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Twist renormalization in molecular crystals driven by
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Symmetry considerations preclude the possibility of twist or continuous helical symmetry in bulk
crystalline structures. However, as has been shown nearly a century ago, twisted molecular crys-
tals are ubiquitous and can be formed by about 1/4 of organic substances. Despite its ubiquity,
this exotic phenomenon has so far not been satisfactorily explained. In this work we study twisted
molecular crystals as geometrically frustrated assemblies. We model the molecular constituents
as uniaxially twisted cubes and examine their crystalline assembly. We exploit a renormaliza-
tion group (RG) approach to follow the growth of the rod-like twisted crystals these constituents
produce, inquiring in every step into the evolution of their morphology, response functions and
residual energy. The gradual untwisting of the rod-like frustrated crystals predicted by the RG
approach is verified experimentally using silicone rubber models of similar geometry. Our theory
provides a mechanism for the conveyance of twist across length-scales observed experimentally
and reconciles the apparent paradox of a twisted single crystal as a finite size effect.

1 Introduction
Nearly a century ago Ferdinand Bernauer made the extraordinary
claim that more than 25% of organic molecular crystals can be
crystallized into helical forms 1. Recently these results have been
confirmed and elaborated using analytical techniques 2,3. More-
over, it was demonstrated that twist is observed also for single
crystals that display no discernible density of defects4. Our def-
inition of a crystal is thus challenged, as the existence of twist
inevitably breaks translation invariance, and therefore cannot be
supported by any crystallographic structure. Despite the ubiquity
of twisted crystals, the precise mechanism leading to their forma-
tion is not fully resolved yet.

N-benzoylglycine (hippuric acid, HA, shown in Fig 1) is unique
among twisted crystal forming componds in that it can form
twisted morphologies crystallized from the melt, solution, or va-
por phase. When grown by sublimation it crystallizes as thin
rectangular rods with twist period (pitch) that increases with the
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Fig. 1 SEM image of N-benzoylglycine (hippuric acid, HA crystals ex-
hibiting size dependent pitch length.

rod thickness. The pitch ranges from a few microns to several
hundred microns. Existing models aiming to explain the size de-
pendent shape of HA rely on large concentrations of crystalline
defects that cooperate in order to twist and deform an other-
wise straight crystalline lattice3. However, selected area electron
diffraction images show sharp spots, SEM images demonstrate
well defined facets and AFM images show clear uninterrupted
atomic steps, all contributing to the observation that twisted HA is
indeed a single crystal and showing no evidence of a high defect
density4. Moreover, quantitatively similar twisting behavior is
observed when HA is crystalized from the melt5 or solution6 sug-
gesting that the twisting is a result of material properties rather
than due to specific crystallization dynamics.
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Size dependent behavior, such as that described above, is char-
acteristic of geometrically frustrated assemblies7. Geometrically
frustrated systems are associated with two or more mutually con-
tradicting geometric tendencies often giving rise to a local order
that cannot be globally extended. Such system have no stress free
configuration even in the absence of external constraints, and
can be realized, mathematically or physically in many different
ways8–10. In the spirit of crystallization processes, a frustrated
assembly could be formed by the ordered aggregation of incom-
patible units that must distort in order to fit next to one another
in a periodic manner. This distortion in turn leads to residual
stresses that may increase as the system grows and can gives rise
to a variety of phenomena, such as defect creation11, selection
of high aspect ratio and filamentation10,12,13, as well as growth
arrest and size limitation7,9,14.

Intrinsic twist tendency of the constituents of an assembly is
in general incompatible with long range order and thus leads to
geometric frustration. This incompatibility takes different forms
in different systems. In the liquid crystalline blue phase it arises
from the geometric inability to sustain a biaxial twist of the di-
rector field in a three dimensional volume leading to gradual de-
viations from the biaxial twist and to finite width domains15. A
distinct type of frustration arises in twisted bundles of filaments
that are allowed to slide past one another16. In this case frustra-
tion arises from the inability to sustain constant filament spacing
given the uniform twist. Here too the frustration may change the
morphology of the bundle and lead to growth arrest.

In this work, inspired by the twisted molecular crystals of HA,
we study the role geometric frustration assumes in the formation
of twisted molecular crystals of macroscopic pitch lengths that
continuously vary with crystal size. To achieve this we model the
crystalline assembly of twisted deformable cubes. The crystalline
order is enforced by prescribing the local topology of the con-
stituents and in particular precluding their relative sliding. We ob-
serve that these constraints necessitate some deviations from the
desired intrinsic geometric structure and that the degree of devi-
ation depends on system size. As the crystalline assembly grows
it gradually untwists, approaching an untwisted conformation in
the limit of infinite size. We thus interpret the observed twist in
molecular crystals as finite size effect and provide a mechanism
for the size dependent conveyance of twist from the molecular to
the macro-scale.

