 0.32 s, 0.48 s. Warm colors indicate larger retardation.
The first frame shows a strongly birefringent sample throughout the taper, at t=0.16 s a sharp cleave is observable. The next two frames show the
subsequent flow of micelles after the rupture. Note that the spot-like features are stationary. The fluid itself is flowing rapidly. For example, the residence
time of the volume exhibiting sudden rupture is approximately 0.05 s.

WLM structure occurs over a short period of time, which has been
measured to be of the order (0.01 to 0.1) s74. This timescale is
comparable to the rapid increase in flow rate, which occurs over
approximately 0.1 s (Figure 6), which is observed for each surfac-
tant system. The fast structural change is a necessary condition
for the type and magnitude of fluctuations we observe, although if
the structural breakdown is faster, it could stabilize a steady state
breakage and thus suppress flow fluctuations73. The location of
breakage further supports disturbance occurs at a streamwise po-
sition at X ≈ 3 cm from the entrance of the tapered region, a
location close to the maximum Wi number in entrance shown in
Figure 5a. The correspondence between the maximum Wi num-
ber suggests that this sharp change in micelle structure occurs at
a critical extension rate.

The rupture of WLM solutions in extensional flow has been
shown to depend on strain58. The maximum strain for capillary
contractions can be estimated by εmax = ln(Awide/Anarrow), where
Ai is the cross sectional area of the capillary. As can be seen from
Table 1, the maximum strain is in the range of εmax ≈ 2.6− 4.3,
which is comparable to the range of the total Hencky strain where
rupture of a filament has been observed, εmax ≈ 2.5to358,60,61,75.
The larger critical Wi number observed in capillary C2 compared
with C1 for CPCL surfactant may be attributable to the difference
in contraction ratio, and therefore strain, between these two cap-
illaries. A smaller contraction ratio may require a greater strain
rate to produce micelle breakdown or may not provide a sufficient
strain to induce rupture. In the future, we plan to investigate the
dependence of contraction ratio/maximum strain on the critical
Weissenberg number for a wider range of contraction ratios.

3.4 Flow of Polymer Solutions Through an Axi-Symmetric
Constriction

In this section we investigate whether the temporal fluctuations
observed in the tapered geometry are limited to WLM solutions
by testing other viscoelastic solutions, namely a PAA solution and

a yield stress gel. The yield stress fluid does not flow until a crit-
ical pressure is applied. Once the flow is initiated, no temporal
or spatial instabilities were observed in the tapered region. The
long-chain polymer PAA solutions are highly elastic, but are only
weakly shear thinning due to the high solvent viscosity. Further-
more and importantly, the polymers do not experience chain scis-
sion. These long chain polymer solutions are often used to study
viscoelastic instabilities in microfluidics76,77
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Fig. 7 Spatially unstable flow of PAA into a tapered contraction.

The PAA solutions exhibit spatial instability at the entrance
of the tapered region similar to previously observed viscoelastic
instabilities observed at entrance regions78. A separation zone
forms between an inner jet of fluid moving through the center of
the tapered region surrounded a long recirculation region which
drives fluid away from the entrance region along the channel
walls, see Figure 7. As flow rate increases, the recirculation zones
extend farther upstream from the entrance region, reaching in
excess of 1 cm from the entrance at the highest mean flow rates.
Although the instability can occupy a larger portion of the up-
stream channel, temporal oscillations were not observed in PAA
at any flow rate.
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In the case of polymer solutions, the spatial instability is a re-
sult of a transition of the polymer chains from a coiled state to an
extended state57,79. The wide range of viscoelastic instability be-
haviors observed in Couette geometries and pipe flow using poly-
mer solutions suggests that temporal instabilities may be possible
in our channels. However, no such fluctuations were observed
within the range of applied pressures accessible by our experi-
ment. For the current experiment, the comparison between poly-
mers and WLM solutions demonstrates that the structural break-
down characteristic of WLMs is an essential element for the large
magnitude spurt behavior.

