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Size-dependence of the flow threshold in dense granular ma-

terials

Daren Liua and David L. Henann∗a

The flow threshold in dense granular materials is typically modeled by local, stress-based criteria. However,

grain-scale cooperativity leads to size effects that cannot be captured with local conditions. In a widely

studied example, flows of thin layers of grains down an inclined surface exhibit a size effect whereby thinner

layers require more tilt to flow. In this paper, we consider the question of whether the size-dependence of

the flow threshold observed in inclined plane flow is configurationally general. Specifically, we consider three

different examples of inhomogeneous flow – planar shear flow with gravity, annular shear flow, and vertical

chute flow – using two-dimensional discrete-element method calculations and show that the flow threshold

is indeed size-dependent in these flow configurations, displaying additional strengthening as the system size

is reduced. We then show that the nonlocal granular fluidity model – a nonlocal continuum model for dense

granular flow – is capable of quantitatively capturing the observed size-dependent strengthening in all three

flow configurations.

1 Introduction

A rheology for dense granular flows, relating the stress state to

the shear strain-rate, may be extracted from homogeneous, pla-

nar shear flow data1,2. For example, consider a two-dimensional,

quasi-monodisperse, dense granular system composed of dry,

stiff, frictional disks with average disk diameter d and grain-

material area-density ρs, so that the characteristic grain mass is

m = ρsπd2/4. The inertial rheology then relates the stress state

– specifically, the pressure P and the shear stress τ (both with

units of force per length in two-dimensional settings) – to the

consequent shear strain-rate γ̇. The aforementioned quantities

may be expressed through the dimensionless groups I = γ̇
√

m/P

and µ = τ/P, where I is referred to as the inertial number – rep-

resenting the ratio of the microscopic time-scale associated with

particle motion
√

m/P to the macroscopic time-scale of applied

deformation 1/γ̇ – and µ is the stress ratio. The inertial rheology

then relates I and µ through a one-to-one functional relationship

µ = µloc(I), which is empirically fit. A common feature among

different functional forms of the inertial rheology is a static yield

value of the stress ratio – µloc(I → 0) = µs. Consequently, the in-

ertial rheology possesses a flow threshold in which steady flow is

not possible when µ < µs but steady flow becomes possible when-

ever µ exceeds µs.*

A logical next step is to apply this flow threshold to more com-

a School of Engineering, Brown University, Providence, RI, USA. E-mail:

david_henann@brown.edu

* In the common generalization of the inertial rheology to three-dimensions 3,4, the

flow threshold takes the form of a Drucker-Prager yield condition 5.

plex flow configurations. A dense granular flow configuration

that is more complex than homogeneous, planar shear – but still

quite simple – is flow down a rough inclined surface. In inclined

plane flow, the ratio of the shear stress to the pressure is a con-

stant value at every point in the granular layer – as in planar

shear – and is given through the inclination angle θ by µ = tanθ.

Therefore, the flow threshold associated with the inertial rheol-

ogy predicts that flowing and non-flowing states are separated by

a thickness-independent angle of repose θr = tan−1 µs. However,

extensive experiments and discrete-element method (DEM) sim-

ulations have shown that this is not the case1,6–10. Instead, thin

granular layers do not flow for a range of θ greater than θr with

additional strengthening as the layer thickness is decreased.

The inability of the inertial rheology to capture this size effect

stems from its local nature – local in the sense that it relates the

stress state to the strain-rate at a point. The size-dependence of

the flow threshold in inclined plane flow arises due to nonlocal,

cooperative effects at the microscopic grain level, which are not

accounted for in the inertial rheology. In a thin granular layer,

the proximity of the grains to the fixed, rough, inclined surface

imbues the granular layer with additional strength. The converse

manifestation of cooperativity may also be observed. Flow in one

region of a granular medium can induce flow in far-away regions

– even when these regions experience stress states that are be-

neath the flow threshold extracted from homogeneous, planar

shearing. For example, in steady, non-uniform flows – such as

annular shear11,12, split-bottom flow13, or gravity-driven heap

flow14 – a decaying flow field is observed, whereas the stress-

based flow threshold of the inertial rheology would predict a
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sharp flow cutoff. An additional example of this effect is the “sec-

ondary rheology” of intruders, whereby the motion of a boundary

removes the flow threshold of the material everywhere, permit-

ting far-away loaded objects to creep through the grains when

otherwise they would remain static15.

While the effect of cooperativity on steady flow fields has been

investigated in a diverse set of geometric configurations, stud-

ies exploring the size-dependence of the flow threshold in dense

granular materials have been limited to inclined plane flow. To

better elucidate the role of the stress field, the first purpose of

this paper is to systematically explore the size-dependence of the

flow threshold in different flow configurations with more com-

plex stress fields. Specifically, we consider dense two-dimensional

flows of stiff, frictional disks using DEM simulations in three flow

configurations: (1) planar shear flow with gravity, (2) annular

shear flow, and (3) vertical chute flow, and show that additional

strengthening is observed as the system size is reduced in all three

cases.

The second purpose of this paper is to rationalize the depen-

dence of the flow threshold on the system size in the presence

of different stress fields with a continuum model. A number of

nonlocal continuum constitutive theories have been proposed,

which are aimed at capturing various cooperative effects16–23.

Among these, several have been applied to the flow threshold

in inclined plane flow, such as integral equations representing

a self-activated process16; Ginzberg-Landau theories based on a

partial-fluidization order parameter17, the granular fluidity24, or

the inertial number20; and extensions of kinetic theory23. In par-

ticular, our recent work24 has shown that the nonlocal granular

fluidity (NGF) model is capable of capturing the size-dependence

of the flow threshold in inclined plane flows of glass beads. In

this paper, we utilize the NGF model to obtain predictions of the

size-dependence of the flow threshold in planar shear flow with

gravity, annular shear flow, and vertical chute flow. Specifically,

in each case, we calculate the analytical flow threshold predicted

by the NGF model. Importantly, we show that the NGF model is

capable of quantitatively describing the observed size-dependent

strengthening in all three flow configurations, while simultane-

ously capturing steady flow fields.

The remainder of this paper is organized as follows. In Sec-

tion 2, we discuss the specifics of our two-dimensional DEM sim-

ulations and verify our simulations against existing DEM data for

stiff, frictional disks in planar shear flow from the literature2,25.

In Section 3, we discuss the NGF model and its attendant descrip-

tion of the flow threshold. Then, in Section 4, we present the

results of our DEM simulations in planar shear flow with gravity,

annular shear flow, and vertical chute flow along with the predic-

tions of the NGF model, comparing predictions of both the size-

dependent flow threshold and steady flow fields to DEM data. We

close with discussion and concluding remarks in Section 5.

2 Discrete-element method simulations

In this section, we provide details of our two-dimensional DEM

methodology and briefly describe simulations of planar shear

flow in order to verify our simulations against existing literature

data2,25.

