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ABSTRACT 

Although lots of coarse-grained models have been proposed to trace long time behaviors of 

entangled polymers, compatibility among the different models has not been frequently discussed. In 

this study, some dynamical and static quantities, such as diffusion, relaxation modulus, chain 

dimension, and entanglement density were examined for the multi-chain slip-link model (primitive 

chain network model) and the multi-chain slip-spring model, and the results were compared with 

those reported for the standard bead-spring model. For the diffusion, three models are compatible 

with scale-conversion parameters for units of length, time and, bead (segment) number (or the 

molecular weight). The relaxation modulus is also compatible given that the model dependence is 

accommodated for the entanglement density and the additional scale-conversion for the unit of 

modulus. The chain dimension is in reasonable coincidence with small deviations due to the weak 

non-Gaussianity for the models. Apart from these plausible compatibility, significant discrepancy 

has been found for the inter-chain cross-correlations in the relaxation modulus.  
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INTRODUCTION 

 

Owing to the industrial significance as well as the scientific interest, modeling of entangled polymer 

dynamics has been widely attempted
1
. Although molecular dynamics simulations are 

straightforward to trace the molecular motion, the slow relaxation nature of the system does not 

allow practical calculations even for coarse-grained bead-spring models
2
. A smart idea is the single 

chain modeling in which multi-chain effects are embedded into motional constraints with 

mean-field approximations. In particular, the tube model
3
 and its extensions have attained 

remarkable success. However, the drawback of this approach is difficulties for extensions toward 

complex systems, which are actually targeted for molecular simulations that take account of 

multi-body effects explicitly.  

 

Motivated by the situation mentioned above, several coarse-grained multi-chain models have been 

proposed in between bead-spring models and tube models. Such models can be classified into two 

categories with respect to the modeling of entanglement. The rigorous approach is to prohibit chain 

crossing. Padding and Briels
4
 have proposed the model referred as Twentanglement, in which the 

chain crossing is disallowed geometrically not relying on excluded volume interactions. A similar 

attempt for dissipative particle dynamics simulations
5
 has been made by introducing the segmental 

repulsive potential
6
. However, this straightforward direction of coarse-graining is not largely 

effective on the reduction of calculation costs. The other direction is to mimic the entanglement by 

artificial settings. The multi-chain slip-link model, so-called primitive chain network model
7
, is the 

realization of a network consisting of a lot of reptating chains that are bundled by slip-links in pair 

at the entanglements. Multi-chain slip-spring models
8–11

 are inspired by the single-chain slip-spring 

model
12
, in which the entanglement is reproduced by virtual springs that slide along the chain. 

Kindt and Briels
13
 have developed the other model so-called responsive particle dynamics to 

reproduce the entanglement effects by inter-particle interactions.  

 

Although the abovementioned models have been evaluated on the basis of the comparison with 

experimental data, compatibility among different models is not guaranteed a priori, and thus 

comparison among the models is also necessary. Coarse-grained models cannot recover short time 

dynamics and small structures as a result of the smearing-out of fine scale structures, whereas finely 

described models such as atomistic models cannot trace long time phenomena with practical 

calculation costs. To overcome such difficulties, multi-scale approaches have been attempted by 

combining a few different molecular models
14–17

. In the multi-scale modeling, statistical 

consistency is assumed among the employed models in the domain where spatial and temporal 

scales of different models overlap with each other. In this respect, a few critical tests have been 
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reported for entangled polymer dynamics. Sukumaran and Likhtman
18
 attempted to reproduce the 

segmental mean-square-displacement in bead-spring simulations by the single-chain slip-spring 

model. They have found that in addition to the introduction of well-tuned potential between 

particles, the memory effect for the dynamic equation (such as the colored noise) is necessary for 

the single chain model rather than the usually employed memoryless dynamic equation (with the 

white noise), for the matching of chain dynamics. Takahashi et al
19
 have reported the comparison 

between atomistic simulations of polyethylene and bead-spring simulations for the scaling behavior 

of molecular weight dependence of static and dynamic measures. Their results report that the 

scaling behavior around the onset of entanglement is not the same. These studies reveal the 

applicable range of bridging between the models, as well as possibility of further improvements for 

coarse-grained models. Nevertheless, tests for the assumed statistical equivalence among the 

models are necessary.  

