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         ABSTRACT 

We generalize our non-classical theory for the shear rheology of entangled flexible 

polymer liquids to address the consequences of a deformation-modified anharmonic tube 

confinement field. Numerical results for stress-strain curves, orientational relaxation time, 

primitive path (PP) step orientational order parameter, dynamic tube diameter and 

transverse entropic barrier under nonequilibrium conditions are presented as a function of 

dimensionless shear rate, strain and degree of entanglement. Deformation-induced 

changes of the tube field have essentially no effect on rheology under fast deformations 

conditions corresponding to Rouse Weissenberg numbers 1
R

Wi >  because of the 

dominance of PP chain stretch. However, the scaling behavior of the effective 

orientational relaxation time and rheological response at low deformation rates 1
R

Wi <  

are significantly modified, with the stress overshoot coordinates predicted to become 

shear rate and degree of entanglement dependent. Stress-assisted transverse activated 

barrier hopping as a new channel of orientational relaxation is found to be potentially 

important when 1
R

Wi < . The dynamic tube diameter and transverse entropic barrier that 

confines chains in a tube are rich functions of strain, shear rate and degree of 

entanglement. Deformation can increase or decrease the tube diameter, and non-

monotonic changes with strain are possible due to competing consequences of PP 

orientation, chain stretch and stress. The transverse barrier is relatively high for all strains 

below the stress overshoot, for weaker entanglement, and for 1
R

Wi > , corresponding to a 

dynamically stable tube. But for high enough degrees of entanglement and Wi
R
<1 , 

although the barrier still exists it can become very low.  
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I. Introduction 

The construction of a molecular and force-level predictive theory of the complex 

nonlinear rheological behavior of entangled synthetic and biological polymer liquids 

remains a grand theoretical challenge [1-4]. In contrast to equilibrium dynamics for 

which there exists the successful reptation-tube phenomenological theory [1-3], nonlinear 

rheology involves large driving forces, chain deformation and other nonequilibrium 

effects. Thus, additional ad hoc guesses must be made about how deformation modifies 

entanglements, the confining tube, primitive path (PP) contour length, etc. Beginning 

with Doi and Edwards (DE) [1], it is typically assumed that deformation does not modify 

the tube diameter and stretched chains can rapidly retract along the PP in an unentangled 

Rouse manner [1,3,5,6]. Recent neutron scattering experiments [7] and simulations [8] 

have challenged the free Rouse retraction hypothesis.  

A fundamental causality question [4,9] is what is the nature of the microscopic 

inter-polymer force created by a macroscopically-applied deformation that induces chain 

stretching in topologically entangled polymers. Wang and coworkers have proposed the 

new idea of a deformation-induced “grip force” of interchain entanglement origin as the 

microscopic source of affine stretching [4,9-11]. The ability of a polymer to retract along 

the PP is argued to be temporally delayed (effectively there is an entropic barrier) until 

the elastic retraction force built by stretching exceeds the grip force, a condition called 

force imbalance or “loss of grip”. It was argued [4,9,10] this force imbalance condition 

directly determines the shear-rate-dependence of the stress overshoot. The idea that the 

entanglement network, and hence the tube, is “mechanically fragile” and can “yield” at 

the microscopic level beyond a modest threshold deformation has also been advanced by 

Page 3 of 40 Soft Matter



 4 

Wang et al. [4,9-11] in an attempt to understand puzzling observations under nonlinear 

step strain, continuous startup deformation, and stress-controlled creep.  

Very recently we constructed a new theory [12,13] for the shear rheology of 

entangled chain liquids based on the simplifying assumption that the tube confinement 

field is unchanged during continuous deformation. Five new physical features were 

introduced [12,13]: (i) an interchain grip force that generates chain stretch, (ii) a force 

imbalance condition for the termination of an affine stretch deformation, (iii) a delayed 

chain retraction process which after loss of grip is accelerated compared to the bare 

Rouse time τ
R
 when Wi

R
≡ &γτ

R,0
>1 , (iv) a distribution of tube diameters, (v) a 

convective constraint release (CCR) process that emerges only after the PP contour 

length begins to decrease. Quantitative predictions were made for the stress-strain curve, 

shear rate dependence of the stress overshoot and undershoot features, xyS , PP contour 

length dynamics, and nonequilibrium steady state properties spanning the slow and fast 

deformation regimes. For slow deformations there is little or no chain stretch and our 

results are qualitatively the same as prior tube models [1,5,6]. However, under fast 

deformation conditions, we made multiple qualitatively new predictions for all 

rheological and dynamic properties that are not contained in existing models, all of which 

are good agreement with experiment [4,11,14,15] and simulation [16-18].  

The fundamental open question remains of whether the tube confinement field is 

truly deformation invariant, and if not what are the consequences? This is a difficult 

nonequilibrium dynamics question which can impact rheology, chain stretch dynamics 

and orientational relaxation. Purely (not involving forces) phenomenological tube models 
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[1-3,5,6] do not microscopically construct the transverse tube confinement field, but 

rather assume harmonic confinement and an effectively unbreakable tube.  

The above issue has been treated in great detail by Sussman and Schweizer (SS) 

[19-21] for entangled rod solutions using the nonlinear Langevin equation (NLE) 

approach originally formulated for glassy dynamics and transient cage localization 

[22,23]. The full anharmonic (non-Gaussian) tube confinement potential in equilibrium 

has been constructed and successfully confronted with experiments on entangled F-actin 

solutions [21]. A finite maximum tube confinement force is predicted, resulting in the 

possibility of huge tube swelling or even complete destruction of transverse confinement 

under strong deformation conditions [20]. Novel rheological consequences of this aspect 

have been predicted for startup continuous shear [19] and nonlinear step strain relaxation 

[20]. Recent active microrheology experiments on F-actin solutions [24-26] have been 

interpreted as providing support for the SS ideas of massive tube softening, deformation-

induced accelerated reptation, and a competing relaxation channel associated with 

transverse activated entropic barrier hopping. Sussman and Schweizer tentatively 

extended [27-29] the rod theory to flexible chains at the PP level, and showed that in 

equilibrium, the predicted transverse confinement potential is accurate compared to 

simulation [27]. For purely oriented chains, the theory predicts that deformation-induced 

orientation leads to tube expansion [28,29]. In contrast, if chains affinely stretch, the tube 

is predicted to be compressed [29].  