2.1 Simulated granular system

Following several previous works2,11,18,25, we consider a simu-

lated, two-dimensional granular system consisting of a dense col-

lection of circular disks. As in Section 1, the average disk diame-

ter and the grain-material area-density are denoted as d and ρs,

respectively, so that we may define a characteristic grain mass

as m = ρsπd2/4. The distribution of disk diameters involves a

polydispersity of ±20% to prevent crystallization. We utilize a

standard DEM grain interaction model2. Specifically, there is no

force between non-overlapping grains, but when two grains over-

lap, they interact through a spring/dashpot contact law that ac-

counts for elasticity, damping, and sliding friction. With δn ≥ 0

and δt denoting the normal and tangential components of the

contact displacement, the normal contact force Fn is given lin-

early through the normal contact displacement with stiffness kn

and the relative normal velocity with damping coefficient gn, i.e.,

Fn = knδn + gn δ̇n. The normal damping coefficient is specified

through the coefficient of restitution for binary collisions e by

gn =
√

mkn(−2lne)/

√

2(π2
+ ln2 e). Tangential interactions are de-

scribed by a stiffness kt and damping coefficient gt, which we

take to be zero, so that the tangential contact force is Ft = ktδt.

Importantly, the tangential contact force is limited by Coulomb

friction, described by the inter-particle sliding friction coefficient

µsurf . Therefore, grain interactions are fully described through

the parameter set {kn, kt, e, µsurf }. In order to simulate stiff, quasi-

rigid grains, the normal stiffness is taken to be sufficiently large

throughout, i.e., kn/P > 104, where P is the characteristic con-

fining pressure for a given flow configuration. Next, it is well-

appreciated that the precise values of kt/kn and e have a negligi-

ble impact on the phenomenology of dense flows of stiff disks2,

and as in previous works11, we take kt/kn = 1/2 and e = 0.1. Fi-

nally, among the interaction parameters, µsurf plays the most im-

portant role25. Exploring the effect of µsurf on the flow threshold

is beyond the scope of the present work, so we restrict attention

to the case of µsurf = 0.4. The equations of motion for each par-

ticle are solved using standard molecular dynamics techniques

using the open-source software LAMMPS26. For the most part,

we restrict the time step to be 0.01 of the binary collision time,

τc =
√

m(π2
+ lne)/4kn, to ensure stable, accurate simulation re-

sults.†

2.2 Planar shear flow

First, we perform simulations of planar shear flow in order to

verify our DEM results against existing data reported in the lit-

erature. We consider a configuration consisting of a rectangular

region of length L = 60d in the x-direction and height H = 60d in

the z-direction that is filled with a dense collection of 3806 flow-

ing grains and subjected to shearing through the relative motion

of two parallel, rough walls, as shown in Fig. 1(a). The dense

granular system is generated by allowing grains to sediment un-

der the action of gravity, but gravity is absent in subsequent sim-

† A larger time step is used for certain DEM simulations of planar shear flow and

planar shear flow with gravity to save computation time. The time step is never

taken to be greater than 0.1 of τc and has been verified to not affect results.
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Fig. 1 (a) Configuration for two-dimensional DEM simulations of planar shear flow. Black grains denote rough walls, and gray grains denote flowing grains. (b) The local

inertial rheology – µ versus I – for frictional disks with inter-particle sliding friction coefficient of µsurf = 0.4. Black symbols denote the DEM data of da Cruz et al.
2 and

Kamrin and Koval 25 , and gray symbols denote the DEM data of the present work. The solid line denotes the fit of (1) with µs = 0.272 and b = 1.168.

ulations of planar shear. Each of the two rough walls on top and

bottom consists of a thin layer of touching glued grains, which

are denoted as black in Fig. 1(a), while the flowing grains be-

tween the walls are denoted as gray. Regarding wall conditions,

the bottom wall is fixed, and the velocity of the top wall in the

x-direction is specified to be vwall. Following da Cruz et al. 2

and subsequent works11,25, the velocity of the top wall in the

z-direction is not zero – i.e., H is not fixed. Instead, in order to

maintain a target wall normal stress of σzz (z = 0) = −Pwall, the

vertical position of the wall is continuously adjusted so that the

value of H evolves through Ḣ = (−σzz (z = 0)− Pwall)L/gp, where

gp is a damping parameter for vertical wall motion. Throughout,

we take gp = 100
√

mkn. Periodic boundary conditions are utilized

in the x-direction.

Next, we extract steady velocity and stress fields from DEM

simulations of planar shear flow for a range of wall velocities,

vwall, and fixed wall pressure, Pwall. To ensure that steady flow

is achieved, each simulation of planar shear is first run to a top-

wall shear displacement of at least 400H.‡ Then, we consider

1000 system snapshots uniformly distributed in time over an addi-

tional top-wall shear displacement of 250H. Anticipating that the

velocity and stress fields are homogeneous along the x-direction,

we average along the x-direction at discrete z-positions for each

snapshot. We utilize the spatial averaging technique described

by Koval and coworkers11,25, which is briefly summarized in Ap-

pendix A. The instantaneous velocity and stress fields are then

arithmetically averaged over all snapshots to obtain steady fields

that depend only upon the z-coordinate. In all cases of planar

shear flow, the steady velocity field vx (z) is linear with very little

wall slip, allowing us to define a corresponding, spatially-constant

shear strain-rate γ̇ = |dvx/dz |. All stress components are spatially

constant as well. Moreover, the normal stresses σxx and σzz are

approximately equal. Therefore, the shear stress and pressure

may be denoted as τ = |σxz | = |σzx | and P = −σzz ≈ −σxx , re-

spectively, and we may calculate the inertial number I = γ̇
√

m/P

‡ Experience tells us that flow typically reaches steady state within a top-wall shear

displacement of 100H after a short transient.

and stress ratio µ= τ/P corresponding to each prescribed wall ve-

locity. The relationship between µ and I extracted from our DEM

simulations is plotted in Fig. 1(b) as gray symbols, along with the

DEM data of da Cruz et al. 2 and Kamrin and Koval 25 for stiff,

frictional disks with µsurf = 0.4 as black symbols. The DEM results

are consistent, verifying our methodology. The DEM data for two-

dimensional granular systems consisting of disks may be fit by a

simple Bingham-like functional form of the inertial rheology2:

µloc(I) = µs + bI, (1)

where µs and b are dimensionless material parameters. The rela-

tion (1) – using fitted parameter values of µs = 0.272 and b= 1.168

– is plotted in Fig. 1(b), demonstrating that the linear form (1)

captures DEM data for homogeneous planar shear.

3 Granular rheology and the flow threshold

In this section, we discuss the nonlocal granular fluidity model for

steady, dense granular flow and its attendant description of the

flow threshold. Motivated by experimental observations of coop-

erative effects, a number of nonlocal continuum approaches have

been pursued. For example, Ginzberg-Landau theories based on

a partial-fluidization order parameter17 or the inertial number20

and extensions of kinetic theory23 have been used to make pre-

dictions of the flow threshold for inclined plane flow. Recently,

an alternative nonlocal continuum model for dense granular flow,

based on the concept of “granular fluidity” – a concept inspired by

nonlocal fluidity models for emulsions27,28 – has shown promise

in capturing cooperative effects observed in experiments, includ-

ing flow fields in a variety of boundary-driven and gravity-driven

flows18,29,30, the secondary rheology of intruders31, as well as

the thickness-dependence of the flow threshold in inclined plane

flow24.