2 Results
We construct the model of twisted molecular crystals by assem-
bling chiral continuous building blocks in a simple cubic lattice.
The building blocks are chosen to be cubes that possess a right
handed twist along a single axis in their rest configuration, as de-
picted in Fig 2A. We align the twist axis of all cubes to point along
the z-direction, and identify adjacent faces of cubes to form a sim-
ply connected solid, i.e. the internal faces of the cubes are in full
non-slip contact with their immediate neighbors. Physically, this
assembly rule is supposed to model adjacent molecules that inter-
act along multiple points such that both their relative positioning
and relative orientations have a single preferred value, and devi-
ations from this value increase the elastic energy. In particular, it

Fig. 2 A) The basic building block. B) The lateral assembly of two cubes
( 2× 1) necessitating some stress. C) The longitudinal assembly of two
cubes (1× 2), requiring no stress. D) 2× 2× 2 assembly of cubes. E)
2× 2 assembly of rods, which is equivalent to a 2× 2× 2 assembly of
cubes. In D and E cubes and rods are separated from the main body
for demonstration purposes. In all panels the color code corresponds
to the elastic energy density obtained by minimizing the global elastic
energy of the aggregate with respect to rod-like degrees of freedom of
the constituents according to Eq. (1).

precludes the appearance of crystalline defects.
An assembly grows by the successive addition of new build-

ing blocks. Any new building block can connect either across
the straight faces which are normal to the twist axis or trans-
versely across the curved surfaces. These two possibilities are not
energetically equivalent. As depicted Fig 2B-C, connecting lon-
gitudinally across the twist direction incurs no mechanical cost,
while connecting the curved surfaces necessitates some deforma-
tion and stress.

Assuming the mechanical energy landscape is convex (i.e.
there are no local energy minima, at least not in the vicinity of the
global minimum), implies that the conformation of the assembled
object is independent of the order in which the constituents came
together. Often geometric frustration may lead to non-convex
elastic energies. However, for the case considered here, the sim-
ple geometry of the assembly and the proximity of the frustrated
equilibrium to the unconstrained elastic equilibrium of the dis-
connected constituents suggest that the resulting elastic energy
may indeed be convex. This is also verified experimentally by the
robust stability of the unique equilibrium of the frustrated assem-
bly.

We are thus free to recast the assembly in the most convenient
form; we choose to consider each solid as composed of columns
of cubes stacked along the twist axis and then connected to each
other laterally. We term each of these columns the elementary
twisted rod. The main advantage of this approach is that each
of the elementary twisted rods is stress free before attaching to
its neighbors and shares the same twist as the twisted cubes from
which it is comprised. For example we can view the cubic eight
blocks assembly, as an assembly of four rods each composed of
two blocks stacked along their twist axis (see Fig 2D-E). Following
this approach we will model a solid of dimensions w×w× L as
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comprised of N2 twisted rods of square cross-section with side
length w0, length L and preferred twist t0, such that w = Nw0.

HA crystals grow as twisted rods that unwind as they grow
thicker4,5. Very thick rods unwind to the extent that their twist
becomes indiscernible. Similarly, in our model one can show that
the bulk assembly (obtained by taking the limit N = w/w0 → ∞)
is morphologically trivial and displays no twist (see Appendix E).
Thus to explore the origin of twist in molecular crystals one needs
to consider them as assemblies of finitely many rods, rather than
as a continua. This path to coarse graining is realized using a
renormalization approach in which rods hierarchically assemble
into thicker rods, as depicted in Fig 3.

We model each of the elementary twisted rods mechanically as
a Cosserat-rod, i.e. a rod that can twist about its mid-line, bend,
stretch, shear its cross-section with respect to its mid-line and
uniformly dilate its cross-section17–19 (see Appendix A for more
details). Each of these deformation modes is associated with a
preferred reference value, denoted with an over-bar and elastic
moduli prescribing the energetic cost of deviating from these pre-
ferred values. The elastic energy, to leading order, may be brought
to the form

Erod =
(
Ψ− Ψ̄

)T G
(
Ψ− Ψ̄

)
, (1)

where the configuration variables vector is given by Ψ =

(v1,v2,v3,u1,u2,u3,σ). v1 and v2 describe shear deformations of
the rod, v3 describes elongation in the direction normal to the
cross section, u1 and u2 describe bending of the rod, u3 mea-
sures twisting of the cross-section, and σ accounts for cross
sectional dilation. For the elementary twisted rod parameter-
ized by arc length the reference values of these quantities read
Ψ̄0 = (0,0,1,0,0, t0,1). The entries in the coupling matrix G are
the elastic moduli of the rod. We assume the the length of rods is
effectively infinite, and therefore we only consider deformations
that are invariant along the rods’ long axes (i.e. we disregard
finite length effects).

We start by assembling together four copies of the elementary
twisted rod together to form a 2× 2 aggregate where each of
the rods is in full contact with it neighboring rods. The condi-
tion of full contact cannot be realized without some deviation
from the reference parameters of the individual rods, i.e. Ψ = Ψ̄0

cannot hold for all rods in the aggregate simultaneously. Find-
ing the residually stressed configuration with least elastic energy
gives the equilibrium configuration the 2× 2 aggregate rod will
adopt. The full contact condition and the symmetry of the ag-
gregate require that the cross-section of the individual rods must
remain normal to the z-axis, implying that the constituent rods
wind around each other not by bending but rather by shearing.
One can show that to leading order it is not required to invoke
any longitudinal stretching nor cross-sectional dilations and that
that there is no linear coupling between shear and twist deforma-
tions, (see appendix A) . These lead to a simplified elastic energy
per unit length of the aggregate that reads

Eagg =
4

∑
i=1

(
G0

s

(
v2

1,i + v2
2,i

)
+G0

t
(
u3,i− t0

)2
)
, (2)

where G0
s ,G

0
t and t0 are the shear and twist moduli of the elemen-

Fig. 3 Illustration of the RG process. At each step 4 identical rods are
glued together in full contact, and the resulting structure is relaxed to
its elastic energy minimum. In this example the twist renormalizes by a
factor of 1

4 at every step, as predicted theoretically for the aggregation of
rod made from an isotropic and uniform material.

tary twisted rod and its reference twist, respectively. For a square
rod of width w0 made from an isotropic and uniform material of
Young’s modulus Y and Poisson ratio ν these elastic moduli read

Gs =
Y

(1+ν)2
w2

0, Gt =
Y

(1+ν)12
w4

0. (3)

However, if we consider the elementary rod as a vertical stack of
the molecular building blocks, while it may be well described as a
Cosserat rod, the above relation between the shear and twist mod-
uli need not hold. The ratio between the twist and shear moduli
can be used to define an effective mechanical width w2

e f f =
6Gt
Gs

,
which may differ from the physical width of the rod (noting again
that for the isotropic and uniform case we f f = w).