The goal of the present article is to generalize our theory for the shear rheology of 

entangled chain liquids [12,13] to include deformation-induced changes of the tube 

confinement field and investigate its rheological consequences. We also study for the first 
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time several dynamic structural quantities under strongly nonequilibrium conditions. 

Section II recalls relevant elements of the SS approach for the anharmonic tube 

confinement field. Section III briefly reviews our recent rheology theory [12,13] and 

formulates the consequences of deformation-induced changes of the tube field on 

orientational relaxation. Section IV presents new predictions for how deformation-

induced changes of the tube modify the full stress-strain response, including the stress 

overshoot, tube diameter, PP step orientational order parameter and other properties. 

Section V studies how the transverse entropic barrier evolves with strain, shear rate and 

degree of entanglement. The article concludes in Section VI with a discussion. 

Background technical details of the theory and additional calculations are presented in the 

Supplementary Information (SI). 

II. Theory of the Anharmonic Tube Confinement Field  

 A. Overview 

 This section reviews, without derivation or detailed explanations which can all be 

found elsewhere [27-29], the construction of the full tube confinement potential based on 

modeling a polymer chain as a connected set of dynamically uncrossable, infinitely thin, 

self-consistently-determined rigid PP steps which translate but do not rotate (see Fig.1). 

There are no interchain equilibrium correlations in such a model based on objects with 

zero space filling volume. The tube confinement potential is constructed at the force level 

based on a locally “disconnected-PP” (d-PP) simplification. In general, the d-PP step has 

a stretch-dependent length L
e
≡ λ ⋅κb N

e
, where λ  is the stretch ratio, b is the 

statistical segment length, and κ  is a numerical constant that captures missing monomer 

degrees of freedom [27]. The degree of nematic orientational order at the PP step level is 
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defined as S. Predictions of the SS approach in equilibrium quantitatively agree with 

simulations of entangled chain melts for the PP step probability distribution function 

when 2.5κ = [27]. Further details can be found in ref. [27-29]. Here we summarize only 

the essential foundational aspects relevant to our new work. 

 

Figure 1 (a) Schematic diagram of the primitive path (PP) chain mapping. See text for 

details. (b) Dynamic tube confinement potential (units of kBT) vs dimensionless 

transverse displacement of a PP step in units of the equilibrium tube diameter. From top 

to bottom the solid curves correspond to 0S = , 1λ =  and 
e

Gσ = 0, 1, 2, the dashed 
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curve corresponds to 
e

Gσ = 1, 0 .5S = , 1λ = , and the dotted curve corresponds to 

e
Gσ = 1, 0 .5S = , 1 .1λ = . On the 

e
Gσ = 0, 0S = , 1λ =  curve, the transverse 

localization length (half the tube diameter 2
loc T
r d= ), and the location of maximum 

restoring force (
max
f ),  *r , are labeled. On the 0S = , 1λ =  and 

e
Gσ = 1 curve the 

location and magnitude of the transverse barrier, 
B
r  and 

B
F , respectively, are indicated.  

 The gradient of the anharmonic tube confinement potential, or “dynamic free 

energy”, describes the force on a tagged PP step due to the surrounding polymer liquid 

(Fig.1). Its minimum is the most probable transverse localization length which can be 

directly computed in a fully self-consistent manner based on a harmonic or Gaussian 

treatment of transverse displacements. This analysis has been performed for isotropic 

equilibrium liquids, and also liquids where the PP step length is stretched and/or oriented 

in a prescribed manner. Sections IIB and IIC summarize results at this level of the theory. 

The presence of a macroscopic nonzero stress implies PP steps also experience an 

additional microscopic force as discussed in section IID.  

 B. Basics of Transverse Confinement Potential for Isotropic Fluids  

 At the Gaussian (2
nd
 moment) level per a harmonic tube field, the self-consistent 

equation for the tube diameter (twice the dynamic transverse localization length), 

2
T loc
d r= , for the general case where PP steps can be deformed or oriented is [29], 

                          
d
T ,0

p
=

16 2π 2

κF
2κλ

d
T

d
T ,0









G(S )λ 3

                          (1) 
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Here, ,0Td is the equilibrium tube diameter, p the packing length [30], ( )F x  carries 

dynamical information about the confining entanglement forces, and G quantifies the 

effect of PP step orientational order [28,29]. For isotropic equilibrium liquids, the theory 

predicts [27] d
T ,0

≈ 8.2p for  κ = 2.5, while PP simulations [31] find 
  
d
T ,0

≈12.2 p .   

 The NLE approach [22,23] goes beyond the Gaussian analysis to construct the 

full anharmonic tube-confinement potential which enters a nonlinear stochastic equation 

of motion for the transverse center-of-mass (CM) displacement ( r⊥ ) of a PP step [27-29] 

                  ( ) 0s dyn s

dr
F r f

dt r
ξ δ⊥

⊥
⊥

∂
− − + =

∂
                            (2) 

Here, s
ξ  is a short-time friction constant (unimportant here), s

fδ  is the corresponding 

white-noise random force, and ( )dynF r⊥  is the "dynamic free energy" or tube confinement 

potential that captures entanglement constraints (dynamic uncrossability). The latter 

follows from integrating the displacement-dependent transverse force [27-29], 

               f r
⊥( ) = 2

r
⊥

−
2

r
⊥
F

2κλ
d
T

d
T ,0











F
κλ

r
⊥

d
T ,0









                    (3) 

The Gaussian-theory result for the tube diameter corresponds to the minimum of the tube 

field and satisfies ( )2 0Tf r d⊥ ≡ = . Under equilibrium conditions the transverse barrier 

is infinite but the maximum restoring force (see Fig.1(b)) is finite, 
  
f
max

≈1.6 k
B
T / d

T ,0
 

[27-29]. The latter is in contrast to phenomenological ansatzes of an unbreakable tube.  
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Figure 2 Log-log plot of the tube diameter (normalized by its equilibrium value) of an 

entangled liquid subjected to a globally affine shear deformation as a function of shear 

strain. The upper results correspond to no PP stretching (only orientation), and the lower 

results correspond to an affinely stretched primitive path. The solid curves through the 

numerically-determined points are the analytic functions of Eq. (4) and Eq. (5). 