In the NGF model, a positive, scalar field quantity – the granu-

lar fluidity – is introduced and denoted as g. The works of Zhang

and Kamrin 32 and Bhateja and Khakhar 33 have established that

the granular fluidity has an unambiguous kinematic definition

that holds across a wide variety of inhomogeneous flow config-

urations and is given through the relation g = (δv/d)F (φ), where
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δv is the velocity fluctuation, φ is the solid fraction, d is the grain

size, and F (φ) is a function of only φ. Then, instead of relat-

ing the stress state to the strain-rate through a single constitutive

equation as in the inertial rheology (1), the NGF model relates

the stress state, the strain-rate, and the granular fluidity through

two constitutive equations as follows:

γ̇ = gµ, (2)

t0ġ = A2d2∇2
g− (µs − µ)g− b

√

m

P
µg2, (3)

where t0 > 0 is a constant timescale associated with the dynamics

of g, A > 0 is a constant dimensionless material parameter charac-

terizing nonlocal effects, called the nonlocal amplitude, and the

dimensionless constants µs and b are the same as those appearing

in the local inertial rheology (1). The duel constitutive roles of the

granular fluidity become clear in (2) and (3). First, in (2), g op-

erates as a fluidity-like quantity, relating the stress ratio µ to the

consequent shear strain-rate γ̇, and second, in (3), g operates as

a nonlocal order parameter governed by a dynamical system – in

a manner that bears a mathematical similarity to other Ginzberg-

Landau-based approaches17,20. When the flow field is homoge-

neous (∇2
g = 0), the granular fluidity evolves to the stable, steady,

stress-dependent solution of the dynamical system (3), which is

given by

gloc(µ,P) =





√

P
m

(µ−µs)

bµ
if µ > µs,

0 if µ ≤ µs,
(4)

and referred to as the local fluidity. When the granular fluidity is

given through (4) and combined with (2), the local inertial rhe-

ology (1) is recovered, and hence, the NGF model reduces to the

inertial rheology for steady, homogeneous flow. However, when

flow gradients are present, the Laplacian term in (3) introduces

an intrinsic length-scale given through the grain size d, and the

NGF model produces nonlocal predictions.

Several comments on the dynamical relation (3) are in order:

1. As discussed in Henann and Kamrin 34 , the last two terms in

(3) arise through the derivative of a coarse-grain Ginzburg-

Landau-type free energy. Since these terms then determine

the stable, steady solution for g in the absence of flow gradi-

ents – i.e., the local fluidity (4) – the choices of the Ginzburg-

Landau-type free energy and the fitting function for the local

inertial rheology are one and the same. Hence, if one were

to utilize a different functional form for the inertial rheology

than the Bingham-like form (1), it would be necessary to

modify these terms in (3). Indeed, as I increases, deviation

from the linear form (1) is often observed, leading to the

use of nonlinear fitting functions3,35. In our previous work

applying the NGF model to dense flows of spheres down

inclines24, we chose to work with the commonly-utilized,

nonlinear fitting function of Jop et al. 35 , which involves an

upper-limiting value of µ, and hence, the dynamical relation

(3) took on a slightly different form. In the present work,

focusing on two-dimensional granular systems of disks, the

Bingham-like form of the inertial rheology works well up to

a stress ratio of 0.5 (see Fig. 1(b)), so we utilize the cor-

responding dynamical form (3), while limiting attention to

situations in which the stress ratio remains less than 0.5.

2. The dynamics embodied by (3) does not involve bistability,

in which two stable, steady-state values of g exist for some

range of µ. This feature would lead to a non-monotonic lo-

cal rheology and hysteresis of the predicted flow threshold.

There is some experimental evidence for a non-monotonic

local rheology in dense flows of spheres36; however, non-

monotonicity is not observed in our DEM simulations of

disks, so we neglect the possibility of this effect in the

present work.

3. The time-dependent term appearing in (3) is not intended

to quantitatively describe the approach to steady state, such

as the transient variations in flow resistance that accompany

Reynolds dilatancy or the transient effects reported by Ries

et al. 37 . However, the model does provide an accurate de-

scription of the long-term dynamical behavior – i.e., steady

flow – as well as the flow threshold. In these cases, the nu-

merical value of the positive parameter t0 appearing in (3)

is irrelevant.

4. The differential relation (3) may be reduced to a steady-

state-only form under the approximation that deviations of

the granular fluidity g from the local fluidity gloc are small.

The result of such an approximation – the details of which

are discussed in Henann and Kamrin 34 – is

g = gloc + ξ
2∇2

g with ξ (µ) =
Ad

√

|µ− µs |
, (5)

where gloc(µ,P) is the local fluidity function (4) and ξ (µ)

is a stress-dependent length-scale called the cooperativity

length. The steady-state form of the NGF model (5) may

be straightforwardly applied to obtain accurate predictions

of non-uniform steady flow fields in a variety of geomet-

ric configurations, such as split-bottom flow29 and chute

flow30. However, (5) cannot capture the size-dependence

of the flow threshold. To see this, note that the local flu-

idity function (4) mathematically acts as a source term in

(5) and is non-zero whenever µ > µs. Then, when µ ex-

ceeds µs at any point in a dense granular medium, (5) will

predict flowing solutions, regardless of the size of the gran-

ular medium. This deficiency arises because the approxi-

mation that g is close to gloc breaks down as the size of a

granular medium decreases. For example, in dense granu-

lar flows down an incline, flow arrests in thin layers when

µ is significantly greater than µs and hence gloc is signifi-

cantly greater than zero. Therefore, to obtain predictions

of the size-dependence of the flow threshold, we utilize the

primitive, dynamical form of the NGF model (3) exclusively

throughout the remainder of this paper.

Next, we discuss how predictions of the flow threshold may be

obtained from the NGF model. For the local inertial rheology, the

flow threshold is determined by simply comparing the maximum
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value of the stress ratio µ occurring in a flow configuration to

the critical value µs. However, for the nonlocal model (3), this

method of assessing the flow threshold is no longer sufficient.

Instead, we reframe the question of whether or not steady flow

is possible as whether or not the g = 0 solution is linearly stable

under perturbation. Starting from (3) and linearizing about the

g = 0 solution renders the g
2 term negligible, and we assume a

perturbed solution ĝ of the form ĝ(x, t) = C exp(λt/t0)ǧ(x), where

λ is the dimensionless growth rate of the perturbation, ǧ(x) is a

time-independent function, x is the spatial coordinate, and C is an

arbitrary constant. Substituting the perturbed solution ĝ into the

linearized form of (3) and simplifying, we obtain the following

linear differential relation for ǧ:

A2d2∇2
ǧ−

(

λ + µs − µ
)

ǧ = 0. (6)

Then, for a given flow configuration, the field µ(x) is specified

along with appropriate homogeneous boundary conditions for ǧ,

and the growth rate λ may be calculated. If λ < 0, the perturba-

tion decays, and steady flow is not possible. If λ > 0, the pertur-

bation grows, and steady flow may occur. The flow threshold may

be identified as the case in which λ = 0. In subsequent discussions

of the theoretically predicted flow threshold, we denote ǧ as g for

notational simplicity.