In the aggregate the full contact condition constrains the values
the deformation may assume on the boundary connecting adja-
cent rods. Denoting the discontinuity of the rod’s shear across the
connecting face by ∆v we obtain (see appendix)

|∆v1|= |∆v2|= w0 u3. (4)

Minimizing the elastic energy (2), these constraints yield v2
1 =

v2
2 = u2

3w2
0/4 for each of the rods in the assembly. When substi-

tuted into (2), we obtain a one dimensional effective elastic en-
ergy as a function of u3 alone, whose minimum is at

u3 =
t0

1+3α0
≡ t1,

where α0 ≡ (w0/we f f ,0)
2 and reads 1 for an isotropic and uniform

rod.
Thus, in the absence of further external constraints, the aggre-

gate will adopt the configuration of a twisted straight rod with
twist t1. The resulting aggregate, provided that it still could be
considered slender, may again be treated as a Cosserat rod. It
is associated with the reference values Ψ̄1 = (0,0,1,0,0, t0/(1 +

3α0),1), and its new elastic moduli matrix G1 can be calculated
directly from the response properties of its constituents.

This provides the basis for a renormalization group approach
in which at every step four rods from generation n−1 are joined

Journal Name, [year], [vol.],1–11 | 3

Page 3 of 11 Soft Matter



Fig. 4 Residual energy per rod divided by e∞, the energy of a fully un-
twisted rod (also the asymptotic residual energy), for different values of
α0. The dashed line represents the constant ’trivial’ energy required to
assemble untwisted rods

to form the nth-generation rod of width wn = 2nw0. The first two
such generations are illustrated in Fig 3. Starting with the refer-
ence values for the elementary twisted rod Ψ̄0 cited above we can
show that all the reference values remain trivial except for the
twist. Knowing the shear and twist moduli at every step we may
repeat the minimization of the elastic energy (2) only replacing t0
by tn−1. The renormalization flow of the shear and twist moduli
reads

Gn
t = 4Gn−1

t +2w2
n−1Gn−1

s = 4nG0
t (1+α0(4n−1)) ,

Gn
s = 4Gn−1

s = 4nG0
s .

(5)

This result can be intuitively understood by observing that a pure
shear of the four rod aggregate corresponds to a pure and iden-
tical shear for each of its constituents. However, a pure twist
of the four rod aggregate corresponds to an equal twist of the
constituent rods accompanied by an unavoidable shear accord-
ing to equation (4). Moreover, equation (5) suggests we f f ,n =

we f f ,0
√

1+α0(4n−1), which converges to the physical width wn

as n grows.
At every step the reference twist rescales according to

tn =
tn−1

1+3αn−1
=

αn

4nα0
t0 =

t0
1+(4n−1)α0

,

αn =
w2

n

w2
e f f ,n

=
4nα0

1+(4n−1)α0
.

(6)

Note that for an isotropic and uniform material (i.e. α0 = 1) we
have for any step n

tn =
tn−1

4
.

For a non isotropic material, initially the untwisting rate can be
faster (for α0 > 1) or slower (for α0 < 1). However, for large n,
α tends to 1, and thus the untwisting rate approaches that of an
isotropic material, tn ≈ tn−1

4 .
A rod theory is derived by taking a series expansion in the sys-

tem’s width while assuming slenderness, i.e assuming that the
width is the smallest length scale in the system. In the present
case of twisted rod assembly, the length of the rods is assumed
to be infinite, and the only remaining length scale to compare the
width to is the pitch (inversely related to the twist, t). Therefore a

Fig. 5 Experimentally measured and theoretically predicted twist for 1×1,
2×2, 3×3 and 4×4 aggregate rods. The images at the bottom are pho-
tographs of the corresponding silicone rubber models. The red dashed
line is the theoretical prediction for an isotropic material, interpolated be-
tween integer values. Inset shows the rotation measuring technique.

rod is slender if wt� 1. When the width of the system is increased
the assumption of slenderness may break and thus invalidate the
use of rod theory. However, in the case considered here, when-
ever α0 >

1
3 then doubling the width results in increasing the pitch

by more than two for all steps. Moreover, even if α0 < 1
3 and wt

will increase in a few initial steps, if the initial w0t0 is sufficiently
small then the validity of the rod theory may hold. Therefore, the
system becomes effectively more slender when it thickens, and
the use of rod theory throughout is justified.

In each renormalization step the aggregate rod untwists fur-
ther, and residual energy per rod, en ≡ En

4n , accumulates according
to

en =
4n−1

4n αnG0
t t2

0 .