 

In this study, three multi-chain models for entangled polymers are compared for the dynamics and 

statistics. The earlier data for the standard bead-spring model proposed by Kremer and Grest
2
 were 

extracted from the literature to be compared with the results for the multi-chain slip-link model
7
 and 

the multi-chain slip-spring model
8
. The scale-conversion factors for length, time and bead 

(segment) number were determined from the diffusion behavior. With the obtained scale-conversion 

factors, coincidence for the relaxation modulus was confirmed. However, for the contribution of 

inter-chain cross-correlation in the relaxation modulus, a strong model dependence was observed. 

Details are shown below.  

 

MODELS AND SIMULATIONS 

 

In this study, multi-chain slip-link and slip-spring simulations were performed. Since the details and 

numerical algorithms for both models can be found in the earlier publications
7,8,20

, a brief 

description is given below. In the multi-chain slip-link model (referred to as primitive chain 

network model PCN, hereafter), entangled polymers are replaced by a network consisting of 

network strands, nodes and dangling ends. Each polymer is represented by a path between two 

dangling ends through the strands. At each node, two polymer chains are bundled by a slip-link, 

which allows the chains sliding along their backbones whereas it restricts the perpendicular motions. 

The dynamics of the system is described by kinetic equations that take into account of the drag 

force from the medium, the force balance around entanglement, the osmotic force suppressing 

density fluctuations and the random force representing thermal agitations. When a chain penetrates 

out from a slip-link as a result of the sliding dynamics, the slip-link is removed and the paired chain 

is released. Conversely, when a chain end protrudes from a slip-link beyond a certain amount, a new 
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slip-link is created by hooking another segment from the surroundings. In the multi-chain 

slip-spring model (MCSS hereafter), multiple Rouse chains are dispersed in a simulation box. The 

chains are randomly connected by virtual springs (slip-springs) that mimic the entanglements. The 

virtual springs can slide along the chain, and they are stochastically reconstructed at the chain ends, 

both according to the detailed-balanced rules and the well-defined free energy.  

 

Due to the difference in model constructions, PCN and MCSS models have different characteristic 

units. Naively, a conversion between different units can be achieved by scale-conversion factors. As 

the targets of the conversion, in this work the length, time, energy, bead (segment) number 

(molecular weight), and modulus are considered. For the PCN simulations, units of length, time and 

energy are the average segment length ����, the diffusion time of the network node ����, and the 

thermal energy ���. ���� is defined as ���� ≡ 
�������
� 6���⁄ , where 
��� is the segment 

friction coefficient. For the MCSS simulations, unit of length and time is defined for a segment, 

with a similar manner, and denoted as ����� and �����. The unit of energy of the MCSS model is 

the same as the PCN model, ���. 

 

For both models, simulations in quiescent state were performed with periodic boundary conditions. 

The simulation time was at least 10 times longer than the longest relaxation time for each system. 

The simulation box size was sufficiently larger than the chain dimension. Typically, the simulation 

box accommodated 800 chains for PCN simulations and 200 chains for MCSS simulations. See 

Appendix for the summary of actual simulated systems. For the PCN simulations, the segment 

number density was 10 and the osmotic parameter was 1.0 in the PCN unit mentioned above. For 

the MCSS simulations, the segment number density was 4 in the MCSS unit and the fugacity 

(activity) of slip-spring exp��/���� (where � is the chemical potential for slip-springs) was 

0.036. This value gives 3.5 beads between anchoring points along the chain on average. The 

strength parameter of slip-spring was 0.5. To improve statistical accuracy, 8 independent simulation 

runs starting from different initial configurations were conducted. All of these parameters and 

simulation conditions are essentially the same as previously reported PCN
21,22

 and MCSS
8,23

 

simulations, except the entanglement density for MCSS, which is higher than that used in the 

previous study.  