The NGF-model-predicted flow threshold for inclined plane

flow has been derived in our previous work24. Here, we briefly

recap the linear perturbation process that will subsequently be

applied to the more complex flow configurations in Section 4.

The µ-field in inclined plane flow is spatially constant and given

through the angle of inclination by tanθ, i.e., µ = tanθ. Therefore,

(6) takes the form of an ordinary differential equation (ODE) with

constant coefficients:

d2
g

dz2
+

(

tanθ − λ − µs

A2d2

)

g = 0, (7)

where z is the distance from the free surface. Anticipating that

the quantity (tanθ − λ − µs) is positive, the solution to (7) is g =

C1 sin[(
√

tanθ − λ − µs/Ad)z]+C2 cos[(
√

tanθ − λ − µs/Ad)z], where

C1 and C2 are arbitrary constants. As discussed in our previous

work24, the choice of homogeneous boundary conditions is im-

portant. For inclined plane flow, we based this choice on observa-

tions of existing DEM flow data of spheres7. In particular, in the

region near the free surface (z = 0), the DEM data of Silbert et al. 7

shows that the strain-rate approximately levels off, implying a

zero strain-rate gradient. Accordingly, we enforce that dg/dz = 0

at z = 0, which requires that C1 = 0. Second, Silbert et al. 7 ob-

served that adjacent to a fully rough boundary, the strain-rate ap-

proaches an approximately vanishing state, and hence, we take

g = 0 at z = H. The lowest value of tanθ that satisfies this bound-

ary condition corresponds to

H

d
=

π

2

A
√

tanθ − µs

. (8)

In (8), λ has been set to zero, so that (8) represents the size-

dependent flow threshold for inclined plane flow. For thick lay-

ers, the flow threshold approaches the size-independent value

tanθ = µs; however, for thinner layers, flow ceases at higher in-

clination angles. To obtain the flow thresholds corresponding to

the more complex flow configurations considered in Section 4, we

apply the same linear perturbation process – albeit involving more

complex stress ratio fields. The details of these calculations and

the resulting theoretical flow thresholds are given in Section 4.

A deeper discussion of the role of fluidity boundary conditions

in NGF model predictions of the flow threshold is warranted.

In the case of inclined plane flow, it is the choice of a homo-

geneous Dirichlet fluidity boundary condition at the rough base

that leads to predictions of size-dependent strengthening. In-

deed, if a homogeneous Neumann condition were employed, a

size-independent angle of repose would be predicted. However,

as will be shown in Section 4, NGF model predictions of size-

dependent strengthening do not arise solely due to wall condi-

tions. In a flow configuration with a spatially varying µ-field, in

which some spatial regions experience µ > µs while others experi-

ence µ < µs, the NGF model also predicts size-dependent strength-

ening, regardless of the choice of wall boundary condition. In

such a case, the region experiencing µ < µs serves to stabilize the

region experiencing µ > µs through nonlocal effects, while a lo-

cal model would simply predict the region experiencing µ > µs to

flow. The flow configurations considered in Section 4 involve both

spatially varying µ-fields and rough walls. In the DEM simulations

reported in Section 4, we are unable to extract clear evidence

justifying a homogeneous Dirichlet boundary condition for the

fluidity at walls. Therefore, for the sake of simplicity, following

our previous work29–31, we employ homogeneous Neumann fluid-

ity boundary conditions at walls throughout – both in calculating

theoretical flow thresholds and steady flow fields. We note that a

similar choice of wall fluidity boundary condition was employed

by Chaudhuri et al. 38 in their investigation of vertical chute flow

of soft, frictionless disks. In spite of this rather naive choice of

fluidity boundary condition, the results of Section 4 demonstrate

that good agreement between DEM data and NGF model predic-

tions may be obtained, indicating that the specifics of the stress

field may play a larger role than wall conditions.

4 Flow threshold in other configurations

In this section, we present DEM simulation results in three flow

configurations – planar shear flow with gravity, annular shear

flow, and vertical chute flow – characterizing the size-dependence

of the flow threshold in each case. To be clear, in the context

of our DEM simulations, the flow threshold refers to the condi-

tion for flow cessation and not the condition for flow start-up,

which is typically greater than the flow cessation condition and

is dependent on the preparation history. In this section, we also

compare DEM results with corresponding predictions of the NGF

model. Throughout, we use a single set of material parameters

{µs,b, A} in obtaining NGF model predictions. Based on the fit of

the Bingham-like functional form of the inertial rheology (1) to

DEM data of homogeneous planar shearing (Fig. 1(b)), we utilize

local parameter values of µs = 0.272 and b = 1.168. In contrast,

the nonlocal amplitude is not obtained by fitting to a single data

set – rather, we choose a value of A = 0.90 in order to provide

the best collective description of all subsequently reported data.
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We note that this numerical value is similar to the value A = 0.80,

which was reported by Kamrin and Koval 25 for disks with an

inter-particle sliding friction coefficient µsurf = 0.4.

4.1 Planar shear flow with gravity

First, we consider planar shear flow with gravity acting orthog-

onal to the shearing direction. We note that size-dependent

strengthening in this configuration was first suggested by

Pouliquen and Forterre 16 in the context of their modeling work,

but to our knowledge, this effect has not been reported in experi-

ments or DEM simulations. The DEM set-up for this case is shown

in Fig. 2(a) and is achieved by introducing a gravitational body

force along the z-direction to the configuration used in planar

shear flow, described in Section 2.2. The parallel, rough walls are

separated by a distance H = 60d, and the top wall moves in the

x-direction with a velocity vwall, while the bottom wall remains

fixed. The top wall imposes a compressive normal stress Pwall on

the granular material, using the control procedure described in

Section 2.2, and the gravitational body force is φρsG, where φ is

the mean solid area fraction and G is the acceleration of gravity.

Periodic boundary conditions are employed along the x-direction,

and the length of the region in the x-direction is L = 60d.

The expected stress field in this flow configuration may be

deduced from a quasi-static force balance. As in planar shear

flow without gravity, the shear stress is spatially constant and

given by the shear stress imparted by the moving wall – i.e.,

τ(z) = |σxz (z) | = |σzx (z) | = τwall. The pressure field is a combi-

nation of the prescribed wall pressure Pwall and the gravitational

pressure gradient, so that P(z) = −σzz (z) = Pwall + φρsGz. As in

planar shear flow, we assume that σxx (z) ≈ σzz (z), which is con-

sistent with the results of our DEM simulations. Therefore, the

stress ratio field in planar shear flow with gravity varies as

µ(z) =
τ(z)

P(z)
=

µwall

1+ z/ℓ
, (9)

where µwall = τwall/Pwall is the maximum value of µ, occurring at

the wall (z = 0), and ℓ = Pwall/φρsG is the loading length-scale,

which is defined as the ratio of the wall pressure to the gravita-

tional body force and is distinct from the dimensions H and L.