As n→ ∞ the aggregate rod fully unwinds and the total residual
energy per rod converges to the energy required to completely
unwind the elementary twisted rod e∞ ≡G0

t t2
0 , as can be observed

in Fig 4.
Throughout the above treatment we assumed that the assembly

forms a simply connected solid without cuts or holes. More specif-
ically, if identical two dimensional coordinate grids were drawn
on each of the faces of the rods, then the assembly rule implies
that these coordinate grids must coincide on the common face
between two adjacent rods. In general the direction of the third
material coordinate (pointing away from the common surface)
need not agree between adjacent rods. However, we observe that
in the elastic equilibrium these directions also coincide. Framed
more mathematically, our assembly rule requires only continuity
of the embedding, yet at equilibrium we obtain also continuity of
derivatives. Consequently, the configuration adopted by the ag-
gregate rod coincides with the linear profiles of a uniform rod of
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Page 4 of 11Soft Matter



similar cross-section despite the non-uniform profile of residual
stresses in it. This motivates a top-down approach complemen-
tary to the renormalization approach employed above. In this
top-down approach a large rod of cross-section A is decomposed
to N ×N rods of smaller cross sectional area A0 but with simi-
lar aspect ratio. This top-down approach allows us to generalize
the result obtained from the renormalization approach, namely
that t ∼ t0A0/A to arbitrary N (not only 2n), and to non-square
elementary rod cross-sections, and even extend to rectangular as-
semblies of square rods to account for anisotropy in the assembly
of the aggregate. See appendix D.

The model presented here aims to describe how molecular con-
stituents come together to produce twisted crystals of pitch length
measuring tens to hundreds of microns. However, as the main re-
sults appearing in equations (5) and (6) are not scale dependent,
we may test them using a table-top centimeter sized model. We
cast silicone rubber elastic twisted rods and glue them to one an-
other according to the full contact assembly rule described above
(see appendix F for methods used). Fig 5 shows 1×1, 2×2, 3×3
and 4×4 aggregate rods, along with their measured twist, which
are shown to agree well with their values predicted by equation
(6).

3 Discussion
We consider the problem of assembly of molecular constituents
that possess some internal tendency to twist relative to one an-
other. By reformulating the problem as the equivalent lateral as-
sembly of square twisted rods we are able to follow the growth
process and predict the gradual straightening of the twisted
molecular crystal, as well as the increasing residual elastic en-
ergy associated with frustration in the assembly. This allows us to
directly relate the moderate twist observed in macroscopic molec-
ular crystals with the potentially nanometric pitch of the individ-
ual molecular building blocks, and to the elastic properties of the
molecular assembly.

It is natural to seek a continuum approach to the problem.
Starting from a field theoretic approach one could write a theory
that includes both elastic contributions, and liquid crystalline con-
tributions (which include higher order spatial derivatives) that to-
gether reproduce the long wavelength behavior of the system14.
However, the origin of twist in this case is less transparent. Ob-
taining these field equations form first principles for molecular
crystals is a challenge yet to be answered.

A step towards obtaining such a continuum theory from first
principle is to identify the geometric charge associated with the
frustrated assembly of twisted rods. However, the homogeniza-
tion of the assembly presented here, obtained by considering a
domain of constant size W ×W × L composed of twisted square
rods of dimensions w×w×L and of twist t0, and taking the limit
w→ 0 with the parameters W,L and t0 kept constant, results in
a trivial Euclidean bulk with no residual elastic energy (see ap-
pendix E for proof). Thus we cannot associate the frustration
caused by a local twist with a simple Riemannian charge as one
could do for the case of uniformly bent constituents20 or for in-
compatible surfaces21.

Geometrically frustrated systems often display a super-

extensive elastic energy, i.e. that the energy per unit volume
grows as the assembly becomes larger. For twisted rod aggre-
gates we observe super extensive elastic energy for small aggre-
gates (as observed in figure 4). However, for large assemblies
the elastic energy per unit volume converges to a constant, ren-
dering the elastic energy asymptotically extensive. Geometrically
frustrated systems that possess a strongly super-extensive elastic
energy exhibit a preference to form filamentous structures. In the
present case, such a tendency may only exist in the early stages
of the growth. Thus the filamentous profiles observed experimen-
tally are likely not due to frustration alone but rather a signature
of the early dynamics of the crystallization or of some other other
growth limiting factors.

Considering approximately isotropic rods in which w0 ∼ we f f

and α0 ∼ 1, the twist decays inversely proportional to the cross-
sectional area of the aggregate from the very first renormalization
step. However, if w0 � we f f then α0 � 1 and the twist decays
slower in the initial stages. As the aggregate grows, αn → 1 and
the twist will again decay with the inverse of the cross-sectional
area of the aggregate. As the molecular crystals observed in ex-
periments are of micron size, an order of magnitude larger than
the size of their molecular constituents they should be interpreted
as large aggregates in which the value of αn is close to unity, and
at every width doubling one expects the twist to diminish by a
factor of four. It is important to note that in this late regime it
is difficult to measure t0 and α0 separately. Naively extracting t0
while assuming αn = 1 for all n may lead to strong overestimation
of the initial twist t0 for cases where α0 is small.

While the initial unwinding rate depends on the material pa-
rameter through α0, in all cases we considered, geometric frus-
tration provides an effective means for conveying twist from the
molecular scale to the scale of the aggregate. This results in size
dependent pitch unwinding the crystal as it grows, and reconciles
the simultaneous appearance of continuous twist and crystalline
order as a finite size effect. Translational symmetry may not lead
to the optimal arrangement of constituents for small crystals, but
rather arise as an imperfect compromise in view of stringent geo-
metric constraints as the crystal grows in size.