3.5 Characterization of Fluctuations

We now analyze the characteristics of the fluctuations above the
instability threshold. This includes the spurt magnitude, the
time between spurt events, and the relationship between spurt
magnitude and pressure. The magnitude of flow fluctuations is
∆Q = max(Q)−min(Q), where the maximum and minimum are
taken over a time series. The flow fluctuations are normalized by
a characteristic volume representative of the jetting flow in the
entrance region, πlr2, and the time is scaled by the fluid relax-
ation time. This magnitude rises abruptly at the instability thresh-
old (see Figure 8), and then rises more slowly at higher flow rate.
This trend appears to be true for all systems over the range stud-
ied, but the scaling shows that the fluctuation magnitude depends
primary on entrance geometry and fluid relaxation time. With
these traits in mind, a function of the form f (x) = A(1− 1/x) for
x > 1 with A = 30 represents the data well and shows that the
fluctuation magnitude is limited by the volume of the entrance
region. Only the abrupt contraction shows a deviation from this
behavior, which may be a result of an approximate scaling of the
upstream radius for the entrance length l or the slightly different
jetting behavior discussed in Section 3.7.
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Fig. 8 The magnitude of flow rate fluctuations ∆Q = max(Q)−min(Q),
normalized by πlr2/λ , versus the relative mean flow rate, normalized
by the critical flow rate Qcrit . The scaling of the flow rate fluctuations is
representative of the volume of the jet formed in the entrance region. The
data are compared to a function of the form f (x) =A(1−1/x) for x> 1 with
A = 30.

The effect of rheological behavior of fluids (see Figure 1) on
the relative magnitude of flow fluctuations is mainly controlled
through the relaxation time. For example, even though CTAT does
not exhibit very strong shear thinning nor a shear stress plateau,
its flow fluctuations scale well with relaxation time when com-
pared to CPCL and of CTAB, which both have a stress plateau.
Similarly, the relative width of the stress plateau, does not seem
to matter much. The relative flow rate fluctuations are similar for
the CPCL and CTAB surfactant solutions, even though the stress
plateau of the CPCL solution is significantly broader. We note
that the CTAB surfactant system exhibits the most regular quasi-
periodic behavior of the three surfactant systems that we studied.
The other two surfactant systems, CPCL and CTAT, have similar
single instability events at mean flow rates just above the transi-
tion to unstable flow, but the wait times between events is irreg-
ular.

The syringe pump controlled flow of CPCL through the C1 cap-
illary shows a slightly lower fluctuation magnitude in comparison
to the pneumatically controlled flow of the same system. For an
incompressible fluid flow through a perfectly rigid system driven
by a syringe pump the global flow should be conserved. In the
real experiment, any compliance in the flow system including the
syringe, tubing, and connectors may allow for changes in volume
which will make the local flow rate fluctuate. The syringe pump
driven flow appears to reduce the largest magnitude fluctuations,
but does not eliminate the fluctuations overall.

The spurt events provide useful markers in the timeseries for
quantifying temporal characteristics of the fluctuations. We focus
on the CTAB system because it has the most varied behavior of the
surfactant systems, particularly the transition from quasi-periodic
to chaotic fluctuations. We measure the time between local max-
ima between events, denoted as ∆t, determined from the pressure
data. The distribution for ∆t at various flow rates above the criti-
cal flow rate for fluctuations are shown in Figure 9.
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Fig. 9 Probability density distributions of time between events (∆t) de-
termined from pressure data for different flow rates above critical flow
rate. Shown with fits for a Gaussian distribution for Q/Qcrit = 1.6 and
Gamma distribution fits for higher flow rates. The gamma distribution val-
ues are α = 2.39 and β = 0.58 for Q/Qcrit = 2.7, α = 2.94 and β = 0.30 for
Q/Qcrit = 5.3 and α = 4.90 and β = 0.11 for Q/Qcrit = 12.5.
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The quasi-periodic data results in a narrower distribution of
wait times than the chaotic behavior at higher flow rates. The
quasi-periodicity results in a distribution that fits a normal distri-
bution with mean at ∆t = 2.6 s and standard deviation σ = 0.27
s. The transition to chaotic behavior at higher mean flow rates is
clearly shown by the change in the form of the wait time distribu-
tions. In particular, the short events become more likely and an
exponential tail is observed for longer wait times, a signature of
intermittent behavior80. A Gamma distribution is chosen to ap-
proximate the wait time distributions because of the exponential
tail. The Gamma distribution is defined as

p(∆t|α,β ) =
1

β α Γ(α)
∆tα−1 exp(−∆t/β ). (1)

The lowest chaotic flow rate has a wider distribution than the
higher flow rates, which have shorter time between events and
narrower distributions. The fluctuations for the other surfactant
systems are not shown, but their wait time distributions are simi-
lar with the same trend of decreasing time between spurt events.