 

The results of simulations mentioned above were compared to literature data collected for the 

standard Kremer-Grest model
2
 (KG hereafter), for which units of length and energy are the bead 

size � and the energy ϵ of the Lenard-Jones potential. The unit of time � is the standard time 

unit for Lennard-Jones liquids, � ≡ ���/� (�	is the bead mass). The bead density is 0.85 and the 

temperature is ��� = 1.0 �. Because of this temperature, all the three models share the same 
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energy unit. The friction coefficient for the bead was 0.5 in the KG unit. These parameters are 

widely employed in the literature, and suitable for the benchmark. The static and dynamic measures 

discussed below will be shown in KG units unless stated.  

 

RESULTS AND DISCUSSION 

 

Figure 1 top panel shows the center-of-mass diffusion coefficient " as a function of bead number 

per chain # in the KG units. All the simulation data indicate the expected power-law like behavior, 

for which the power-law exponent is -1 in the unentangled regime and is roughly -2 for the large # 

regime beyond the onset of entanglement
3
. For further critical comparison, Figure 1 bottom panel 

shows "#� where the diffusion coefficient is rescaled with respect to the prediction from the 

classical tube theory, as proposed earlier
12,24

. In this plot, the Rouse behavior appears as the positive 

slope (with the exponent of unity) and the tube behavior corresponds to a horizontal line. As 

reported earlier for the experimental data
24
, the power-law exponent for diffusion coefficient with 

respect to the molecular weight is lower than -2 so that in Fig 1 bottom panel a negative slope 

appears in the large # regime, following a peak. Consequently, "#� shows a convex curve with 

respect to #, and such a behavior can be confirmed for all the models. Note that for the short 

chains MCSS shows the unentangled behavior in spite of the existence of slip-springs, because the 

dynamical constraint are not sufficiently strong to attain the entangled dynamics. For very large #, 

PCN and MCSS predict a plateau like behavior that hints the classical tube behavior with the 

exponent of -2. Although further calculations for longer chains are necessary, this behavior is 

consistent with some experimental data, as summarized by Likhtman
12
.  
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Figure 1 Center-of-mass diffusion coefficient (top) and its normalized value with respect to the 

classical reptation behavior (bottom) plotted against the bead number. Red solid and blue dotted 

curves are the results of MCSS and PCN. The MCSS and PCN data are rescaled by the 

scale-conversion factors. KG results obtained from the literature
2,25–29

 are shown by symbols. Error 

bar shows the standard deviation for 8 independent simulation runs.   

 

Ideally, the resultant convex curve can be used for unequivocal comparison among the data. 

However, as shown in the figure, the bead-spring results are rather scattered for "#� whereas the 

difference is concealed in ". (For both plot, the data reported by Sen et al26 are very different from 

the others and they seem beyond possible statistical errors by unknown reasons.) Note that the 

standard deviation for MCSS and PCN data obtained from 8 independent simulation runs is shown 

by the error-bars being smaller than the data distribution for KG. Nevertheless, the scaling factors 

for PCN and MCSS for the data shown in Fig 1 were thus determined by the fitting for the 

mean-square-displacement (MSD) for the monomers around chain center $%�&� for the chains 

corresponding to KG chains with #	 = 50, 100, 200 and 350 as shown in Fig 2. For PCN the short 
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KG chains with #	 =  50 and 100 cannot be reproduced because of the limitation of 

coarse-graining, as shown later. For the long chains, as described by the tube theory, $%�&� shows a 

series of power-law behaviors with changing the exponent with time, and the characteristic times 

can be determined from the transitions
3
. Namely, in the time scale shorter than �', which is the 