Importantly, since the loading length-scale ℓ is the only length-

scale appearing in the stress ratio field (9), ℓ – rather than the

dimensions H or L – is the relevant length-scale that character-

izes the system size in this problem. The loading length-scale ℓ

may be interpreted as the distance beneath the top wall at which

the pressure due to gravity φρsGℓ is equal to the pressure applied

by the top wall Pwall – i.e., P(z = ℓ) = 2Pwall. We have verified that

the dimensions H = 60d and L = 60d are sufficiently large so that

they do not affect the subsequently reported DEM results.

We run DEM simulations of planar shear flow with gravity for

different values of the top-wall speed vwall and loading length-

scale ℓ. Each DEM simulation is run to steady state through a top-

wall shear displacement of at least 5500d, and the steady fields

vx (z), τ(z), and P(z) are calculated using 2000 system snapshots

– evenly spaced over an additional top-wall shear displacement of

at least 5500d – as described in Appendix A. In each case, we ver-

ify that the resulting shear stress field is indeed constant – thereby

extracting the corresponding value of τwall – and that the pres-

sure field matches the intended dependence P(z) = Pwall+φρsGz.

In presenting results, we utilize a dimensionless wall velocity

ṽwall = (vwall/ℓ)
√

m/Pwall, in which vwall is non-dimensionalized

through the loading length-scale and the microscopic time-scale

associated with particle motion. First, we probe the dependence

of the stress ratio at the wall µwall = τwall/Pwall on ṽwall for load-

ing length-scales ℓ/d = 11.75, 23.5, 47, and 93.5, which is plotted

as symbols in Fig. 2(b). For sufficiently high wall speed – i.e.,

ṽwall & 3× 10−2 – the relationship between µwall and ṽwall is size-

independent, indicating that the response is dominated by local,

inertial effects. However, as the wall speed is decreased, a rate-

independent plateau emerges, which is dependent on the system-

size ℓ/d. Therefore, for a given ℓ/d, steady flow is not possible

for µwall less than the plateau value, enabling the construction of

a phase diagram of flowing and non-flowing states. As shown in

Fig. 2(c), we create a phase diagram with ℓ/d on the vertical axis

and µwall on the horizontal axis. Then, the DEM-calculated flow

threshold locus is plotted as symbols on the phase diagram – in

which each point consists of a given ℓ/d and the corresponding

plateau value of µwall. Steady flow is possible for combinations

of ℓ/d and µwall to the right of the flow threshold locus, while

steady flow cannot occur for combinations to the left of the lo-

cus. For a large system-size, the flow threshold approaches the

size-independent value µs; however, as ℓ/d decreases the flow

threshold increases.

We have also numerically computed corresponding steady solu-

tions of the NGF model, (2) and (3). Model predictions of steady

velocity fields are calculated for a given combination of ℓ/d and

µwall, by evolving (3) to steady state, using finite differences in

MATLAB with µ-field given through (9), a very fine spatial resolu-

tion ∆z≪ d, and the solution of (5) as the initial guess. The calcu-

lated relationships between the wall stress ratio µwall and the di-

mensionless wall speed ṽwall are plotted as solid lines in Fig. 2(b)

for ℓ/d = 11.75, 23.5, 47, and 93.5. The NGF model quantitatively

captures both the size-independent but rate-dependent regime

observed in DEM simulations at sufficiently high wall speed and

the size-dependent but rate-independent plateau regime – an ob-

servation that may be understood in terms of the dynamical re-

lation (3) as follows. At sufficiently high wall speed, the Lapla-

cian term in (3) contributes negligibly, yielding size-independent

model predictions. Consequently, the parameters µs and b – but

not A – set the model predictions in the rate-dependent regime.

In contrast, for sufficiently slow flows, the g
2 term plays a negli-

gible role, rendering the dynamical relation (3) linear in g which

leads to rate-independent model predictions. The parameters µs

and A – but not b – determine NGF model predictions in the rate-

independent regime.

The plateau value of µwall calculated using the NGF model for

a given value of ℓ/d then represents a point on the predicted flow

threshold locus. Instead of constructing the locus using discrete

points determined in this way, we have calculated the analytical

flow threshold predicted by the NGF model for planar shear flow

with gravity using the linear perturbation procedure described in

Section 3. We define a dimensionless transformed coordinate z̃
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Fig. 2 (a) Configuration for two-dimensional DEM simulations of planar shear flow with gravity. (b) The dependence of the stress ratio at the wall µwall on ṽwall for loading

length-scales ℓ/d = Pwall/φρsGd = 11.75, 23.5, 47, and 93.5. (c) Flow threshold locus. (d) Normalized steady velocity fields in the plateau regime (ṽwall ≈ 10−3)

for the four loading length-scales in (b). Inset: Steady stress ratio fields corresponding to each case. Throughout, symbols represent the steady-state results of DEM

simulations. In (b) and (d), solid lines are the calculated steady results of the NGF model, (2) and (3). In (c), the solid line is the analytical flow threshold predicted by

the NGF model (12). In the inset of (d), the solid lines are the anticipated µ-fields (9) used as input in calculations involving the NGF model.

and a positive, dimensionless constant α as

z̃ = 2
√

λ + µs
(z+ ℓ)

Ad
and α =

µwall

2
√
λ + µs

ℓ

Ad
. (10)

Then, upon substituting the µ-field for planar shear flow with

gravity (9) into (6), the resulting linear ODE for g( z̃) is

d2
g

dz̃2
+

(

−1

4
+

α

z̃

)

g = 0. (11)

The solution of (11) is g = C1Mα,1/2( z̃) + C2Wα,1/2( z̃), where

Mα,1/2( z̃) and Wα,1/2( z̃) are Whittaker functions, and C1 and

C2 are constants. The homogeneous boundary conditions con-

sist of a Neumann condition at the moving wall, dg/dz |z=0 = 0,

and the far-field boundary condition, limz→∞ g = 0. Since the

function Mα,1/2( z̃) diverges as z̃ → ∞, while Wα,1/2( z̃) → 0, the

far-field boundary condition requires that C1 = 0. Then, ap-

plying the wall boundary condition, making use of the identity

W ′
α,1/2

( z̃) = (( z̃−2α)Wα,1/2( z̃)−2Wα+1,1/2( z̃))/2z̃, and simplifying,

we obtain

(

√
µs
ℓ

Ad
−α

)

Wα,1/2

(

2
√
µs
ℓ

Ad

)

−Wα+1,1/2

(

2
√
µs
ℓ

Ad

)

= 0 with α =
µwall

2
√
µs

ℓ

Ad
. (12)

In the above expression, we have set λ to the threshold value of

λ = 0, so that (12) represents the size-dependent flow threshold

for planar shear with gravity. For a given value of the dimen-

sionless system size ℓ/d and the material parameters µs and A,

the smallest, positive value of µwall that satisfies the transcenden-

tal equation (12) gives the flow threshold. The analytical flow

threshold (12) is plotted as a solid line in Fig. 2(c) – displaying a

favorable quantitative comparison with the DEM data.