We now focus on the conditions which lead to a spurt event.
We determine the critical pressure, Pcrit , by finding the local max-
imum pressure that coincides with a spurt event. The distribution
of critical pressures are plotted in Figure 10(a) and compared to a
Normal distribution after being normalized by the fitted standard
deviation. Data from both quasi-periodic and chaotic behavior
fit the Normal distribution. The critical pressure at which the
fluid viscosity decreases dramatically is analogous to the critical
stress at which the micelle solutions increase in shear rate. After
each spurt event, the flow field and structural arrangement of the
micelle varies and can lead to variation in the pressure drop at
which the subsequent spurt is triggered. The normal distribution
indicates that the conditions in the taper have random variations
which lead to the distribution of critical pressures.

The width of the critical pressure distributions are indicative of
a range of conditions which can lead to a spurt event. The width
of the distributions are plotted in Figure 10(b) for the three sur-
factant systems in the C1 channel. At the low mean flow rates,
it is apparent that the pressure must build to a critical value for
the flow to become unstable. The pressure appears as the limit-
ing parameter for the flow to become unstable. At higher flow
rates, the fluid in the taper is highly susceptible to instabilities
and can become unstable at all pressure values. To quantify this
transition, the standard deviation for the critical pressures is nor-
malized by the standard deviation for the entire pressure time
series and plotted as a function of mean flow rate in Figure 10(b)
. When normalized in this fashion, the data plateaus at a rela-
tive value of std(Pcrit)/std(P) = 1. Only at low mean flow rates
is the range of critical pressures smaller than the overall range
of pressures experienced by the system. This is most apparent
with the CTAB system, which has a narrow distribution of critical
pressures during quasi-periodic flow but broadens when chaotic
behavior begins.

The time series and phase diagram shown in Figure 4 demon-
strate that flow spurts are related to the buildup and release of
pressure brought on by micelle breakage. To investigate this re-
lationship, we compare the spurt magnitude, ∆Q and the critical
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Fig. 10 (a) Distribution of critical pressure values compared to a Normal
distribution for the CTAB system in channel C1. The critical pressures
follow a normal distribution for all flow rates. (b) The standard deviation
is normalized by the standard deviation of all the pressure data. The
uncertainty reflects 95 % confidence intervals on the fit to the standard
deviation.

pressure at which the spurt occurs. In order to compare different
mean flow rates, we plot spurt magnitude as a function of the crit-
ical pressure shifted by the mean critical pressure, Pcrit−< Pcrit >,
in Figure 11. A linear relationship between the spurt magnitude
and the critical pressure is observed for all chaotic systems. When
the flow is quasi-periodic, i.e. when Q/Qcrit = 1.5, the critical
pressure and spurt magnitude do not vary much, but these lim-
ited variations remain consistent with the same relationship be-
tween critical pressure and spurt magnitude. This relationship
between pressure and flow rate jumps suggests that larger pres-
sures may cause more extensive breakup of micelles, perhaps to a
greater degree and/or in a larger fraction of the entrance volume,
reducing the effective viscosity.
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3.6 Power Spectra

The fluctuation characteristics of viscoelastic instabilities are of-
ten characterized by the power spectral density (PSD)43,45,81.
The power spectrum for both pressure and flow rate data at vari-
ous mean flow rates above the critical value are shown in Figure
12. The PSD for each system transitions from a plateau at low fre-
quencies to a power law decay at higher frequencies. The power
law exponent for the pressure is approximately -4, while the flow
rate shows a less steep exponent of approximately -2 at interme-
diate frequencies before transitioning to an exponent of -4. When
the flow is quasi-periodic, e.g., at Q/Qcrit = 1.4, the PSD exhibits a
characteristic frequency peak, while at higher flow rates this peak
is no longer present (Figure 12). As mean flow rate increases, the
transition frequency from plateau to power law behavior shifts to
higher frequencies, a result of the shorter fluctuation durations
seen at higher mean flow.