Rouse time for the chain corresponding to the entanglement strand, the exponent is 1/2. Between �' 

to �(, which is the Rouse time of the examined chain, it is 1/4. After �(, the exponent becomes 1/2 

up to �), which is the longest relaxation time. In the long time range beyond �) the exponent is 

unity showing the normal diffusion. These transitions have been reported for KG
2
 as seen in Fig 2 

top panel, and the transitions in the long time regime are reproduced by PCN and MCSS, although 

the PCN for the longest chain slightly underestimates the KG result reported by Likhtman et al
25
. 

For comparison between different models with further clarity, in Fig 2 bottom panel $%�&� is 

multiplied by &*%/� as suggested by Likhtman
25
. In this plot, the KG data reported by the other 

research groups are also shown, and the deviation of PCN from KG for the longest chain is within 

the scattering among KG data. The scattering of KG data probably indicates differences in the 

employed codes, initial configurations and number of chains. Nevertheless, the coincidence among 

different models is reasonably attained.  
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Figure 2 Time development of mean-squared-displacement of central monomers (top) and its 

normalized value with respect to the Rouse behavior (bottom) for # = 50, 100, 200 and 350. 

Symbols are for KG extracted from the literature
2,25,27,29,30

. Red solid and blue dotted curves are for 

MCSS and PCN. For PCN, the corresponding simulations were made for the longer KG chains with 

# = 200 and 350. Error bar shows the standard deviation for 8 independent simulation runs.   

 

The comparison for diffusion unequivocally determines the scaling factors for bead number, time 

and length. The scale-conversion factors thus determined are as follows: 

#��� = 5#���� = 40#																																	�1� 

���� = 2.0����� = 6.2�																														�2� 

���� = 17����� = 1.3 1 102�																				�3� 

Here, #��� and #���� are the segment number per chain for PCN and MCSS, respectively. It is 

worth noting that the scale-conversion factors obtained here is different from those reported 

Page 8 of 22Soft Matter



 9

between MCSS and KG previously
8
, due to the difference of the slip-spring density in the MCSS 

simulations. It is also noted that PCN simulation for the short KG chains with #	 = 50 and 100 

cannot be performed, because the segment number must be integer by definition. Specifically, 

according to eq 1, #��� for these chains are #��� = 1.25 and 2.5. The behaviors of such chains 

are different from those of #��� = 2 and 3, for which the simulations were made.  

 

For checking consistency between the scale-conversion factors for length and bead number, the 

average squared end-to-end distance ⟨4�〉 is shown in Figure 3 top panel in KG unit. Apparently 

there exist discrepancies among the models owing to the difference in the chain stiffness. For 

further clarity, in Fig 3 right panel ⟨4�⟩ is divided by #. As reported earlier
31
, KG shows the 

non-Gaussian behavior for the short chains due to the excluded volume interaction between 

connected beads, indicating that the interaction is not perfectly screened. For the coarse-grained 

models the excluded volume interaction between segments is not directly considered and the 

behaviors are close to Gaussian. The deviation between KG and the other models is not negligible. 

Indeed, in addition to the average value of ⟨4�⟩, the standard deviation shown by error-bar is 

different from each other. To compensate the discrepancies in chain statistics, inter-beads 

interactions for the coarse-grained models have to be carefully designed. For example, the 

interactions based on the equation of state can be utilized
32
. It should be also noted that the bead 

density must be carefully accommodated. Careful bridging attempts between atomistic molecular 

simulations and multi-chain slip-spring simulations have been recently reported on the basis of 

designed coarse-grained potentials obtained by the Boltzmann inversion scheme
33
. Nevertheless, for 

the examined models the chain statistics is not fully consistent with the scale-conversion factors in 

eqs 1-3, and the scale-conversion factors would become different from those reported in eqs 1-3 if 

the conversion is attempted on the basis of the chain dimension rather than the diffusion. 
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Figure 3 Squared end-to-end distance (top) and its normalized value with respect to the ideal chain 

statistics (bottm) plotted against bead number. Red solid and blue dotted curves are for MCSS and 

PCN. Symbols are for KG extracted from the literature
2,26,29

. Error bar shows the standard deviation 

of the distribution for individual chains.   