 C. Effect of Affine-like Orientation and/or Chain Stretch 

 To explore the effect of chain orientation and stretching on the tube diameter one 

can insert into the dynamical theory information about PP step stretching and/or 

orientation, and then again solve the self-consistency equation Eq.(1). Results are shown 

in Fig.2 for a globally affine shear deformation [29] when 1λ =  (no stretching) and for 

λ ≠ 1. Tube diameter changes can be expressed as a function of the orientational and PP 

stretch variables, or as a function of affine strain, γ . For 1λ = , the tube diameter 
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increases with strain since deformation induces orientational order which reduces the 

consequences of dynamic intermolecular uncrossability constraints. The result is [28,29]:   

                                      
d
T

γ( )
d
T ,0

≈ 1+
γ 2

4
≈

1

1− S
                          (4) 

If the PP is affinely stretched then 
21 3λ γ= + , and one has both PP orientation and a 

longer step length. Numerical results are well approximated by [29]: 

     
( ) 2

2

,0

1 4

1 3 8

T

T

d

d

γ γ
γ

+
≈

+
                             (5) 

The numerator reflects orientation-driven tube swelling, while the denominator captures 

tube compression due to stretching. More generally, the theory predicts nontrivial 

coupling of PP orientation and stretching on the dynamic transverse localization length.  

 Changes of the tube diameter impact all other features of the dynamic free energy 

in the same direction. For example, pure PP orientation reduces fmax thereby “softening” 

the tube field, while affine stretching plus orientation “hardens” the tube corresponding to 

a larger fmax. But in all cases the transverse barrier is infinite in the “dynamic local 

equilibrium” framework of NLE theory and hence polymers are laterally confined. 

 D. Direct Effect of Applied Stress and Microscopic Yielding Concept 

 In a bulk rheology experiment, there are macroscopic forces per unit area applied at 

a boundary which must be transmitted as microscopic forces on polymer molecules. The 

latter should enter a nonequilibrium version of the NLE equation of motion. In the spirit 

of microrheology, NLE theory is modified to account for this based on a mechanical 

work like ansatz [19,20,29]:  

                              F
dyn

r⊥ ,σ ;λ,S( ) = F
dyn

r⊥ ,σ = 0;λ,S( )− A 1− S 3 2 2( )σ r⊥             (6) 
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The second term on the right hand side (RHS) implies each PP step experiences an 

additional constant force on its center-of-mass, the magnitude of which depends on the 

macroscopic stress σ . This represents a so-called “direct” force on a PP step, and the 

corresponding contribution to the now nonequilibrium tube field is linear in the 

instantaneous PP step transverse displacement. The prefactor converting macroscopic 

stress to microscopic force is 2 4TA dπ= , i.e., the physically relevant area is taken to be 

set by the tube diameter [29]. A geometric “projection factor” 
3 21 2S−  enters Eq. (6) 

which captures the fact that the microscopic force is perpendicular to a PP step (an 

internal coordinate) while the macroscopic stress is defined relative to the laboratory 

frame; see SI for details. Using the experimental melt plateau shear modulus 

30.0023e BG k Tp−=  [30,32], the second term in Eq. (6) can be written as  

      ( )
23 2

3 2

3

,0

1.3 1
1 2

8

T

e T

d rS
A S r

G d

π σ
σ ⊥

⊥

−
− ≈                      (7) 

The first term in Eq(6) is the proper limit in the absence of this stress. It includes, if 

present, PP stretch and/or orientation effects, per section IIC.  

 In general, the stress dependence of key features of the tube confinement potential 

must be determined numerically. A crucial point is that for any nonzero value of σ  the 

infinite barrier of the lateral confining field is formally destroyed because the maximum 

restoring force is finite. This results in a stress-induced finite entropic barrier height B
F , 

as shown in Fig.1(b). Furthermore, if the microscopic force f  ( ( )3 21 2A S σ≡ − ) 

exceeds the maximum restoring force max
f  in ( ), 0; ,dynF r Sσ λ⊥ = , then tube confinement 

and transverse localization is completely destroyed. This limit is called "microscopic 

Page 12 of 40Soft Matter



 13

absolute yielding".  It can always be realized in stress-controlled rheology (creep), but is 

not assured to be possible in startup continuous deformation which does not control stress. 

Regardless, the "direct force" always softens tube confinement, tends to swell the tube 

diameter, and reduces the transverse barrier. If the tube breaks, the corresponding 

transverse dynamic restoring force and barrier vanish continuously, but the transverse 

dynamic localization length (tube diameter) jumps from a finite to infinite value 

discontinuously per a simple bifurcation instability [19,29].  

 To treat rheology requires connections between stress, strain, strain rate, chain 

stretch and orientation. All these quantities are functionally coupled in a nonlinear 

manner to the tube confinement field, and all evolve in time or accumulated strain. 

III. Rheological Theory of Continuous Startup Shear Deformation 

In our previous work [12,13] that constructed a rheological theory of entangled 

polymer liquids under shear deformation, several new ideas for how chains stretch and 

then lose “grip”, the dynamics of PP contour length retraction, the impact of tube 

diameter fluctuations and the delayed emergence of a CCR process, have been introduced 

in the framework of the simplest version of the Mead-Larson-Doi (MLD) model:  

  
σ t( ) = 5G

e
λ t( )2 Sxy

         (8) 

    

  

S
xy

= d ′t
−∞

t

∫
dψ t − ′t( )

d ′t
Q

xy
E t, ′t( )         (9) 

Here, 
 
S
xy
 is the xy-component the orientation tensor, eG  is the entanglement plateau 

shear modulus, xyQ  is the affine deformation orientational factor [1], E  is the 
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accumulated deformation, and ( )t tψ ′−  is associated with an effective orientational 

relaxation time effτ : 

( ) ( )( )1exp
t

eff
t

t t dt tψ τ −

′
′ ′′ ′′− = −∫

    (10)
 

which includes (perturbed) reptation, CCR and perhaps activated transverse entropic 

barrier hopping (see section III.A).  