Power law behavior at high frequencies is often observed in
fluctuating systems, in particular chaotic and turbulent fluid
flow82–84. In contrast to instabilities observed in Couette
flow, where many regions of instability can exist simultaneously
throughout the gap, the fluctuations observed in the capillary
are slightly different in the sense that the pressure and flow rate
are a consequence of an isolated (entrance) region undergoing
an instability. The time series of pressure and flow rate fluctua-
tions shown in Figure 4 bear similarity with two-sided exponen-
tial pulses, which switch between relaxation towards high and
low values. Recent work has investigated the power spectrum of
similar pulse trains with various waiting time distributions85. For
the case of a two-sided exponential pulse, the power spectrum is
given by :

PSD( f ) =
1

[1+((1−δ ) f τ)2][1+((δ f τ)2]
, (2)
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Fig. 12 Power spectrum from (a) pressure and (b) flow rate for the CTAB
solution in channel C1.

where δ is the duty cycle for the pulsed system and τ is the char-
acteristic timescale of the exponential function. This matches the
observed response of constant amplitude at low frequencies that
transitions to a power law decay at frequency, δ/τ or (1− δ )/τ,
whichever is larger. If δ is close to 0.5, the power law decay at
frequencies higher than the transition frequency will have a −4
exponent. If the duty cycle is asymmetric, the characteristic fre-
quency where the transition to a power law shifts and there will
be an intermediate power region with −2 exponent.

Fits to Eq. 2, shown in Figure 12, demonstrate fairly good
agreement with the experimental PSDs. The duty cycle is deter-
mined by measuring the fraction of time with increasing values
over each event cycle. The pressure signal is nearly symmetric for
most flow rates, except near the critical condition, and a power
law at high frequencies with a −4 exponent is expected from Eq.
2. In contrast, the flow rate data is asymmetric, with relatively
short times for increasing flow rate compared to the overall cycle.
As a result, the power spectrum for the flow rate has an inter-
mediate power law region with −2 exponent. At frequencies that
correspond to the fast response of the spurt dynamics, the power
law changes to −4. Only the quasi-periodic data show a signifi-
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cant deviation from Eq. 2 due to the peak in the power spectrum.
We also note that the distribution of waiting times does not sig-
nificantly change the power spectrum and the power spectrum is
more sensitive to the characteristics of the pulse relaxation and
the duty cycle85.

While the power spectra provide a useful characterization of
the fluctuation, this analysis assumes that the fluctuations are
two-sided exponential pulses. Without more detailed knowledge
of the system behavior, the information determined from the
timescales using Eq. 2 is limited. In section 4, we introduce a dy-
namical model that reproduces similar fluctuating behavior and
provides a more accurate method for determining characteristic
timescales of the fluctuations

3.7 Flow field in an abrupt contraction

The results from section 3.5 showed that the fluctuation magni-
tude for the abrupt contraction was the smallest of any entrance
geometry tested. We investigate the flow field in the C3 capil-
lary more closely by performing PIV measurements immediately
upstream of the entrance to the narrow capillary section.

Unlike the tapered channel, where a high velocity jet forms
along the wall of the tapered region, in the abrupt contraction
a jet extends from the entrance into the wide section, see Fig-
ure 13. At low mean flow rates, the jet is temporally stable and
extends about 1.5 mm back from the narrow channel entrance,
slightly longer than the one channel diameter. A recirculation re-
gion forms in an annular region surrounding the jet. Above the
critical flow rate, the position and velocity of the jet begin to fluc-
tuate. Similar to the flow behavior observed in the taper, the jet
transiently develops in one direction before dissipating and then
developing in another. A weaker jet expelling fluid from the en-
trance region forms along the opposite side of the inward jet. The
off-center orientation of the jet produces a dominant recircula-
tion zone along the adjacent side. This behavior is similar to that
observed by Hashimoto et. al.54.

The flow fields in Figure 13 provide insight into the smaller
flow disturbances measured in channel C3. The jetting instability
is localized to a region less than two channel diameters from the
entrance and does not extend farther even at higher mean flow
rates. In addition, the jet is similar in diameter to the narrow cap-
illary section rather than scaled to the diameter of the entrance
region, which appears to be the case in the tapered region. As a
result, the volume that is susceptible to temporal instabilities is
relatively small compared to tapered entrances.