 

Although the scale-conversion parameters for relevant units have been determined from the MSD 

data, for rheological calculations, scale-conversion parameters for the modulus (or the 

scale-conversion for the stress-optical coefficient) are necessary and it must be determined from 

rheological response. For this sake, Figure 4 shows the comparison for linear relaxation modulus 

7�&� obtained from the stress fluctuation by the Green-Kubo formula. In this comparison, the 
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temporal scale-conversion factor given by eq 3 is used, whereas the scale-conversion factor for 

modulus is determined to attain the best fit to the KG results reported by Likhtman et al
25
. For 

further clarity for the entanglement plateau, Fig 4 right panel shows 7�&�&%/�, in which 7�&� is 

normalized with respect to the Rouse behavior. As reported earlier, the KG results for long chains 

clearly exhibit upward deviations from the Rouse behavior showing the effect of entanglement. 

These KG results are nicely reproduced by the coarse-grained models for the long chains. It is fair 

to note that agreement between MCSS and KG is worse than that reported in the previous study
8
. 

The difference is due to the choice of entanglement density, which is higher for the present study 

than the previous one. Consequently, the level of coarse-graining is higher and agreement for the 

short time behavior is worse than the previous study. Nevertheless, from the comparison, the 

scale-conversion parameters for modulus can be determined as follows; 

7��� = 2.6 1 10	7���� = 5.2 1 10�	789										�4� 

One may argue that, since unit of modulus is energy per volume, the scale-conversion factors for 

those variables may give eq 4. However, such a conversion does not work due to the following 

reason. According to the rubber elasticity theory
34
, shear modulus of polymer networks can be 

written as  

7 = :���� = :#'
*%;���																																							�5� 

Here, �  and ; are the number density of network strand and segment, respectively. : is a 

constant depending on the network functionality and the fluctuations imposed to the network 

nodes
35–37

. #'  is the segment number consisting of each network strand. Because the 

scale-conversion factor of modulus includes the effects of	: and #', it cannot be simply derived 

from the scale-conversion factors for energy and length. Indeed, if the modulus is compared in the 

same unit of length, according to the scale-conversion factor for length given by eq 2, eq 4 can be 

rewritten as 

7��� = 3.2	7<���� = 2.2	7<89																																				�6� 

Here, 	7<���� and 7<89 are the modulus of MCSS and KG in PCN unit. Note that the glassy 

contribution included in the stress of KG is not considered because eq 4 has been determined for the 

rubbery region.  
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Figure 4 Linear relaxation modulus (left) and its normalized value with respect to the Rouse 

behavior (right) for # = 50, 100, 200 and 350. Symbols are for KG results reported by Likhtman 

et al
25
. Red solid and blue dotted curves are for MCSS and PCN. For PCN, the corresponding 

simulations were made for the longer KG chains with # = 200 and 350. Error bar shows the 

standard deviation for 8 independent simulation runs.   

 

As discussed above, the modulus is related to #', which is shown in Figure 5. For KG, several 

different values have been reported as summarized by Moreira et al
38
. Kremer and Grest

2
 estimated 

the bead number between entanglements from the MSD data. However, thus obtained #' does not 
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coincide with the value directly calculated from the relaxation modulus
39
. This fact means that the 

#' value strongly depends on the method employed for the estimation. Recently, in most of the 

studies, the bead number between entanglements is reported as the Kuhn length of the primitive 

path, which is obtained from the primitive path analysis
40
. Following the expression by Everaers

41
, 

the value obtained by this definition is referred as #'
��8=>?. #'