4 Conclusions
The conclusions section should come in this section at the end of
the article, before the Conflicts of interest statement.
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5 Appendices

A Cosserat rod energy for the isotropic
case

A Cosserat rod consists of a parametrized curve ~rrr (s) and
a moving Lagrangian orthonormal material frame of vectors
d̂dd1 (s) , d̂dd2 (s) , d̂dd3 (s), such that the three dimensional embedding
of the rod is given by

~RRR(s,x,y) =~rrr (s)+σ

(
xd̂dd1 (s)+ yd̂dd2 (s)

)
. (7)

Here (x,y) are the Lagrangian cross-section coordinates, not be
confused with the the absolute directions in space, and σ is the
isotropic cross-sectional dilation. The evolution of the frame vec-
tors with respect to the curve parameter s is given by the set of
ODE’s (using the Einstein summation rule over three Euclidean
coordinates indexed by i, j,k):

∂sd̂ddi =−εi jku jd̂ddk, (8)

where εi jk is the Levi-Civita symbol and
{

u j
}

are the components
of the Darboux vector ~uuu = {u1,u2,u3}. The elements u j of the
Darboux vector can in general be functions of s. Considering long
rods we will limit our theory to only constant Darboux entries.
The curve ~rrr (s) is defined by the projections vi of its tangent on
the frame vectors:

∂s~rrr (s) = vid̂ddi, (9)

where we similarly limit ourselves to consider only constants for

the projections vi. If ‖∂s~rrr (s)‖=
√

v2
1 + v2

2 + v2
3 = 1 then s is the arc

length parameter for the curve~rrr (s).
The elements ui and vi have clear geometrical interpretations;

u1 and u2 correspond to bending while u3 corresponds to twisting.
v1 and v2 measure shearing of the cross section with respect to the
tangent curve, while v3 is accounts for elongation in the direction
normal to the cross section, (see Figure 6).

Fig. 6 The fundamental deformations of a Cosserat rod with uniform
parameters.

We proceed to derive the energy of a Cosserat rod. The energy
is a function of the strain, which is proportional to the difference
between the metric of the rod’s current configuration and its ref-
erence configuration metric. We use an overbar, ,̄ to mark the
parameters of the reference configuration. The reference dilation
is set to 1 (without loss of generality).
We calculate the metric tensors gi j, ḡi j using (7):

gi j = ∂i~RRR ·∂ j~RRR

ḡi j = ∂i~RRRre f ·∂ j~RRRre f

(10)

We then use the metric description of elasticity described in8,12

to calculate the energy, per unit length:

Ẽ =
∫

Ω

W (g, ḡ)
√
|ḡ|dxdy,

W =
Y

1+ν

[
ε

i
jε

j
i +

ν

1−2ν
ε

k
k ε

i
i

]
,

ε =
1
2
(g− ḡ) .

(11)

where the lowering and raising of the indices is performed us-
ing the reference metric ḡ. Y is Young’s modulus, and ν is
Poisson’s ratio. Ω is the domain of the cross section, Ω ={

x,y : x,y ∈
(
−w

2 ,
w
2
)}

, thus defining w as the (Lagrangian) width
of the cross section.

We assume that the rods’ reference state is close to that of
a straight simple rod (with vanishing shear, bend, twist and
stretch), and that strains are small, implying that the parameters
σ , ui and v j are close to their reference values. We do not re-
strict the relative magnitude of the different strain components,
and simply expand to second order in the deviations from trivial
geometry and in the strains.

We then take a 2nd order Taylor expansion of the energy in
all of the reference variables, and assign some scaling exponent
to each of the reference variables (e.g. ū3 → ˜̄u3εα ,α > 0 ), and
retain the lowest significant orders.

The second assumption is that of small strains. To do this we
expand up to second order the configuration variables about the
references (e.g. we expand u3 about ū3). We assign to each strain
variable (i.e. terms like u3− ū3) a different scaling exponent, and
any remaining reference configuration variables are assigned the
same scaling exponents as in the first assumption. We retain only
the lowest significant orders in each of the independent scaling
exponents and derive the energy of a single rod:

Erod =
Y

1+ν

(1
2

w2
(
(v1− v̄1)

2 +(v2− v̄2)
2
)

+
(1−ν)w2 (v3− v̄3)

2

1−2ν

+
(1−ν)w4

(
(u1− ū1)

2 +(u2− ū2)
2
)

12−24ν

+
1

12
w4 (u3− ū3)

2

+
4w2ν

1−2ν
(v3− v̄3)(σ −1)

+
2(σ −1)2w2

1−2ν

)
.

(12)

Alternatively, the energy can be cast in the quadratic form Erod =(
Ψ− Ψ̄

)T G
(
Ψ− Ψ̄

)
as in eq. (1), with the elastic moduli matrix
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G given by:

G=
Y

1+ν



w2

2 0 0 0 0 0 0
0 w2

2 0 0 0 0 0

0 0 (1−ν)w2

1−2ν
0 0 0 2νw2

1−2ν

0 0 0 (1−ν)w4

12(1−2ν) 0 0 0

0 0 0 0 (1−ν)w4

12(1−2ν) 0 0

0 0 0 0 0 w4

12 0

0 0 2νw2

1−2ν
0 0 0 2(1+ν)w2

1−2ν


Furthermore, as shown in appendix D, in an aggregate rod

with an elementary unit that has only non-zero reference twist
(i.e. ū3 6= 0, ū1 = ū2 = 0), the only degrees of freedom (d.o.f)
that evolve with system size or composition are the shear and
the twist. We can therefore use a simplified energy, as used in the
main body (2):

Esimpli f ied = G0
s

(
v2

1 + v2
2

)
+G0

t (u3− t0)
2

G0
s =

Y w2
0

(1+ν)2
, G0

t =
Y w4

0
(1+ν)12

(13)

B Full contact conditions on adjacent rods
In this section we express the ‘full contact’ assembly rule through
constraints on the parameters that adjacent rods may assume. We
consider a pair of adjacent rods of width w, and find the con-
straints by requiring continuity of the embeddings of the two rods
on their common boundary (that the parametric curves from both
rods coincide).