Finally, we compare steady velocity fields extracted from DEM

simulations to corresponding NGF model predictions. Steady nor-

malized velocity fields vx (z)/vwall in the plateau regime (ṽwall ≈
10−3) for loading length-scales ℓ/d = 11.75, 23.5, 47, and 93.5

are shown in Fig. 2(d) with symbols denoting DEM data and

solid lines representing NGF model predictions. In the inset of

Fig. 2(d), symbols denote the corresponding normalized stress ra-

tio fields µ(z)/µwall measured in the DEM simulations, and solid

lines represent the anticipated stress ratio fields (9) used as input

in calculations involving the NGF model, confirming that the in-

tended stress fields are achieved in the DEM simulations. Overall,

the NGF model is able to quantitatively capture the salient aspects

of the flow fields in planar shear flow with gravity over a range

of loading length-scales. Importantly, the nonlocal amplitude A

is the operative material parameter that determines NGF model

predictions of steady flow fields in the plateau regime, and using

a single numerical value of A, the NGF model simultaneously cap-
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tures DEM data of both the size-dependence of the flow threshold

and steady flow fields.

4.2 Annular shear flow

Next, we consider annular shear flow – the DEM set-up for which

is shown in Fig. 3(a) with inner radius R and outer radius Ro.

For the most part, the details of our DEM simulations of annular

shear flow follow the procedures of Koval and coworkers11,25.

The walls in our DEM simulations of annular shear flow consist

of rings of glued grains of diameter 2d,§ and the inner radius R

corresponds to the radial position of the outermost points of the

inner wall grains. At the inner wall, we prescribe the circumfer-

ential wall velocity vwall, and the radial position of the inner wall

grains is fixed. While the outer wall does not rotate, the value of

Ro fluctuates slightly so as to impose a prescribed radial compres-

sive normal stress Pwall on the granular material, using a control

procedure analogous to that used in Section 2.2 and described

by Koval et al. 11 . We do not utilize periodic boundary conditions,

instead modeling the full annular shear cell, as shown in Fig. 3(a)

for the case of R/d = 26. In total, we consider inner wall radii of

R/d = 11, 26, 51, and 101. Throughout, we take the outer radius to

be sufficiently large so that the value of Ro does not affect the sub-

sequently reported results – Ro = 2R for R/d = 25, 51, and 101 and

Ro = 4R for R/d = 11. The DEM configurations for R/d = 11, 26, 51,

and 101 contain 4640, 5715, 23900, and 97696 flowing grains, re-

spectively.

Analogous to planar shear with gravity, we may deduce the

steady stress field from quasi-static force and moment balances.

The moment balance gives the shear stress field to be τ(r) =

|σrθ (r) | = |σθr (r) | = τwall(R/r)2, where r is the radial coordinate

and τwall is the inner wall shear stress, and the radial force bal-

ance gives that P(r) = −σrr (r) = Pwall is spatially constant. Again,

we assume that the normal stresses are equal – i.e., σθθ ≈ σrr –

which is consistent with DEM simulation results. Therefore, for

annular shear flow, the stress ratio field varies as

µ(r) =
τ(r)

P(r)
= µwall

(

R

r

)2

, (13)

where µwall = τwall/Pwall is the maximum value of µ, occurring at

the inner wall (r = R).

Our discussion of simulation results for annular shear flow mir-

rors that of Section 4.1 for planar shear flow with gravity. We

run DEM simulations for different values of the inner wall speed

vwall and radius R. Each simulation is first run to steady state

through an inner-wall tangential displacement of at least 48d,¶

§ Rough walls consisting of glued grains of diameter 2d were also used in the annular

shear flow simulations of Kamrin and Koval 25 . We utilize this type of rough wall

for our annular shear flow simulations rather than the rough walls described in

Section 2.2 in order to more easily construct the annular DEM configuration.

¶ Koval and coworkers 11,25 report that transients fully subside after an inner-wall

tangential displacement of approximately 50d in their simulations of annular shear

flow and conservatively adopt an inner-wall displacement of 100d as their steady-

state condition. Our observation of transients is similar, and for efficiency – since

we simulate the full annular shear cell rather than an angular section – we adopt a

steady-state condition of 48d for the inner-wall displacement.

and the steady fields vθ (r), τ(r), and P(r) are then extracted us-

ing 1000 system snapshots, which are evenly spaced over an ad-

ditional inner-wall tangential displacement of an equal amount

as in the preceding step. Further, τwall is measured by way of the

average torque applied to the inner wall at steady state. First,

we explore the dependence of the inner wall stress ratio µwall on

ṽwall = (vwall/R)
√

m/Pwall in DEM simulations for R/d = 26, 51, and

101, which is plotted as symbols in Fig. 3(b). Again, a transition

is observed from a rate-dependent but size-independent regime

at sufficiently high wall speed (ṽwall & 10−2) to a size-dependent

plateau regime as ṽwall is decreased. Here, we have restricted

attention to a slightly lower range of ṽwall than considered in

Section 4.1 to ensure that centripetal acceleration plays no role

in our DEM simulations – a point which is verified by checking

that the normal stress σrr is spatially constant. A phase dia-

gram of flowing and non-flowing states for annular shear flow is

shown in Fig. 3(c), in which pairs of R/d and the corresponding

plateau value of µwall are plotted as symbols and denote the DEM-

calculated flow threshold locus. Again, we observe strengthening

as the system-size R/d is reduced.

Steady-state predictions of the NGF model are numerically cal-

culated for given combinations of R/d and µwall as described in

Section 4.1 except with µ-field given through (13). The calculated

relationships between µwall and ṽwall are plotted as solid lines in

Fig. 3(b) for R/d = 26, 51, and 101, demonstrating good quantita-

tive agreement with DEM data and – most importantly – display-

ing a size-dependent plateau value of µwall. As in Section 4.1, we

calculate the theoretical flow threshold locus for annular shear

flow via the linear perturbation procedure described in Section 3.

Substituting the µ-field (13) into (6), defining a dimensionless

transformed coordinate r̃ and a positive, dimensionless constant

α as

r̃ =
√

λ + µs
r

Ad
and α =

√
µwall

R

Ad
, (14)

and simplifying, we obtain the following linear ODE for g(r̃):

r̃2 d2
g

dr̃2
+ r̃

dg

dr̃
−

(

r̃2 −α2
)

g = 0. (15)

The solution of (15) is g = C1Iıα (r̃)+C2Kıα (r̃), where Iıα (r̃) and

Kıα (r̃) are the modified Bessel functions of the first and second

kind of purely imaginary order, and C1 and C2 are constants.