��8=>? increases with increasing # 

and saturates at #'
��8=>?~90 for  # > 1000. Another definition of the bead number between 

entanglements is the topological-based one #'
CDED

, which is determined by the network structure 

obtained by Z1 code
42
 or CReTA code

43
. Hoy et al

44
 have reported #'

CDED
 of KG for various 

molecular weights. As seen in Fig 5, #'
CDED

 steeply decreases and reaches a steady value for 

# > 100 at #'
CDED~50. Everaers41 proposed the relation between #'

��8=>? and #'
CDED

, and for 

the binary assumption of entanglement #'
��8=>? = 2#'

CDED
, which is roughly consistent with Fig 5. 

Nevertheless, as discussed by Everaers
41
, the networks in the slip-link and slip-spring models are 

topological-based and to be compared with #'
CDED

. 

 

Because the entanglement is introduced a priori for MCSS and PCN, #' for these models can be 

obtained from the actual density of slip-springs and slip-links and the scale-conversion factor for 

the segment number given by eq 1. The #'
CDED

 thus obtained for MCSS and PCN are plotted in 

Figure 5 by red solid and blue dotted curves, respectively. Figure 5 demonstrates that #'
CDED

 is 

model dependent, and the bridging among the models cannot be attained from a naive structural 

mapping for the entanglement network. Indeed, the entanglement density defined as � ≡ ; #'⁄  is 

model dependent. From the scale-conversion factor of length given by eq 2, the segment density of 

each model, and #'
CDED

 shown in Fig 5, the relation of density for the entanglement strands among 

the different models is written as 

���� = 	�F���� = 	2.2�F89																												�7� 

Here 	�F���� and �F89 are the strand density of MCSS and KG with respect to the unit volume of 

PCN. The other reason for the difference of #'
CDED

 is the imposed fluctuations around the 

entanglement. The magnitude of fluctuations can be discussed by the constant : in eq 5. From eqs 

4-6, the relation among : can be written as 

:��� = 3.2	:���� = 	 :89																												�8� 

Interestingly, this relation suggests that the magnitude of fluctuations for PCN is close to that for 

KG, whereas for MCSS it is larger than the other models. For PCN and MCSS, the magnitude of 

fluctuations is specified a priori, whereas for KG the fluctuations are of difficult evaluation for the 

extracted frozen topological network
45
. Because for PCN and MCSS the fluctuations are controlled 

by the parameters related to the dynamics of slip-links and slip-springs, tuning of such 

parameters
32,33

 would be necessary as well as the tuning of structural parameters for further 

discussion. It is also noted that for the entanglement structure, the distributions for #'
CDED

 must be 
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discussed in addition to its average value. Although the consistency for PCN and MCSS with 

atomistic simulations has been reported
46,47

, distributions for the standard KG simulations have not 

been reported in our knowledge and no comparison can be made at this time being.  

 

 

 

Figure 5 Bead number between entanglements #'	 plotted against bead number per chain. Red 

solid and blue dotted curves are for MCSS and PCN. Symbols are KG results from the 

literature
38,40,44,48,49

, and filled and unfilled ones are for #'
CDED

 and #'
��8=>?, respectively.  

 

For the comparison among the models, the inter-chain cross-correlation is an interesting issue
50
. 

Although the chain dynamics is assumed to be independent in the single chain modeling, 

multi-chain models have shown non-negligible amount of cross-correlations. Indeed, for KG, the 

cross-correlation has been discussed from a few different approaches
25,51–53

. In this specific study, 

the coupling parameter introduced by Cao and Likhtman
53
 is discussed. The coupling parameter 

H�&� is the ratio of cross-correlation contribution to the entire relaxation modulus. Recalling the 

success of single chain models, one may suppose that H�&� is close to zero or rapidly relaxes. 