The so-called interchain “grip force” gripf  [4,9-11], which quantifies the 

microscopic driving force for chains to stretch, has been formulated [12] based on the 

dynamic tension blob concept [33,34]. The force imbalance criterion [12] that describes 

when chains can begin to retract (versus affine deform) follows by equating the grip and 

intrachain retraction forces [12] to obtain the mean “loss of grip” strain, γ
grip

. The 

existence of a broad distribution of tube diameters implies a distribution of force 

imbalance conditions and loss of grip strains, ( )gripP γ . Then, the fraction of strands that 

have achieved force imbalance at a given strain can be defined as [12,13]  

  
Θ

grip
γ( ) = P γ

grip( )dγ grip0

γ

∫
    (11)

 

Based on our physical picture, we postulated the following evolution equation for 

PP contour length stretch [12,13]:  

   
dλ
dt

= S
xy
&γ λ −

λ −1
τ
R,eff

Θ
grip

γ( )        (12) 

The first term describes affine stretching in the standard manner [5]. The second term 

describing retraction has two qualitatively new elements. First, it continuously “turns on” 

from zero with increasing elapsed time thereby capturing the amount of loss of grip (as 
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quantified by ( )grip γΘ ). Second, as grip is lost the PP contour length increasingly 

behaves in an unentangled manner. The chain retraction rate is faster when WiR>1: 

    

   

τ
R ,eff

( &γ ) =
η( &γ )
G

Rouse

=
τ

R

1+Wi
R

2 
1 4

     (13) 

All technical details and physical arguments concerning the above concepts can 

be found in refs.[12,13] and SI of this article. These prior works assumed that 

deformation has no effect on the dynamic tube confinement field that controls transverse 

polymer motion. Our present central focus is to relax this assumption to include the 

changes of transverse/orientational dynamics due to a deformation-modified tube 

confinement field.  

A. Orientational Relaxation: Three Competing Processes 

 In prior work [12,13] we took into account two orientational relaxation processes: 

(i) deformation-modified reptation and (ii) time-delayed emergent CCR. Here we 

introduce a third mechanism: (iii) stress-induced transverse barrier hopping. We also 

generalize our treatment of (i) to include deformation-induced changes of the tube. 

 For (i), we explore the idea that the reptation time is directly related to the tube 

diameter as true for rod liquids [19,20] and chains in equilibrium: ( )2,0 ,0rep rep T Td dτ τ = , 

where 
,0rep

τ  is the equilibrium reptation time associated with orientational relaxation, 

  
τ
rep,0

= 3Zτ
R,0

. Reptation speeds up (slows down) if the tube swells (shrinks), and the 

latter depends on time or strain. For (ii) we argued [13] CCR is present only once the 

irreversible process of PP contour length reduction has begun which occurs beyond the 

stress overshoot for all 
 
Wi

R
 [13]. The effective orientational relaxation rate is then:  
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    τ
eff

−1 = τ
rep

−1 + β
CCR

λ
max

− λ
τ
R,eff









 Θ+ γ > γ λ

max( )( )                (14) 

The parameter 
 
β
CCR

 encodes the physical intuition [5] that CCR is less effective when 

chains stretch; following others, 
 
β
CCR

 is taken to be inversely proportional to λ [5].  

 The third relaxation channel is stress-assisted transverse entropic barrier hopping. 

Its characteristic relaxation time is straightforward to compute using Kramers theory for 

rigid rod liquids where there is only one dynamic free energy (or in other words one PP 

step) and the rod CM displaces rigidly [19,20]. However, for chains there is a dynamic 

free energy present for each of the Z connected PP steps that define a flexible polymer 

(Fig.1(a)). Hence, to treat hopping one cannot a priori ignore chain connectivity, and 

treating this aspect is a difficult and unsolved problem for entangled polymers. It is 

reminiscent of classic work by Helfand and Skolnick [35] on trans-gauche 

conformational transitions in polymer melts where one large amplitude activated 

torsional hopping over a barrier motion can occur only due to many much smaller scale 

correlated motions in the trans wells of nearby connected bonds. Moreover, the precise 

amount of global chain orientation relaxed by one PP step level hop is a complex issue. 

Thus, due to these uncertainties, when calculating the barrier hopping time 
hop

τ  we 

consider two naive extreme ansatzes. A common constraint is the hopping time must 

reduce to the unentangled chain orientational relaxation time, τ
R,eff

, if there is no tube. 

 The simplest assumption for the mean hopping time is 
  
τ
hop

≈ τ
R,eff

exp βF
B( ) , 

which is presumably a lower bound since only one PP step transverse barrier enters 
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(chain connectivity is ignored when describing the transverse hop). The net orientational 

relaxation rate then becomes:  

                       ( )( )1 1 1 max
max

,

eff rep hop CCR

R eff

λ λ
τ τ τ β γ γ λ

τ
− − −

+

 −
= + + Θ >  

 
                    (15) 

But if a hop involves simultaneously surmounting even a few PP barriers the time scale 

could become much longer. Thus, the other extreme model we study is to assume that 

chain connectivity results in a PP step hopping time that is so long as to be effectively 

infinite, corresponding to adopting Eq.(14).  

 

B. Orientational Order Parameter Dynamics 

 The PP level scalar nematic order parameter, S, varies from 0 to 1 for unoriented 

to fully uniaxially oriented PP steps under shear deformation. While it plays no direct 

role in standard tube models of rheology, in our approach it enters since all aspects of the 

dynamic free energy depend on chain orientation. However, S does not enter explicitly in 

our rheological calculation of stress. The dynamical evolution equation governing S is a 

competition between relaxation-driven orientational randomization and a mechanically-

driven, rate-dependent, orientational driving force [19]. Given the d-PP model adopted 

and our use of the independent alignment assumption (IAA) to compute stress, for 

simplicity and consistency we adopt the same description of its dynamics developed for 

entangled rod fluids which corresponds to the evolution equation [19]:  

              
dS t( )
dt

=
−S t( )
τ
eff

+
dS

a

dγ
γ =γ

eff












&γ                           (16) 

The previously developed concept of an effective strain [19], 
eff

γ , is employed, which 

satisfies ( ) ( )a effS S tγ = . Physically, Sa in Eq. 16 is the PP step orientational order 
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parameter due to "strain in affine motion". As for rods, we assume that under affine 

conditions the Lodge-Meissner relation [1] applies:  

                                                   
2

2

3 4
aS

γ

γ γ

−
=

− +
                            (17) 

and this functional form applies in an effective sense beyond the affine regime [19].  

   C. Summary of Theory and Its New Physical Aspects 

Only two parameters enter: number of entanglements, 
 
Z ≡ N N

e
, and 

Weissenberg or Rouse Weissenberg number, Wi = &γτ
rep ,0

 or Wi
R
= &γτ

R,0
, respectively. 

Equations (8), (9), (12), (14) (or (15)) and (16) form a closed set of coupled nonlinear 

equations which govern the evolution of an entangled polymer liquid under continuous 

startup shear deformation. There are three dynamic structural variables: stretch ratio λ , 

dynamic tube diameter T
d  and orientational order parameter S .  