While the abrupt entrance results in the largest streamline cur-
vature for a given reduction in channel diameter, the smaller en-
trance region and the characteristics of the jetting flow produce
a much smaller flow disruption than the tapered entrances. This
is in contrast to the flow of polymer fluids through contractions,
which can become unstable in abrupt contractions due to singu-
larities and large streamline curvatures that occur at entrant cor-
ners? ? . In the case of our experiments with WLM solutions, the
unstable flow is related to a critical extension rate. Increasing the
entrance length reduces the extension rate, but also appears to
produce large flow fluctuations once triggered. It may be possible

Fig. 13 Jetting flow of CPCL into an abrupt contraction, the entrance
to a 150 µm capillary begins at the center right edge of the images. (a)
Temporally stable jetting flow. (b) Temporally unstable jetting flow into the
narrow capillary. The orientation of the inward flowing jet fluctuates with
time.

to reduce channel diameter without instability through a series
of small constrictions that remain below a critical strain rate. If
smaller temporal instabilities can be tolerated for a flow system,
our observations suggest that shorter entrance length contrac-
tions, such as an abrupt contraction or a short taper, will reduce
the magnitude of temporal fluctuations.

4 Dynamical System Model
The results in Section 3.5 demonstrated that the flow and pres-
sure fluctuations are closely related. We characterize the cycle
of fluctuations into three distinct periods, starting from the spurt
phase of the cycle, which is triggered at a critical pressure and
produces a rapid increase in flow rate. The flow field at that mo-
ment in the taper shows that some portion becomes fluidized and
rapidly passes through the entrance. During the spurt phase, the
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pressure remains nearly constant.

The end of the spurt event is reached when the flow rate
reaches a maximum, after which a release phase begins where
both the pressure and flow rate decrease. The decrease of flow
can be attributed to a finite amount of time required for the flu-
idized region to completely exit the tapered region. The escape
of this fluid corresponds to a decrease in pressure because a vol-
ume of lower viscosity fluid flows through the taper and narrow
region. The second phase completes when the pressure reaches a
minimum and begins to grow again.

During the third phase of the cycle the pressure increases while
the flow rate continues to decrease or remain nearly constant at
a low flow rate. This pressure build up corresponds to entan-
gled micelles refilling the taper, where the higher viscosity fluid
increases the pressure drop across the capillary. The pressure con-
tinues to build until a critical value is reached, triggering another
spurt event and completing the cycle. We tentatively attribute
the observed variation in the critical pressure to a new micelle
structure in the taper during each cycle; the structural integrity
varies.

We aim to develop better understanding of the relation be-
tween pressure and flow rate during this cycle using coupled
evolution equations. Similar low-dimensional dynamical models
have been used represent nonlinear behavior in both shear- thin-
ning and shear-thickening solutions and for unstable flow in poly-
mer extrusion86–88 This approach has also been used by Fielding
and Olmsted (2004) to describe the spatiotemporal instabilities of
a shear banding fluids in a stress controlled Couette flow42. Their
model couples the evolution of local shear rate and a structural
parameter related to the breakage of micelles. Chaotic behavior
can also be observed in these models with sufficient degrees of
freedom, such as when spatial gradients were included42,86,89.
Here we describe a low-dimensional dynamical model which rep-
resents the characteristics of the system fluctuations, such as the
transition from quasi-periodic behavior to chaotic flow and the
induction phase observed in Figure 4.

The dynamical models for unstable Couette flow relate the tem-
poral evolution of stress, shear rate, and structure. In our obser-
vations (with the exception of optical retardation measurements)
we do not directly measure the micelle structure. Nevertheless,
the pressure and flow rate measurements are a global measure
of the stress and velocity fields and how these two quantities re-
late provides information about the system behavior. Observation
of the trajectory on the P vs Q phase map immediately after the
spurt provides the clearest information about this relationship.
The minimum in the pressure is an indication that system is cross-
ing a stability curve, represented as nullclines for the pressure,
∂P
∂ t = 0. We observe that the pressure minima have a dependence
on flow rate that can be represented as a power law, Peq = AQm.
The stability curve for the flow rate evolution equation is chosen
to have a linear dependence on pressure, Qeq = kP, where k is an
inverse of the channel resistance. The linear dependence assumes
the flow of micelles in the quasi-Newtonian fluid state.

The fixed point for the system, the values at which the system
is stable, occurs where the two nullclines intersect. The evolution

equations are given by,

∂P
∂ t

=
1

λP
[AQm−P] ,

∂Q
∂ t

=
1

λQ
[kP−Q] .

(3)

where λP and λQ are characteristic timescales for pressure and
flow rate respectively.