However, H�&� grows with time and reaches ca. 50% of the total relaxation modulus for KG, as 

shown in Fig 6. For the coarse-grained models, growth of H�&� is also observed54, including the 

upturn around the terminal time. However, the magnitude depends on the model and no universality 

is found here. Because the coupling between chains strongly depends on the interaction between 
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beads or segments, rather short-range interactions such as the Lennard-Jones potential and the 

compressibility parameter would affect the behavior of the coupling parameter. Masubuchi and 

Amamoto
55
 have shown that the magnitude of H�&� slightly depends on the incompressibility for 

PCN. Their result suggests that the tuning of inter-beads interactions for the coarse-grained models 

would compensate the discrepancy in H�&�. However, such a modification for the models may 

disturb the consistencies for the other dynamical measures. Nevertheless, further investigation for 

H�&� is apparently necessary.  

 

 

Figure 6 Time development of coupling parameter for inter-chain cross-correlations for # =

50, 100, 200 and 350. Red solid and blue dotted curves are for MCSS and PCN. Symbols are for 

KG results reported by Cao and Likhtman
53
. For PCN, the corresponding simulations were made 

for the longer KG chains with # = 200 and 350. 

 

 

CONCLUSIONS 

Detailed comparison has been performed among multi-chain models for dynamical and static 

measures for entangled polymers. As reported earlier, all the models nicely exhibit the established 

universal behaviors for dynamical measures such as diffusion and relaxation modulus. Owing to the 

universality, the scale-conversion factors have been reasonably determined for time, length, bead 

(segment) number and modulus. For chain dimensions, small inconsistencies have been observed 

due to the weak non-Gaussian nature of KG and the lack of tunings for the inter-segment 

interactions in the coarse-grained models. Apart from the plausible results mentioned above, 

non-universal behaviors have been found for the inter-chain cross-correlation for the relaxation 

modulus.  
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The results of this study confirm applicability of multi-scale strategies that rely on the universality 

of dynamic and static measures for entangled polymers. In particular, for the dynamical measures 

coincidence is attainable even without detailed tuning for the model parameters. Meanwhile, it has 

been revealed that the significant inconsistency for the inter-chain cross-correlation is concealed. 

Because inter-chain cross-correlations are difficult measure for experiments, further studies are 

apparently necessary for different multi-chain models. The other issue to be clarified is the 

compatibilities among the models under strong deformations and flows. Studies in such directions 

are being conducted and the results will be published elsewhere.  

 

APPENDIX 

The simulated conditions for MCSS and PCN are summarized in Table I shown below. The 

molecular weight is shown in the unit of each model. Namely, for MCSS it corresponds to the 

Rouse bead number per chain whereas for PCN it stands for the average number of entanglement 

strands per chain. The unit cell dimension is also shown in the length unit of each model. Note that, 

as mentioned in the text, 8 independent simulation runs starting from different initial configurations 

were performed for each condition.  

 

Table I. Simulated conditions for MCSS and PCN. 

Model Molecular weight Chain number Cell dimension 

MCSS 2 200 4.64 

 3 200 5.31 

 4 200 5.85 

 6 200 6.69 

 8 200 7.37 

 12 200 8.43 

 16 200 9.28 

 20 200 10.00 

 24 200 10.62 

 31 200 11.57 

 32 200 11.70 

 44 200 13.01 

 48 200 13.39 

 50 200 13.57 

 58 200 14.26 

 64 200 14.74 

 85 200 16.19 

 96 200 16.87 

 128 200 18.57 

 150 300 22.41 

 196 300 24.49 

 256 500 31.75 

PCN 2 2560 8 
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 3 1707 8 

 4 1280 8 

 5 1024 8 

 6 853 8 

 7 731 8 

 8 640 8 

 9 1111 10 

 10 1000 10 

 12 833 10 

 15 667 10 

 18 556 10 

 20 500 10 

 25 691 12 

 30 576 12 

 40 843 15 

 50 676 15 

 60 562 15 

 80 422 15 
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