Compared to our prior work [12,13] two new physical aspects enter. (i) 

Deformation-induced changes of the tube field via the "direct force" or indirectly via PP 

orientation and stretch. This modifies the reptation time and introduces the new 

transverse hopping relaxation channel. (ii) The accompanying dynamic tube diameter T
d , 

transverse entropic barrier B
F , and S  all dynamically evolve with time or strain in a 

manner that is dynamically coupled with the full rheological response.  

We will show that points (i) and (ii) result in rheological predictions that are 

different compared to our previous theory [12,13] if WiR<1 due to the dominance of 
xy
S  

which is significantly affected by perturbed reptation and perhaps transverse barrier 

hopping. Some of our rheological results are compared with experiments and simulation. 
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However, our prior results [12,13] under fast deformation conditions (WiR>1) 

summarized below remain virtually unchanged due to the dominance of chain stretch. 

This is a nontrivial prediction, and is a deduction, not an assumption. Furthermore, the 

dynamical structural information (dynamic tube diameter, PP step order parameter, 

transverse barrier, etc), not treated at all in prior work [12,13], are of interest in their own 

right in addition to their possible influence on rheology. Our new predictions for these 

dynamical structural properties should be testable in future simulations and experiments. 

IV. Rheological and Chain Dynamical Results   

We first summarize as relevant background key prior results [12,13] when 

1
R

Wi > . (i) The stress undershoot coordinates follow apparent power laws:

  
γ

undershoot
∝Wi

R

0.3 , 
  
σ

undershoot
G

e
∝Wi

R

0.32 . (ii) An apparent fractional power law growth of 

the steady state stress 0.30

ss e RG Wiσ ∝ . (iii) The chain stretch ratio in the steady state 

grows as 
  
λ

ss
∝Wi

R

0.31 . (iv) The steady state xyS  obeys 
  
S
xy

ss ∝Wi
R

−0.30
. (v) The steady-state 

effective relaxation time follows a nearly Z-independent inverse power law, 
  
τ
eff

ss ∝Wi
R

−0.6
. 

(vi) At the stress overshoot, 
  
σ

max
G

e
∝Wi

R

0.3
 and 

  
γ
max

∝Wi
R

0.3
. Very similar overshoot 

scaling laws were experimentally found by Wang et al. in solutions and melts [4,11,14] 

and then confirmed by another experiment [15] and simulation [16]. (vii) The chain 

stretch ratio at the stress overshoot scales as 
  
λ
overshoot

∝Wi
R

0.29 .  

We find in our new work that all of the above results remain virtually unchanged 

since when chains stretch the tube field hardens (high transverse entropic barrier B
F , see 

Sec. V), and the orientational relaxation via barrier hopping can be neglected and is rather 
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dominated by CCR beyond the stress overshoot. Furthermore, the importance of 

orientational relaxation for the stress overshoot is small when 1RWi > . Given this, the 

primary focus below is the slow nonlinear regime, 1RWi ≤   and  1Wi > . 

 

Figure 3 Dimensionless shear stress as a function of strain at increasing dimensionless 

deformation rates (bottom to top) for 2 5Z =  and 
CCR

β =1 λ . Solid curves include the 

transverse hopping process (Eq. (15)) and dashed curves do not (Eq. (14)). 

A. Full Stress-Strain Response  

Figure 3 shows representative calculations for   Z = 25 of the total stress 

(normalized by the equilibrium entanglement plateau modulus) plotted as a function of 

strain for different dimensionless shear rates (
  
Wi

R
< 1  and 

  
Wi

R
> 1) with effτ  calculated 

using    
β
CCR

= λ−1
 with Eq. (14) or (15). Basic features include a stress overshoot and 

emergence at high enough 
 
Wi

R
 of a stress undershoot(s), which both grow in amplitude 
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with increasing shear rate. The overshoot strain does vary with shear rate when 
  
Wi

R
< 1 , 

and even more strongly when 
  
Wi

R
> 1 . Comparing the results using Eq. (14) or (15) one 

sees that the transverse barrier hopping process modestly affects the stress-strain curve at 

low R
Wi , but its influence can be neglected at high R

Wi . 

B. Stress Overshoot Behavior  

The stress overshoot is specified by its coordinates max
σ  and max

γ . Predictions for 

the overshoot strain, max
γ , are shown in Figure 4. At low deformation rates 1

R
Wi < , our 

prior theory [12,13] predicted an essentially rate-independent max
2.25γ ≈ . However, 

including deformation-dependent reptation and hopping (using Eq.(15)) leads to an 

increase of the overshoot strain with shear rate when 1
R

Wi < . From careful examination 

of the figure one sees it varies from max
γ ~ 1.3-2.2 (solid curves). This is due to the 

deviation of the orientational relaxation time from the DE prediction, which affects xyS  in 

Eq. (9). Specifically, when 1
R

Wi < , if the shear rate is not sufficiently small the 

maximum value of Sxy no longer occurs at ~ 2.25, but varies with R
Wi  in a way consistent 

with the stress overshoot strain. A constant strain value of ~2.25 is only recovered for 

small enough shear rate; for example, when 0.01
R

Wi <  if Z=100. The stress overshoot 

strain max
γ  at low R

Wi  also decreases with Z, mainly because the barrier (and hopping 

time) is lower for larger Z at the same R
Wi , which accelerates orientational relaxation.  
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Figure 4 Strain at the stress overshoot as a function of Rouse Weissenberg number for 

three degrees of entanglement 6, 25,100Z = . Solid and dashed curves represent the 

results with the hopping process (Eq. (15)) and without the hopping process (Eq. (14)), 

respectively. The black dashed horizontal line is the Doi-Edwards prediction which is 

relevant for WiR<1 in the absence of chain stretch. Experimental results [4,14] for three 

SBR melts (half-filled symbols) are also indicated. Inset: the corresponding 

dimensionless overshoot stress for 6Z =  and 100. “Prior Results” (filled circles) are 

those obtained from the theory [12,13] which ignored tube deformation. 

The SBR melt data of Wang et al. [4,14] for the overshoot strain is also shown in 

Fig.4. Gross trends are the overshoot strain (a) increases with shear rate, (b) can be well 

below the DE value of ~ 2.25, and (c) roughly appears to become smaller as Z increases. 

These trends are qualitatively consistent with our theoretical results. Similar trends are 

found in the experiments of Auhl et al. on polyisoprene liquids [36], although the 
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variation with rate and Z of the reported data is significantly less distinct. More high 

precision experimental measurements of the overshoot strain would be valuable. 