We first consider an x border, i.e. a left-right border, corre-
sponding to the coordinate value xL = w

2 for the left rod, and to
xR =−w

2 for the right rod. The continuity condition is then:

~RRRL

(
s,

w
2
,y
)
=~RRRR

(
s,−w

2
,y
)
,

~rrrL (s)+σL

(w
2

d̂dd1L (s)+ yd̂dd2L (s)
)
=

=~rrrR (s)+σR

(
−w

2
d̂dd1R (s)+ yd̂dd2R (s)

)
.

(14)

We have so far not restricted the rod parameters σ ,vi,ui. They
are, at this stage, allowed to all differ in both rods. The above
equalities need to hold for all s and all y. We can therefore ex-
amine them element-wise as a polynomials in y and match the
different coefficients. Comparing the y1 terms we obtain

σLd̂dd2L (s) = σRd̂dd2R (s) .

As the d̂ddi frame vectors are of unit length, we must have that
σL = σR ≡ σ . We are thus left with

d̂dd2L (s,u1L,u2L,u3L) = d̂dd2R (s,u1R,u2R,u3R) .

I.e. the d̂dd2 frame vector is shared by two adjacent rods. The two
remaining frame vectors d̂dd1 and d̂dd3 have, in principle, a degree
of freedom of a constant angle of rotation θ about the shared
d̂dd2, such that d̂dd1L · d̂dd1R ≡ cos(θ). In the following passages we
will show that when two rods with shear and bend free reference
configurations are joined in full contact, the equilibrium configu-
ration has θ = 0, such that all the frame vectors between the two
rods are shared. We examine the first derivative of d̂dd2 in the left
and right rods:

∂sd̂dd2L = ∂sd̂dd2R,

−u3Ld̂dd1L +u1Ld̂dd3L =−u3Rd̂dd1R +u1Rd̂dd3R.

(15)

Taking the dot product with d̂dd1L and d̂dd3L, respectively we obtain:

u1L = cos(θ)u1R− sin(θ)u3R,

u3L = sin(θ)u1R + cos(θ)u3R.

(16)

Taking the second derivative of d̂dd2, and examining the part per-
pendicular to d̂dd2, we obtain:

u3Lu2Ld̂dd3L +u1Lu2Ld̂dd1L = u3Ru2Rd̂dd3R +u1Ru2Rd̂dd1R. (17)

Taking the dot product with d̂dd1L we find

u1Lu2L = u2R (cos(θ)u1R− sin(θ)u3R) ,

u2L = u2R.

(18)

where the last equality is obtained using equation (16). Thus we
express the ui parameters of the left rod in term of that of the
right. We proceed to to do the same for the vi parameters. We
examine the y0 term of (14). Taking its s derivative we obtain:

d̂dd1Lv1L + d̂dd3L

(
v3L−

u2Lwσ

2

)
+ d̂dd2

(
v2L +

u3Lwσ

2

)
=

d̂dd1Rv1R + d̂dd3R

(
v3R +

u2Rwσ

2

)
+ d̂dd2

(
v2R−

u3Rwσ

2

)
.

(19)

Taking the dot product with d̂dd2, d̂dd1L and d̂dd3L respectively, we ob-
tain:

v2L =
1
2
(2v2R−u3Lwσ −u3Rwσ) ,

v1L = cos(θ)v1R− sin(θ)
(

v3R +
u2Rwσ

2

)
,

v3L = sin(θ)v1R + cos(θ)
(

v3R +
u2Rwσ

2

)
+

u2Lwσ

2
.

(20)

We use an energy functional for a rod of width w, which is a
generalization of the isotropic energy (12) found in Appendix A:
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Erod = Gbw4
(
(u1− ū1)

2 +(u2− ū2)
2
)

+Gsw2
(
(v1− v̄1)

2 +(v2− v̄2)
2
)

+Gtw4 (u3− ū3)
2

+G3w2 (v3− v̄3)
2

+Gσ w2(σ −1)2

+Gσ3w2 (σ −1)(v3− v̄3) .

(21)

Note that here, for ease of calculation, we specifically retain the
dimensional part of the elastic moduli, in contrast to the energy
functional used in the main text. We set v̄1 = v̄2 = 0, ū1 = ū2 = 0
and v̄3 = 1 to account for rods that have a shear and bend free
reference configuration. We express the combined energy of both
rods in terms of the parameters of the right rod, using (16), (18)
and (20). However, due to some non-linear couplings in (16) and
(20), the combined resulting energy of the two rods has terms of
higher order than the original quadratic form of each of the single
rods. Retaining terms up to second order in all variables, we
attempt to find local minima in the energy landscape by equating
the gradient of the combined energy to zero. For the ∂uiR and ∂viR

terms in the gradient, an exact solution exists in terms of θ and σ .
The ∂θ term can however only be solved numerically, and it can
be shown that for a wide applicable range of system parameters
the solution is θ = 0 (θ = π is also a solution but has higher global
energy). After setting θ = 0 an exact solution for the ∂σ term is
also obtained.

We have thus found that when the θ degree of freedom is avail-
able to an assembly of two rods, the minimal energy configura-
tion has θ = 0. Assuming the energy landscape is convex about
it’s minima, we set θ = 0 permanently for all further calculations.
This implies that the frame vectors d̂ddi are shared and that all ui

are also shared. Moreover the shear and elongation parameters
along an x border are related by:

v1L = v1R,

v2L = v2R−σwu3,

v3L = v3R +σwu2.

(22)

Repeating the calculation, for a y border (using labels s for ‘south’
and and n for ‘north’, instead of left and right) we find that

v1S = v1N +σwu3,

v2S = v2N ,

v3S = v3N −σwu1.