We consider the following homogeneous boundary conditions: a

Neumann condition at the inner wall, dg/dr |r=R = 0, and the far-

field condition, limr→∞ g = 0. For r̃ and α positive, the function

Iıα (r̃) is complex-valued, and its real part diverges as r̃ →∞. In

contrast, Kıα (r̃) is real-valued for r̃ and α positive, and Kıα (r̃)→ 0

as r̃ → ∞. Therefore, the far-field boundary condition requires

that C1 = 0. Then, applying the wall boundary condition, setting

λ = 0, and simplifying leads to the size-dependent flow threshold

for annular shear flow:

K ′ıα

(

√
µs

R

Ad

)

= 0 with α =
√
µwall

R

Ad
. (16)

For a given value of the dimensionless inner wall radius R/d and

the material parameters µs and A, the smallest, positive value of

µwall that satisfies (16) gives the flow threshold. The theoretical
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Fig. 3 (a) Configuration for two-dimensional DEM simulations of annular shear flow for the case of R/d = 26. (b) The dependence of the stress ratio at the wall µwall

on ṽwall for inner wall radii R/d = 26, 51, and 101. (c) Flow threshold locus. (d) Normalized steady velocity fields in the quasi-static regime (ṽwall ≈ 10−4) for the three

loading length-scales in (b). Inset: Steady stress ratio fields corresponding to each case. Throughout, symbols represent the steady-state results of DEM simulations. In

(b) and (d), solid lines are the calculated steady results of the NGF model, (2) and (3). In (c), the solid line is the analytical flow threshold predicted by the NGF model

(16). In the inset of (d), the solid lines are the anticipated µ-fields (13) used as input in calculations involving the NGF model.

flow threshold locus (16) is plotted as a solid line in Fig. 3(c),

showing that the NGF model captures the size-dependent flow

threshold in this flow configuration.

Lastly, we compare DEM data and NGF model predictions

of steady velocity fields. Steady normalized velocity fields

vθ (r)/vwall in the plateau regime (ṽwall ≈ 10−4) for inner wall radii

R/d = 26, 51, and 101 are shown in Fig. 3(d) with symbols denot-

ing DEM data and solid lines representing NGF model predictions.

Corresponding steady normalized stress ratio fields µ(r)/µwall are

shown in the inset of Fig. 3(d), confirming that the µ-fields mea-

sured from DEM data are consistent with the anticipated stress

ratio fields (13). The NGF model quantitatively captures both

steady flow fields and the size-dependence of the flow threshold

in annular shear flow – while using the same set of material pa-

rameters as in planar shear flow with gravity.

4.3 Vertical chute flow

Finally, we consider vertical chute flow. The size-dependence

of the flow threshold in this configuration was first explored by

Chaudhuri et al. 38 for a simulated, two-dimensional system of

soft, frictionless particles. Here, we perform an analogous anal-

ysis for our system of stiff, frictional disks. Our DEM set-up is

shown in Fig. 4(a), which is generated by first creating a dense

granular system between two parallel, rough walls as described

for planar shear in Section 2.2 and then rotating the system clock-

wise by 90◦ and applying a gravitational body force along the z-

direction. The rough walls – consisting of layers of glued grains as

in the planar shear flow simulations of Section 2.2 – are separated

by a distance denoted by W , which is varied in our simulations.

The left vertical wall is fixed, and the right vertical wall is fixed in

the z-direction but can move slightly in the x-direction so as to im-

pose a compressive normal stress Pwall on the granular material,

using the control procedure described in Section 2.2. Periodic

boundary conditions are prescribed along the z-direction. In all

cases, the length of the vertical chute L is taken to be 60d, which

is in a range that does not affect DEM results.|| We consider nom-

inal chute widths of W/d = 10,20,30,40, and 60 – however, these

values do vary slightly during flow – and the DEM configurations

contain 633,1270,1900,2539, and 3806 flowing grains, respectively.

From a quasi-static force balance, we expect the shear stress

field to be τ(x) = |σxz (x) | = |σzx (x) | = φρsG |x |, where x is mea-

sured from the centerline of the chute, and the pressure field to

be P(x) = −σxx (x) = Pwall. Again, we assume that the normal

|| If the vertical chute is taken to be too long, alternating dense and sparse regions

will develop along the chute. This is because the procedure employed to control the

pressure cannot account for variations along the length of the vertical chute due to

the rigid nature of the walls. We have verified that our chute length L is sufficiently

short so that this issue does not arise while also being sufficiently long so that the

reported results do not depend upon L.
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stresses are equal – i.e., σzz ≈ σxx – and verify this assumption

against the DEM results. Therefore, for vertical chute flow, the

µ-field is

µ(x) = µwall

(

|x |
W/2

)

, (17)

where µwall = φρsGW/2Pwall is the maximum value of µ, occurring

at the walls (x = ±W/2).

Since vertical chute flow is gravity-driven – while planar shear

flow with gravity and annular shear flow are boundary-driven –

our process for determining the flow threshold from DEM simu-

lations is different than previously described. In boundary-driven

flow, we specify arbitrarily-low wall velocities and extract the flow

threshold from the steady-state plateau forces applied to the wall.

In contrast, for gravity-driven flow, we consider various condi-

tions – namely, combinations of W/d and µwall – and determine

whether steady flow may be sustained, and in this way, the flow

threshold is bounded. Our process is as follows. Motivated by

the methodology of Weinhart et al. 10 for assessing flow arrest

in DEM simulations of inclined plane flow, we utilize a criteria

based on the kinetic energy. First, for a given chute width W/d,

a sufficiently large value of µwall is applied so that steady flow

is attained. Next, µwall is decreased to a target value – in prac-

tice, this is achieved by decreasing the acceleration of gravity G

– and the system is allowed to reach steady state over a time pe-

riod of 19470
√

m/Pwall. We confirm that the µ-fields measured

from steady-state DEM data are consistent with the intended µ-

fields (17). Then, the mean kinetic energy per flowing grain as

a function of time – denoted as Ekin(t) – is extracted from 5000

system snapshots distributed evenly over an additional time pe-

riod of 19470
√

m/Pwall after reaching steady state. For values

of µwall in which the arithmetic average of the kinetic energy

〈Ekin(t)〉 is greater than 10−2Pwalld
2,** flow is continuous, and

Ekin(t) is nearly time-independent with fluctuations – defined as

(〈(Ekin(t) − 〈Ekin(t)〉)2〉)1/2 – smaller than 〈Ekin(t)〉. When µwall

is decreased to a value for which 〈Ekin(t)〉 = 10−2Pwalld
2, fluctu-

ations increase to be roughly equal to 〈Ekin(t)〉, and accordingly,

** Since kn = 104Pwall in our simulations, the normalization factor Pwalld
2 is related to

the elastic potential energy scale, as in Weinhart et al. 10 .

we identify this condition and the corresponding value of µwall

as the upper bound of the flow threshold for a given W/d. As

µwall is further decreased, flow becomes intermittent, and kinetic

energy fluctuations further increase. In this intermittent regime,

it is important to acknowledge the effect that the wall damping

parameter gp has on flow. If gp is too low (gp/
√

mkn . 1), wall mo-

tion is underdamped, and the associated wall oscillations prevent

flow from ceasing, even when µwall is arbitrarily small. If gp is too

high (gp/
√

mkn & 104), wall motion is overdamped, and the target

wall pressure Pwall is not achieved. We find that for our choice

of gp/
√

mkn = 100, static states may be achieved while maintain-

ing the target wall pressure. That said, using this value of gp, at

low values of µwall, wall motion can still induce isolated, infre-

quent grain rearrangements that are not associated with steady

flow but do contribute to the kinetic energy. To remove this ef-

fect, we median filter the measured kinetic energy data Ekin(t) for

values of µwall in the intermittent regime prior to arithmetically

averaging the kinetic energy data over time. When the average

value of the filtered kinetic energy data decreases to a very low

value of 10−7Pwalld
2 we deem flow to have ceased and denote

the corresponding value of µwall as the lower bound of the flow

threshold.