Figure 4 also shows the corresponding theoretical results (dashed curves) if 

transverse hopping is ignored (Eq.(14)) in computing effτ . A similar rate dependence of 

the overshoot strain is found as when hopping is included. However, the Z-dependence is 

the opposite. This further motivates performing new high precision measurements. Note 

that once Wi
R
>1, our results for all Z values converge to a single curve, which agrees 

with prior work [12,13] based on assuming no changes of the tube field with deformation. 

The inset of Figure 4 shows calculations of the overshoot stress, max
σ , which 

monotonically grows with increasing R
Wi  and Z. Including transverse hopping only 

weakly reduces its magnitude, and less so as Z grows. Such R
Wi  and Z dependences for 

max
σ  are qualitatively consistent with the Auhl et al. experiments [36]. Also shown are 

our prior results [12,13], and the trends are qualitatively identical as here. Quantitatively, 

ignoring tube deformation leads to larger overshoot stresses, ala the overshoot strain 

behavior. The reason is ignoring tube dilation and/or barrier hopping increases the 

orientational relaxation time, which shifts the overshoot to larger strain and stress. 

As far as we are aware, there are no definitive published simulations for the 

question of whether for slow nonlinear deformations the overshoot coordinates change in 

a non-negligible and systematic manner with shear rate and Z. Such simulations would be 

very valuable to test our results. For that purpose we report our numerical predictions for 

typical shear rates and low Z values typically studied using simulation. For WiR = 

(0.25,0.5,1), based on including hopping we predict for Z=6 overshoot strains of (1.8, 2.2, 
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2.7), while if hopping is ignored they are (1.9, 2.2, 2.7). The effect of hopping is very tiny, 

but it does matter for the qualitative variation of the overshoot strain with Z. 

C. Effective Orientational Relaxation Time and Barrier Hopping 

   The effective orientational relaxation time is a fundamental quantity affected by 

changes of the tube confinement field that, in turn, can modify rheological response. 

Strong acceleration of relaxation is generically predicted, which is more pronounced as 

RWi  increases [12,13]. At low deformation rates 1RWi < , there is a noticeable influence 

of a changing tube field on the effective orientational relaxation time.  

 

Figure 5 Log-log plot of the transverse barrier hopping time normalized by the effective 

orientational relaxation time as a function of strain for Z=6 and four low shear rates. Dots 

indicate the strains at the stress overshoot. Inset: Log-log plot of the steady state effective 

orientational relaxation time normalized by the equilibrium reptation time as a function of 

Rouse Weissenberg number. The orange stars are the orientational relaxation time data 
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from the simulation of Baig et al. for Z=6 [37]. Cross symbols are the theoretical results 

with the hopping process (Eq. (15) and filled symbols the results without hopping (Eq. 

(14)). Effective power law scaling exponents are indicated.  

 Figure 5 shows how important transverse hopping is (within the model of Eq.(15)) 

compared to perturbed reptation and CCR for orientational relaxation. The mean hopping 

time divided by the effective total orientational relaxation time is plotted as a function of 

strain for various dimensionless rates and two Z values.  For WiR >1 the hopping process 

is generically not competitive (far too large to matter for all Z and strain values). This is 

because chain stretching hardens the tube and increases the transverse barrier, as 

discussed in section V. For slow nonlinear deformations, one sees for the lightly 

entangled Z=6 system that with increasing strain approaching the overshoot the hopping 

time becomes more important in a relative sense, but is always nearly an order of 

magnitude longer than the effective orientational relaxation time. Hopping is most 

important slightly beyond the stress overshoot strain, as indicated by the dots on the 

Figure 5 curves. We conclude the tube is dynamically stable for low Z in that transverse 

hopping is unimportant, a conclusion which explains the Z=6 results in Fig.4. However, 

for Z=25 (see SI, Figure S2), although the trends with shear rate and strain of the time 

scale ratio remain the same as for Z=6, the absolute importance of transverse hopping is 

significantly larger. As discussed in section V, this is because the transverse barrier is 

smaller for bigger Z since S is larger at the same 1
R

Wi < . Enhanced importance of 

hopping is the origin of the different trends with Z of our results for the overshoot 

coordinates in Fig.4.  
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 The inset of Figure 5 shows typical effective orientational relaxation time results in 

steady state (ss). Our prior theory [12,13] found over a limited regime that ss

effτ  decreases 

with R
Wi  as an apparent power law with an exponent that becomes steeper with 

increasing Z, varying from ~ -0.64 to ~ -1.0 for Z = 6-100. However, the decrease of ss

effτ  

with shear rate becomes slower when using Eq. (14) to calculate the effective 

orientational relaxation time, and the scaling exponent varies from ~ -0.4 to ~ -0.68 for Z 

= 6-100. This agrees with simulation at low Z=6 [37,38], as shown in Fig.5.  In addition, 

Fig.5 shows that while the transverse hopping process reduces the effective relaxation 

time, the power law scaling in the narrower regime remains almost identical. We mention 

that simulations by different groups [37,38] give quite different effective relaxation times 

in the narrow region of 0.05<WiR<1 shown in Figure 5. 

         D. Nematic PP Orientational Order Parameter  

 The deformation-induced PP step orientational order parameter, S, is an important 

property. Physically, one expects alignment reduces the probability of PP segment 

collisions, leading to less entanglement, and hence tube dilation and enhanced transverse 

motion. The latter in turn affects relaxation-driven orientational randomization (first term 

on right side of Eq. (16)). Hence, S is coupled with the effective orientational relaxation 

time. Results for 25Z =  are shown in the main frame of Figure 6 during deformation 

based on Eq.(15) (includes hopping). One sees that S goes through a maximum and 

decreases when effτ  begins to drop due to emergent CCR. Significant orientation 

develops well before the chains begin to stretch significantly.  
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Figure 6 PP step orientational order parameter as a function of strain at increasing 

deformation rates (bottom to top) for 2 5Z = . The hopping process (Eq. (15)) is included. 

Inset: PP step nematic orientational order parameter in the steady state as a function of 

Rouse Weissenberg number for 4 values of degrees of entanglement. Cross and filled 

symbols are results with the hopping process (Eq. (15)) and without hopping process (Eq. 

(14)), respectively. The open circles in the inset are simulation results for the chain 

orientational order parameter of a model with Z=6 [37]. 