(23)

C Adjacent rods in full contact can be de-
scribed as a single rod

Two linear functions on adjacent domains, that are continuous
across the domains’ boundary will not necessarily form a linear

function on the union of the domains. For example the function

f (x) =


x 0≤ x≤ 1

2− x 1≤ x≤ 2
(24)

is continuous at x = 1, linear in each of the segments but is not
linear in 0≤ x≤ 2. If first derivatives are shown to be also contin-
uous across the domains, the resulting function is indeed linear
over the union of domains.

Within the Cosserat rod theory the deformations in the cross-
section of the rod are assumed linear. Thus, when joining dif-
ferent Cosserat rods, one may in general obtain a deformation
profile that is not linear in the cross-section of the union of the
rods. In this appendix we show that while the full contact condi-
tion may seem to require only continuity of the embedding, it in
fact enforces continuity of derivatives as well.

Using the results of B we can show that

∂x~RRRL (s,x,y) |x=w/2 = d̂dd2 = ∂x~RRRR (s,x,y) |x=−w/2.

Consequently, when adjacent rods are joined, the deformation
profile along their joint cross-section is linear, and one may de-
scribe them as a single rod without needing to invoke any further
assumptions or approximations.

Thus each of the constituents in a rod aggregate share the bend,
twist and dilation with those of the aggregate rod and inherit their
shear and elongation from the rod aggregate by appropriately
translating the mid-curve by a cross-sectional vector (α1,α2)≡ ~ααα,
and examining the behavior of the mid-curve’s tangent vector.

∂s~rrrα ≡ ṽkd̂ddk = ∂s~rrr (s)+σαi∂sd̂ddi (s)

= vkd̂ddk−σαiεi jku jd̂ddk

=
(
vk−σαiεi jku j

)
d̂ddk

(25)

Explicitly we may write:

ṽ1 = v1−σα2u3

ṽ2 = v2 +σα1u3

ṽ3 = v3−σ (α1u2−α2u1) .

(26)

where ṽi are the shear and elongation parameters of a constituent
rod whose center is at ~ααα.

D Top-down approach
Based on the finding that rods in a full-contact can be equivalently
described as a single rod (see Appendix C), we provide an alterna-
tive method to calculate the full configuration of a rod aggregate
(reference parameters, elastic moduli and residual energy) in a
single step. Moreover, with this method we can generalize the
description to rods of a general rectangular cross section, sub-
divided into any N ×M square rods (Compared to the 2N × 2N

square rods assembly accessible through the renormalization).
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We consider an N ×M rod assembly, of overall width W and
thickness T . The width of the constituent square rods that make
up the generally rectangular aggregate is w0 =

W
N = T

M . Therefore,
we can express M = T

W N. The displacement of each constituent
rod mid-curve from the center of the aggregate rod is given by

~αααn,m = {α1n,α2m}

=

{
W
(

2n−N +1
2N

)
,T
(

2m−M+1
2M

)}
, n ∈ [0,N−1] , m ∈ [0,M−1] .

(27)

We use the energy functional from equation (21), for a rod of
width w, which is a generalization of the isotropic energy (12)
found in Appendix A. Note again that for ease of calculation we
retain the dimensional part of the moduli; for example we write
Gtw4 instead of simply noting the twist modulus Gt as we do in
(2). We proceed to express the rod energy of each of the con-
stituent rods as a function of the parameters of the aggregate rod.
We do this by replacing the vi parameters in each rod according to
equations (25), using the displacements ~αααn,m defined in (27). Ad-
ditionally, we replace the width of each constituent rod w→ W

N , N
being the number of times the aggregate is split across the width
of the aggregate. Thus the energy of a single constituent rod is
Erod [n,m], and the overall aggregate energy is the sum of all the
constituent rods:

Etot =
M−1

∑
m=0

N−1

∑
n=0

Erod [m,n] . (28)

We use (26) to express the strain variables on the constituent rods
in terms of the strain variables of the aggregate. This relation cou-
ples the cross-sectional dilation σ to bend and twist deformations
non-linearly, leading to high order terms that are outside of the
rod-like approximation. Omitting these we obtain

Etot =

GsTW (v1− v̄1)
2 +GsTW (v2− v̄2)

2

+G3TW (v3− v̄3)
2 +Gσ (σ −1)2TW +Gσ3(σ −1)TW (v3− v̄3)

+
1

12N2 TW
(

G3N2T 2−G3W 2 +12GbW 2
)
×

(
u1−

12Gbū1W 2

G3N2T 2−G3W 2 +12GbW 2

)2

+
1

12N2 TW 3
(

G3N2−G3 +12Gb

)(
u2−

12Gbū2

G3N2−G3 +12Gb

)2

+
1

12N2 TW
(

GsN2T 2 +GsN2W 2−2GsW 2 +12GtW 2
)
×

(
u3−

12Gt ū3W 2

GsN2T 2 +GsN2W 2−2GsW 2 +12GtW 2

)2

+Eresidual.

(29)

where the residual energy Eresidual depends on reference parame-
ters only and is given by:

Eresidual =

ū2
1

(
G3GbN2T 3W 3−G3GbTW 5)

N2
(
G3N2T 2−G3W 2 +12GbW 2

)
+ ū2

2
G3Gb

(
N2−1

)
TW 3

N2
(
G3N2−G3 +12Gb

)
+ ū2

3
GsGtTW 3 (N2T 2 +N2W 2−2W 2)

N2
(
GsN2T 2 +GsN2W 2−2GsW 2 +12GtW 2

) .

(30)

Equation (29) had the same quadratic form as that of a single
rod, Erod =

(
Ψ− Ψ̄

)T G
(
Ψ− Ψ̄

)
(as in equations (21) and (12)),

and as such its minimizers (or new references) are found trivially.
Note that only the reference bend and reference twist evolve non-
trivially with N. For the particular case of vanishing reference
bends of the constituent rods, we obtain that the rod assembly has
only a non-trivial twist. This twist, however, contributes to both
twist and shear of the constituent rods through (26), justifying
the form of the simplified rod-energy (2).