Without a perturbation, this system of equations will relax to-
wards the fixed point, which in terms of pressure is at the value
Pf ix = k(Ak)1/(1−m). The system is prevented from reaching this
equilibrium by producing a jump in flow rate at a critical pressure
Pcrit . If Pf ix is greater than Pcrit , the system will oscillate and never
reach the fixed point. In order to represent the decrease in the vis-
cosity triggered by the micelle breakage, the fluid resistance term
k is changed to a higher value for a fixed duration defining the
spurt phase. After the spurt phase is completed, the resistance
term is adjusted back to its previous value.

In the experiments we observe a distribution of pressures at
which the spurt is triggered (see Figure 10). Each cycle has a dif-
ferent critical pressure which depends on the structure of the fluid
in the taper. In order to capture this variability, we sample the
critical pressure in the model from the measured distribution, see
Figure 10a, and change this value at the moment of the pressure
minimum of each cycle. The magnitude of the flow rate jump is
linearly related to the critical pressure relative to the mean critical
pressure following the relationship given in Figure 11. Both pres-
sure and flow rate quantities are normalized in order to demon-
strate the relative magnitude of the fluctuations. The pressure
data is normalized by the mean critical pressure, < Pcrit > and the
flow rate is normalized by the maximum stable flow rate, given
by Qs = k < Pcrit >.

We compare the model system to our experimental measure-
ments for different surfactant systems at various mean flow rates.
The parameters to fit for the system of equations are the two re-
laxation timescales, λQ and λP, and the forcing term parameters,
A, m, and k. Simultaneously fitting the pressure and flow rate is
performed using nonlinear least square curve fitting in MATLAB.
The data are fit during each cycle beginning immediately after the
spurt has ended, determined by the local maximum in the flow
rate, and concludes at the beginning of the spurt, determined by
the large rate of change of the flow rate.

Phase-space plots of pressure drop as a function of flow rate
of the experimental and model results exhibit the same behavior
with similar fluctuations (Figure 14). The nullclines for pressure
and flow rate are shown in dashed and dotted lines, respectively.
The system cannot reach the fixed point because the spurt is trig-
gered first.

When the flow is just above the threshold for instability,
Q/Qcrit = 1.2, the fitted nullclines result in a fixed point close
to the critical pressure, see Figure 14(a). A spurt is triggered
over a narrow range of critical pressures and the system follows
a nearly consistent trajectory across the phase space. This sit-
uation replicates the quasi-periodic behavior observed with the
CTAB surfactants, more easily seen in the time series of the same
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Fig. 14 Phase space plot of the pressure as a function of flow rate for
the CTAB system at (a) Q/Qcrit = 1.2 and (b) Q/Qcrit = 3.8. The data is
fit to Eq 3 to obtain parameter values and then a trajectory is obtained by
integration of the model with and without variation in the critical pressure.
At low mean flow rates the fixed point is close to the critical pressure
and a quasi-periodic behavior is observed (a). The fixed point moves to
away from the critical pressure at higher mean flow rates (b). The system
fluctuations around the intersection between the mean critical pressure
and the nullcline given by P = AQm.

data shown in Figure 15(a). The model also replicates the slight
increase in the flow rate observed in experiments before the spurt
is triggered, see Figure 14(a). This induction period occurs when
the system reaches the P = kQ below the critical pressure. As the
pressure increases, the system will follow the nullcline and result
in a slow increase in flow rate before triggering the spurt insta-
bility. This results in the flow rate reaching a local minimum that
doesn’t coincide with the triggering of the spurt. This induction
period becomes longer when the flow rate relaxes faster than the
pressure drop following the spurt phase. While the model does
not fully capture the duration of this induction period in Figure
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Fig. 15 Time series of the (a) flow rate and (b) pressure shown for the
CTAB system in red and model system in black. The experimental data
are shown at (left) Q/Qcrit = 1.2 and (right) Q/Qcrit = 3.8. The model repli-
cates quasi-periodic behavior at low mean flow rate and chaotic behavior
at higher mean flow rate.

??(a), likely the result of our assumption for the functional form
of the stability curves, the model shows that this behavior is a
result of the buildup of pressure in the system along the P = kQ
nullcline.