 Calculations of the orientational order parameter in the steady state, ssS , are 

shown in the inset of Figure 6, which monotonically grows with shear rate. At low 

1RWi < , ssS  increase rapidly, while for 1RWi > , they slowly increase with RWi . Although 

ssS  is quite insensitive to Z at high 1RWi > , noticeable differences at low 1RWi <  are 

predicted: a larger Z leads to larger ssS  for a fixed 1RWi < . The influence of hopping is 
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also indicated in the inset of Figure 6. It reduces S at low 1
R

Wi <  because of stronger 

relaxation-driven orientational randomization. The corresponding quantity at the stress 

overshoot (Fig. S3 of SI), overshoot
S , shows very similar dependences on shear rate and Z. 

 Also shown in the inset of Figure 6 are steady state MD simulation results of Baig 

et al. [37] for a lightly entangled melt with Z=6. Results are shown only in the fast 

deformation regime because what has been measured in simulation is the nematic 

orientational order parameter defined at the full chain scale, while our calculations are at 

the PP step level. These two measures of orientation are not independent, but are not the 

same. They are expected to be different in slow deformations where there is almost no 

stretching. At high shear rates where chains strongly stretch and align, we believe it is 

fair to compare them. Since we employ a disconnected PP model, one expects stronger 

alignment than in simulation, as we find. The inset of Figure 6 shows rather good 

agreement between theory and simulation, which improves as the shear rate gets larger. 

D. Dynamic Tube Diameter 

 The evolution of the dynamic tube diameter (an emergent transverse localization 

length) is functionally coupled to stress, chain stretch ratio and S (see. Eq. (6)). Figure 7 

shows a complex non-monotonic variation with strain. The strain at the stress overshoot, 

the strain at the maximum chain stretch ratio, and the strain at the maximum value of S 

are all indicated in Figure 7. The local maximum of the tube diameter occurs close to 

where S is a maximum since polymer orientation reduces entanglement, which occurs 

just beyond the strain of maximum chain stretch. At low deformation rates, because 

stretching can be neglected, tube dilation is always observed, which speeds up reptation-

driven orientational relaxation. In contrast, at very high deformation rate, the tube 
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diameter is predicted to be compressed due to the dominant effect of chain stretch. For 

intermediate deformation rates, the tube diameter can be compressed or dilated depending 

on the transient stress, stretch ratio and orientational order parameter.  

 

Figure 7 Dynamic tube diameter (normalized by its equilibrium value) as a function of 

strain for increasing deformation rates (top to bottom) and 2 5Z = . The hopping process 

(Eq. (15)) is included. The strain at the stress overshoot (filled circles), the strain at 

maximum chain stretch ratio (open squares), and the strain at maximum orientation order 

parameter (open circles) are indicated. Inset: The corresponding results in the steady state 

plotted as a function of Rouse Weissenberg number for 4 values of degree of 

entanglement. Cross symbols are results with hopping and filled symbols ignore hopping. 

 The tube diameter in the steady state are shown in the inset of Figure 7. The 

predicted crossover from “tube softening” to “tube hardening” again demonstrates that 

while chain stretch compresses the tube at high shear rates, the tube dilates with growing 
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orientation and stress at low shear rates. This tube widening with increasing shear rate at 

low R
Wi  is qualitatively similar to that previously predicted for entangled rod solutions 

[19] due to the dominance of orientational dynamics. The inset of Figure 7 also indicates 

that including activated hopping only modestly decreases tube dilation at low 1
R

Wi <  

and leads to no new qualitative behaviors. The tube diameter at the stress overshoot 

(Figure S4 of SI) shows very similar dependences on deformation rate and Z. 

 Finally, we emphasize that, per deGennes' original conception [2], the tube 

diameter in our theory is an explicitly dynamical property (transverse localization length). 

Thus, our result in Fig.7 that when chains stretch enough in fast deformations the tube 

diameter shrinks makes physical sense, i.e. less transverse dynamic fluctuations. This 

does not contradict our prediction of net faster dynamics, shear thinning, etc. when chains 

stretch and orient. In this regard, we emphasize that comparisons of our results to 

nonequilibrium simulations that employ static geometric PP contour length reduction 

algorithms [32,37-40] should be done with caution. Though seemingly (empirically) valid 

in equilibrium, the validity (or physical meaning) of such PP contour length reduction 

algorithms out of equilibrium is unclear to us. While the dynamic tube diameter in our 

theory can be compressed at high deformation rate due to chain stretch, PP contour length 

reduction algorithms always predict tube dilation under deformation. Importantly, 

O’Connor, Alvarez and Robbins [41] have very recently used MD simulation to measure 

the dynamic tube diameter based on the time-dependent deviation of monomers from 

primitive path during uniaxial extension. They find this dynamic tube diameter can 

decrease significantly at high deformation rate, in qualitative accord with our picture. 
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Also, our prediction of dynamic tube diameter compression is not inconsistent with the 

idea that deformation promotes disentanglement, faster relaxation, and lower viscosity. 

V. Transverse Tube Field Stability and Entropic Barrier Heights  

 The transverse entropic barrier B
F  is the key feature of the tube confinement field 

that quantifies its dynamic stability. Under equilibrium conditions the barrier is predicted 

to be infinite. This seems in the spirit of the naive view of an unbreakable (infinitely 

strong) tube or entanglement network per a chemically crosslinked rubber. However, 

since NLE theory predicts the tube has a finite strength, if stress is nonzero the barrier 

height becomes finite [19,20,29] and hence dynamic tube stability is not assured. 

 Figure 8 shows B
F  for a 25Z =  melt as a function of strain for different shear 

rates ( 1
R

Wi <  and 1
R

Wi > ) including the hopping process when computing effτ  (Eq. 

(15)). For strains well below the overshoot, the barriers remain very high and the tube is 

thus expected to be stable. Its dramatic drop at higher strain when 1
R

Wi <  is due to the 

large increase of stress and orientation, while the PP contour length remains unstretched. 

Decrease of the transverse barrier effectively turns on a competing hopping process 

where the lateral tube confinement barrier can potentially be dynamically surmounted.  
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Figure 8 Transverse entropic barrier in units of the thermal energy as a function of strain 

for 2 5Z =  at various dimensionless shear rates. Solid curves are results with the hopping 

process and dashed curves the results without the hopping process. The strains at the 

stress overshoot with hopping (filled circles) and without hopping (open circles) for the 

lowest three 
R

Wi  systems are indicated. Inset: Transverse entropic barrier in units of the 

thermal energy in the steady state as a function of dimensionless shear rate for Z = 5, 15 

and 45. Cross symbols are results with the hopping process and filled symbols results 

without hopping process. Curves are a guide to the eye.  