Once upper and lower bounds of the flow threshold have been

determined, we may construct a phase diagram of flowing and

non-flowing states for vertical chute flow, which is shown in

Fig. 4(b). For a given W/d, the ×-symbols denote the upper

and lower bounds determined as described in the preceding para-

graph, and the range of µwall between the symbols corresponds to

the intermediate regime of intermittent flow and is denoted by a

dotted line. While the exact value of the chute width varies in

our simulations, we find that the differences between actual val-

ues of W near the flow threshold and the corresponding nominal

values are less than one grain diameter in all cases, so the values

of W/d appearing in Fig. 4(b) correspond to the nominal values.

Due to the presence of the intermittent regime, our determination

of the flow threshold in vertical chute flow is less precise than for

the flow configurations considered in Sections 4.1 and 4.2; how-

ever, the increase of the measured flow threshold with decreasing

system size remains clear.
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To calculate the theoretical flow threshold locus predicted by

the NGF model for vertical chute flow, we substitute the µ-field

(17) into (6) to obtain

d2
g

dx̃2
− x̃g = 0 where x̃ =

λ + µs − µwallx/(W/2)

(2Adµwall/W )2/3
(18)

is a dimensionless transformed coordinate. The solution of (18)

is g =C1Ai( x̃)+C2Bi( x̃), where Ai( x̃) and Bi( x̃) are the Airy func-

tions of the first and second kind, and C1 and C2 are constants.

The homogeneous boundary conditions consist of the symmetry

condition at x = 0, dg/dx |x=0 = 0, and a homogeneous Neumann

condition at the wall, dg/dx |x=W/2 = 0. Enforcing the boundary

conditions and setting λ = 0 yields the size-dependent flow thresh-

old for vertical chute flow:

Ai′
(

µs

(2Adµwall/W )2/3

)

Bi′
(

µs − µwall

(2Adµwall/W )2/3

)

−Bi′
(

µs

(2Adµwall/W )2/3

)

Ai′
(

µs − µwall

(2Adµwall/W )2/3

)

= 0. (19)

For a given value of the dimensionless chute width W/d and the

material parameters µs and A, the smallest, positive value of µwall

that satisfies (19) gives the flow threshold. The theoretical flow

threshold locus (19) is plotted as a solid line in Fig. 4(b), using

the same material parameters µs and A as in Sections 4.1 and 4.2.

The theoretical flow threshold locus does a reasonably good job

of quantitatively capturing the DEM data for vertical chute flow.

5 Concluding remarks

In this paper, we have studied the size-dependence of the flow

threshold in three different dense granular flow configurations –

(1) planar shear flow with gravity, (2) annular shear flow, and

(3) vertical chute flow. Importantly, the flow threshold measured

in DEM simulations shows substantial size-dependence across all

configurations – the details of which are affected by the form of

the stress field. We have also applied the NGF model to all three

flow configurations to obtain predictions of both the flow thresh-

old and steady flow fields. Notably, we have obtained analytical

solutions for the predicted size-dependent flow threshold in all

three cases. The theory – using a single set of material param-

eters – predicts size-dependent flow thresholds that match DEM

data rather well in all cases. Further, the theory simultaneously

predicts steady flow fields that are quantitatively consistent with

corresponding DEM data.

For illustrative purposes, a comparison of the analytical flow

thresholds predicted by the NGF model for all four flow configu-

rations discussed in this paper – inclined plane flow (8), planar

shear flow with gravity (12), annular shear flow (16), and vertical

chute flow (19) – is plotted in Fig. 5 with the appropriate length-

scale on the vertical axis and the maximum value of µ associated

with the flow configuration on the horizontal axis. Notably, size-

dependent strengthening in all three configurations considered in

Section 4 is significantly greater than the strengthening predicted

for inclined plane flow. Recall that the strengthening predicted by

the theoretical flow threshold for inclined plane flow is entirely
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Fig. 5 Comparison of the analytical flow thresholds predicted by the NGF model

for inclined plane flow (8), planar shear flow with gravity (12), annular shear flow

(16), and vertical chute flow (19).

due to boundary effects, since the µ-field is spatially constant,

while the additional strengthening associated with the other three

theoretical flow thresholds is due to the spatial-dependence of the

stress field, rather than boundary effects. This observation illus-

trates that the precise nature of the µ-field has a crucial effect

on the resulting flow threshold and must be accounted for when

considering other size-sensitive flow stoppage phenomena.

As a final comment, providing physical justification for fluid-

ity boundary conditions at walls remains an open issue. In the

present work, our choice of a homogeneous Neumann condition

was based on pragmatic grounds – since a homogeneous Dirich-

let fluidity boundary condition was not directly observed in our

DEM simulations – and past experience – which has shown that

such a boundary condition enables an excellent description of ex-

periments of split-bottom flow29 and chute flow30. In spite of

the lack of a physical underpinning for this choice, the favor-

able agreement between the flow thresholds measured in DEM

simulations and the corresponding analytical flow thresholds pre-

dicted by the NGF model provides support for this choice of flu-

idity boundary condition. From a broader perspective, the issue

of specifying non-standard boundary conditions arises in virtu-

ally all nonlocal constitutive approaches17,20,27,38, and motivat-

ing the choice of these boundary conditions from a physical per-

spective remains an open challenge. In the context of nonlocal

fluidity models, some recent progress has been made on this point

for dense emulsions39, and future work of this type is needed to

develop a clearer microscopic understanding of granular fluidity

boundary conditions.
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A Averaging method

In this appendix, we briefly summarize the spatial averaging

method utilized to extract steady, continuum velocity and stress
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fields from our DEM data. The method follows the work of Ko-

val and coworkers11,25 and is described for the cases of planar

shear flow and planar shear flow with gravity, in which quanti-

ties are averaged over the x-coordinate shown in Figs. 1(a) and

2(a). First, for a snapshot at time t, we draw a horizontal line at

a given z-position, and assign each intersected grain i a weight Li

defined as the length of the horizontal line passing through grain

i. Then, with the instantaneous velocity of grain i denoted as

vi (t), the instantaneous velocity field is v(z, t) =
∑

i Livi (t)/
∑

i Li .

Regarding the stress field, the instantaneous stress tensor associ-

ated with grain i is σi (t) = (
∑

j,i ri j ⊗ fi j )/Ai , where ri j is the po-

sition vector from the center of grain i to the center of grain j, fi j

is the contact force applied on grain i by grain j, and Ai = πd2
i
/4

is the area of grain i. The instantaneous stress field follows as

σ(z, t) =
∑

i Liσi (t)/L, where L is the total length of the domain

in the x-direction. The instantaneous velocity and stress fields are

then arithmetically averaged in time over many snapshots to ob-

tain steady fields that only depend upon the z-coordinate, such

as those shown in Fig. 2(d). This process may be adapted to spa-

tial averaging over the angular coordinate in a polar coordinate

system, as described in Appendix B of Koval et al. 11 , and used to

obtain steady fields in annular shear flow, such as those shown in

Fig. 3(d).
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