When the mean flow rate is increased, the P = AQm nullcline
shifts relative to the critical pressure. An example of the limit
cycle at the higher mean flow rate is shown Figure 14(b). The
position of the fixed point shifts away from the critical pressure,
and the system orbits around the P = AQm line just below the crit-
ical pressure. A wider distribution of critical pressures triggers
subsequent spurts after only a short relaxation phase but when
the pressure remains high. This results in a sequence of spurts
at a high flow rate with a small reduction in pressure after each
spurt. When the pressure reaches sufficiently below the critical
pressure, the system builds in pressure as the flow rate decreases.
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The spurt is triggered when the critical pressure is reached again,
and the system has time to reach a low flow rate and high pres-
sure state. This shows that the transition from quasi-periodic be-
havior to chaotic behavior is a result of the transition to a cas-
cade of multiple rupture events that occur when the system is
far from the stable fixed point. In addition, the system does not
undergo an induction period because the pressure exceeds the
critical pressure and becomes unstable before reaching the equi-
librium P = kQ line.

An analysis of the flow rate and pressure timescales shows vari-
ation as a function of mean flow rate and for different geometries.
The λP timescale is in the range of (0.2 to 2) s, with the longest
timescales fitted from the long taper capillary, C1. There is a slight
decrease of the λP timescale with increasing flow rate for all sys-
tems. The λQ timescale is in the range of (0.1 to 0.7) s for all
systems and with the longest timescales from the long taper cap-
illary. There is little variation with flow rate for the λQ timescale.
We observe a small difference between the CTAB and CPCL sys-
tems in the long taper, λQ ≈ 0.25 s for CPCL compared to λQ ≈
0.5 s for CTAB. This difference is small considering that the insta-
bility occurs at greater flow rate for the CTAB surfactant than the
CPCL surfactant and the relaxation time is shorter for the CPCL
system. A greater difference is observed in the timescale for the
CPCL in the short tapered C2 capillary, with timescales 3 to 6
times faster than the longer taper C1.

The dynamical model and fitted timescales are a coarse repre-
sentation of how the pressure and flow respond to the structural
breakdown and recovery that occurs in the tapered region. The
sensitivity of the timescale to the entrance shape, and lack of sen-
sitivity to material properties, shows that the geometry where the
instability occurs has a dominant effect on the temporal charac-
teristics of the unstable flow. This makes any material property
characterization from the flow rate and pressure data difficult in
this type of geometry. Nevertheless, the dynamical model pro-
vides insight into the relationship between pressure and flow rate
not possible from a power spectrum analysis, such as identifying
the condition of the fixed point and change in behavior resulting
from a shift of the fixed point away from the critical pressure.

5 Conclusions
Our observations show that wormlike micelles through a capil-
lary constriction results in both pressure drop and flow rate fluc-
tuations above a critical mean flow rate. The instability causing
these fluctuations occurs due to the significant extensional flow
at the entrance region, which results in breakdown of the micelle
structure visible using polarized light microscopy. The relation-
ship between extensional flow and micelle breakage is demon-
strated through the onset of the instability, which occurs at a sim-
ilar Weissenberg number for a range of different micelle systems
and entrance geometries. The importance of micelle breakage on
the spatiotemporal instability is further supported by the lack of
fluctuations observed for polymer solutions and yield stress fluids.

In contrast with Couette flow, where the spatiotemporal in-
stability can occur anywhere throughout the gap region, the en-
trance region in pipe flow localizes the instability to one region
of the flow system. The flow rate and pressure fluctuations are

a direct effect of the intermittant breakdown of micelles in the
entrance region and subsequent refilling and regrowth of the en-
tangled micelle structure. Localizing the instability reduces the ef-
fect of multiple concurrent breakdown events, causing the global
pressure and flow rate to be suitable indicators of individual in-
stability events in the entrance region.

The freedom for pressure and flow rate to fluctuate locally pro-
vide information about how these values are related. In particu-
lar, a rapid jump in flow rate begins a pressure release, followed
by a recovery phase back to a lower flow rate. The rapid break-
down in micelle structure leads to these dramatic changes in pres-
sure and flow rate. This system trajectory is well illustrated by
phase plots of the pressure as a function of flow rate. The phase
plots show that the instability is triggered at a critical pressure
and prevents the system from reaching a stable fixed point. Us-
ing a dynamical systems model to describe the behavior provides
a method for measuring the timescales and regions of stability
of the lumped system. These timescales are found to depend on
geometry of the channel entrance and are not material param-
eters. Our future experiments will elaborate simultaneous mea-
surements of the fluid structure throughout the cycle using flow
birefringence to better inform theoretical models.
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Simultaneous flow and pressure fluctuations show the relationship between breakage of wormlike 
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