 On the other hand, when 1RWi >  the barrier is much larger than when 1RWi <  

due to the predicted hardening effect of chain stretch on tube confinement. As a 

consequence, the hopping process can be safely ignored. Like the dynamic tube diameter, 

the non-monotonic variation of the transverse barrier is due to a subtle competition 

between varying transient shear stress, PP stretch ratio and orientational order. Before 
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approaching the steady state, we always find a minimum transverse barrier for both 

1
R

Wi <  and 1
R

Wi >  that appears at a strain modestly beyond the stress overshoot at max
γ .  

 For comparison, analogous results based on not allowing hopping (using Eq. (14)) 

are also shown in Fig. 8. One sees that hopping is important only below or around 

1
R

Wi = , and it increases B
F , including its minimum and steady state values. These trends 

can be mainly attributed to the decrease of S due to hopping (see Fig. 6). In addition, the 

minimum barrier height gets smaller when using Eq. (14) (no hopping) to compute effτ . 

 Calculations of the transverse entropic barrier at steady state, ss

BF , are shown in 

the inset of Fig. 8 based on Eq.(15). As relevant background, we also calculated the flow 

curve for four degrees of entanglement which span the weakly to heavily entangled range, 

Z=5, 15, 25, 45 (see Figure S5 of SI). Four key trends are seen in the inset of Fig.8. 1) 

ss

BF  at low 1.5Wi =  is relatively high ( ≈ 6 ) and Z-independent. 2) ss

BF  non-

monotonically varies with shear rate, achieving a minimum when 0.5
R

Wi ≈  which 

occurs in the stress plateau region of the flow curve close to its inflection point [13]. 3) 

When 1
R

Wi > , where the system is beyond the upper end of the stress plateau region and 

the steady state stress grows with shear rate [13], the steady-state transverse barrier grows 

rapidly with deformation rate. 4) At the same value of R
Wi , ss

BF  is larger for smaller Z. 

The reason is that at fixed R
Wi , less entanglement means smaller Wi , and hence smaller S, 

per Fig. 6.  

 Representative results using Eq. (14) are also included in the inset of Fig. 8. The 

rate and Z dependences of ss

BF  become stronger, mainly due to the difference of S (see 

Fig. 6). However, all the qualitative trends are unaffected.  
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 Finally, we speculate there might be a connection between the vanishing of 

microscopic transverse barrier, which signals the deformation-induced collapse of 

transverse chain localization, and the tendency of entangled liquids to macroscopically 

shear band [42-46]. But this topic is beyond the scope of the present article. 

VI. Discussion  

 We have generalized our new theory for the startup continuous shear rheology of 

entangled chain liquids [12,13] to address the consequences of a deformation-induced 

anharmonic tube field at the PP step level. Numerical results for the stress-strain curves, 

effective orientational relaxation time, nematic orientational order parameter, dynamic 

tube diameter and transverse entropic barrier under nonequilibrium conditions were 

presented as a function of dimensionless shear rate, strain and degree of entanglement.  

  Compared to our prior results [12,13] based on the assumption that the tube 

confinement field is not modified by deformation, the effect of a deformation-dependent 

anharmonic tube confinement field on rheology at high shear rates 1
R

Wi >  can be 

essentially ignored; all effective scaling power laws with R
Wi  remain virtually unchanged. 

The reason is the dominance of the chain stretch and CCR and irrelevance of perturbed 

reptation and transverse activated barrier hopping.  

 However, in close connection with prior work on entangled rod solutions [19], the 

deformation-modified tube confinement field can significantly affect the rheological 

response when 1
R

Wi <  where chains remain essentially unstretched and orientational 

dynamics dominates. In contrast to the almost rate-independent strain at the stress 

overshoot ( max
γ ) at low 1

R
Wi <  found previously [12,13], max

γ  now increases in the 

Page 34 of 40Soft Matter



 35

range of ~1.3-2.2 as 
 
Wi

R
 grows because there are shear rate and Z dependent changes of 

the perturbed reptation time and transverse barrier hopping time. Such behavior of max
γ  is 

qualitatively consistent with some experiments [4,14,36]. New simulations are highly 

desirable to further test our results. Deformation-induced changes of the tube field also 

modify the apparent scaling behavior of the effective orientational relaxation time when 

1
R

Wi < . The tube diameter and transverse entropic barrier are rich functions of strain, 

shear rate and degree of entanglement. Deformation can increase or decrease the tube 

diameter, and the non-monotonic changes with strain are possible due to competition 

between the effects of PP orientation, PP stretch, and the direct effect of stress.   

 We have introduced the possibility that stress-assisted activated hopping of PP 

segments orthogonal to their axis (a local dynamical "tube-breaking" event) may be 

important for the nonlinear rheological response. However, theoretical treatment of this 

new mechanism is very difficult, and quantification of a hopping rate was done in the 

present article in a crude manner. It is highly desirable to more directly probe the 

relevance of this idea to entangled polymer liquids under slow nonlinear deformation 

using experiment (e.g., chain labeling scattering methods) or simulation. Possible 

experimental and/or computational ways forward might be as follows. (i) Measure the 

dynamic PP segment mean square displacement (MSD) as a function of time on the fly 

for slow nonlinear deformations (WiR<1). Hopping should modify the time evolution of 

this quantity in the direction of enhanced amplitude relative to classic tube models. (b) 

Neutron spin echo or simulation measurements of the single chain coherent dynamic 

structure factor under deformation as a function of time and wavevector. (c) 

Measurement of the dynamic van Hove function for the transverse PP motion might 
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reveal large non-gaussian signatures indicative of activated hopping events in analogy to 

studies of glassy forming systems. At the moment we do not have precise predictions for 

the observables of such experiments and/or simulations, but obtaining them may be a 

future tractable goal.  

Finally, our basic approach can be extended to treat extensional rheology, 

including the nature of the grip force [4,9], engineering versus Cauchy stress response 

[47,48], and whether molecular-scale deformation effects can effectively destroy the 

entanglement network which may serve as a nucleating event to trigger macroscopic 

instabilities such as tensile and brittle fracture and necking [49,50]. Work is in progress in 

these directions. 
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