Thus the top-down approach is an alternative and more general
way to calculate the energy of a rod aggregate for any rectangular
assembly. Setting T →W,W → Nw0,Gs→ Gs

w2
0
,Gt → Gt

w4
0

we recover

the results of the bottom-up approach presented in the main text
(recalling that N2 = 4n, where N is the number of top-down splits
and n is the number of RG steps).

Taking N → ∞ while keeping W and T constant is akin to a
homogenization procedure, whereby a fixed volume is subdivided
into elementary rods with vanishing size. In this limit we find
that the residual energy (30) vanishes, as do the twist and bend
references. These results can be seen also as consequences of the
triviality of the Riemannian limit of the system, discussed in the
next Appendix.

E Trivial homogenization
In this appendix we prove that the Riemannian homogenization
of the twisted rod assembly is trivial. This is in contrast with other
frustrated assembly processes where the homogenization is not
trivial and its properties dominate the system’s behavior. One of
the simplest cases is that of an assembly of rods of constant radius
of curvature, ρ and width δ connected to one another22. The dis-
continuity in geodesic curvature across the curve connecting two
adjacent stripes renders the metrics of the assembly at any finite
δ non-differentiable. However, the limit of δ → 0 while keep-
ing ρ constant results in a smooth geometry of constant Gaussian
curvature K =−1/ρ2, as has been demonstrated in22 and can be
inferred from the vanishing splay and constant bend compatibility
condition for two dimensional liquid crystals20.

Examining the case of twisted rod assembly leads us to consider
joining N×N twisted straight rods of twist t and width w, such
that the total width of the assembly’s cross section is W = Nw.
The homogenization of the rod assembly corresponds to the limit
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w→ 0 while keeping W and t constant.
The metric of a single twisted straight rod with respect to the

cross sectional Lagrangean coordinates x and y is given by

g =

 1 0 −ty
0 1 tx
−ty tx 1+ t2(x2 + y2)

 .

We define ḡw as the reference metric obtained by joining N×N
such rods. The x and y coordinates are continuous between rods.
The resulting metric satisfies

ḡw(x,y) = ḡw(x+w,y) = ḡw(x,y+w).

The variation in the diagonal elements of ḡw is of order w2

whereas the variation of the off diagonal elements is of order w.
The diagonal elements of ḡw are continuous across the connect-
ing faces but their first derivatives are discontinuous, much like
the case of ribbons of constant bend. However, some of the off
diagonal terms are themselves discontinuous across connecting
faces.

For simplicity we consider the case of a vanishing Poisson ratio
for which, up to constants, the elastic energy of a metric g with
respect to ḡw is given by

Ew =
∫ ∫
|g− ḡw|2ḡw

dV

where the L2 norm with respect to the reference metric ḡw reads

|g− ḡw|2ḡw
= ḡαβ

w ḡγδ
w (gαγ − (ḡw)αγ )(gβδ − (ḡw)βδ )

≡ |ḡ−1
w g− I|2.

The inverse metric for a straight twisted rod reads

g−1 =

1+ t2y2 −t2xy ty
−t2xy 1+ t2x2 −tx

ty −tx 1

 .

Note also that |g|= 1 and the volume element dV =
√
|g|dxdyds=

dxdyds. We set the limiting energy functional to read

E0 =
∫ ∫
|g− I|2dxdyds.

Noting that ḡw = I +O(w) and ḡ−1
w = I +O(w) we obtain

Ew = E0 +O(w). (31)

The difference Ew−E0 is a second order polynomial in the com-
ponents of g with coefficients that depend on ḡw which in turn is
close to the identity matrix . It is thus straightforward to prove
that E0 is indeed the Γ-limit of Ew as w tends to 0. The existence
of a recovery sequence is immediate by examining the constant
sequence

lim
w→0

Ew(g) = E0(g).

It remains to show that for every sequence of metrics gn→ g and
wn→ 0 as n→ ∞ we have

E0(g)≤ lim inf
n→∞

Ewn(gn).

For every metric g such that E0 < ∞ it is straightforward to show
that |Ew(g)− E0(g)|/w < C for all w, for some 0 < C that may
depend on E0 but not on w. Therefore |Ewn(gn)− E0(gn)| ≤
wnC

wn→0−−−→ 0.
lim inf

n→∞
Ewn(gn) = E0 (g) .

Thus for bounded Euclidean metrics g

Ew
w→0−−−→

Γ
E0.

Note that not only the minimizer of the limiting functional is the
identity, but also that the elastic energy in the limit vanishes. Thus
all residual stress is eliminated by considering the homogeniza-
tion, and finite twist pitches are a finite size effect.

F Methods
The silicone rubber twisted rod assemblies were created by cast-
ing liquid silicone rubber (Smooth-On, Inc. Mold-MaxTM NV14)
in 3D printed molds (Formlabs, Inc, Form 2 printer, using Grey
resin). The individual elementary rods were cast as twisted
straight rods of pitch length of 16cm and square cross-section of
width 0.8cm. White and grey pigmented cured rods were clamped
into a straight conformation to align their faces and then were
glued together using red-pigmented uncured resin (of the same
material as the rod) resulting in continuous rod aggregates with
no discernible variation in material properties. After curing, the
aggregate rods were photographed from below in their uncon-
strained state. Image edges were detected via a Roberts cross
operator (MATLAB ’edge’ function) and the twist was inferred by
identifying the feature orientation using a Radon transform.
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