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ABSTRACT

The nanometer placement of nanomaterials, such as, nanoribbons and nanotubes, at a 

specific pitch and orientation on a surface, remains an unsolved fundamental problem in 

nanotechnology.  In this work, we introduce and analyze the concept of a direct-write 

chemical vapor deposition (CVD) system that enables the in-place synthesis of such 

structures with control over orientation and characteristic features.  A nanometer scale 

pore or conduit, called the nanonozzle, delivers precursor gases for CVD locally on a 

substrate, with spatial translation of either the nozzle or the substrate to enable a novel 

direct write (DW) tool.  We analyze the nozzle under conditions where it delivers 

reactants to a substrate while translating at a constant velocity over the surface at a fixed 

reaction temperature.  We formulate and solve a multi-phase three-dimensional reaction 

and diffusion model of the direct-write operation, and evaluate specific analytically-

solvable limits to determine the allowable operating conditions, including pore 

dimensions, reactant flow rates, and nozzle translation speed.  A Buckingham  analysis Π

identifies six dimensionless quantities crucial for the design and operation of the direct-

write synthesis process.  Importantly, we derive and validate what we call the ribbon 

extension inequality that brackets the allowable nozzle velocity relative to the CVD 

growth rate – a key constraint to enabling direct-write operation.  Lastly, we include a 

practical analysis using attainable values towards the experimental design of such a 

system, building the nozzle around a commercially available near-field scanning optical 

microscopy (NSOM) tip as a feasible example.
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INTRODUCTION

The synthesis and placement of nanomaterials with nanometer or Angstrom scale 

precision1–4 remains a longstanding, but largely unsolved challenge, in nanotechnology. 

The extreme limit of this challenge has been called atomically precise manufacturing 

(APM) in the literature.5–7  There exists significant interest in developing electronic 

components from graphene and other 2D materials in their nanoribbon forms, which are 

predicted8 and shown9,10 to have favorable electronic bandgaps for digital electronic 

applications, unlike unmodified graphene.  Because of the edge variance of lithographic 

methods, it becomes increasingly difficult to create small ribbon widths or nanowire 

diameters as the characteristic length decreases.11  Moreover, it has been noted that to 

achieve high electron mobilities in nanoribbon structures, edge defects must be 

suppressed.12  This prompts an exploration of fabrication methods that could scale to 

atomic-level precision, unlike conventional, subtractive lithographies.13 There have been 

several efforts to modify existing approaches to reach the APM scale, including: (i) 

electron-beam lithography,14 (ii) electric or magnetic field-driven alignment of 

nanowires,15 (iii) chemical synthesis using thermally-activated atomic force microscopy 

tips,16,17 and (iv) DNA origami.18 However, low throughput and applicability to a limited 

set of materials have prevented the broad application of these techniques for APM.  In 

this work, we conceptually introduce an alternative concept of direct-write chemical 

vapor deposition (CVD) as a nanofabrication tool that could potentially scale to APM 

levels.  Our work provides the first mathematical modeling framework for such an 

approach and examines the conditions of its feasibility. We develop the concept of a 

spatially-translating nanometer scale pore or conduit through which precursor gases for 
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CVD are delivered to enable a novel direct-write (DW) tool. Since CVD is a widely 

utilized technique for the synthesis of a broad range of materials, ranging from 

nanotubes19 and two-dimensional materials,20 to metals21 and semiconductors,22 this 

technique offers synthetic access to a wide range of target nanomaterials and structures.

Existing direct-write lithographic methods cannot achieve the requisite spatial 

resolution for a wide range of applications.  Electron-beam (e-beam) lithography, which 

uses a focused beam of electrons to create desired features on a surface that is coated with 

an electron-sensitive film, has conventionally allowed resolutions up to 10 nm,23 though 

recent advances have pushed the resolution limit to around 1 nm in certain cases.14 E-

beam lithography is often used for nanopatterning of surfaces,24 including nanoribbons.25 

However, the use of an electron-sensitive film (the resist) limits the applicability of this 

method. Further, nanoribbons synthesized using lithographic techniques typically lose 

their conductance due to lack of control over the resulting edge structure. Other 

lithography avenues that have been explored for nanopatterning include chemical 

synthesis using thermally-activated atomic force microscopy tips, known as “dip-pen 

nanolithography”. While this technique is useful for depositing material which is 

compatible as an ink,26 it is not well suited for controlled delivery of precursors for higher 

temperature CVD reactions that lead to pristine lattices and edges. Indeed, dip-pen 

nanolithography has primarily been utilized for patterning polymeric surfaces, which are 

best handled at comparatively lower temperatures.16,17 

The controlled placement of nanometer-scale materials on a surface has also been 

explored, such as the alignment of nanowires along preferred directions using electric27 
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and magnetic28 fields.  However, such alignment techniques do not necessarily enable 

control of the spacing or pitch between nanowires with nanometer precision. Moreover, 

the use of magnetic fields limits the technique to magnetic substrates. DNA origami is 

another promising technique to create nanoscale shapes and patterns which are 

biologically compatible.29 Recently, DNA origami was utilized to adjust the distance 

between two fluorescent molecules with sub-nanometer precision.18 However, the main 

challenges facing the use of this technique are low yield and production scale, and the 

cost of synthetic DNA.30 

In this work, we address the lack of scalable and widely applicable methods for 

achieving nanometer-scale precision in the orientation and placement of nanomaterials.  

We introduce and analyze the concept of direct-write CVD, formulating the foundational 

scaling laws that dictate its successful design and operation.  Our conception of the 

direct-write CVD reactor involves a translating nanoscale nozzle (henceforth termed a 

nanonozzle) to achieve nanoscale patterning. A nanonozzle has the ability to localize a 

small flux of precursor molecules, which diffuse from the tip of the nanonozzle as an 

efflux.  Using this aspect to localize a reagent for nanoribbon growth yields distinct 

results compared to reactions occurring in the bulk phase.  In the past, researchers have 

utilized “nanojets” as an energetic plasma to etch away a surface to form a desired 

nanoscale structure,31 or laser ablation to release and deliver larger molecules locally.32  

However, the key aspect of the nanonozzle concept explored in this work is that the 

structure and precision of the structures grown are derived from the moving local 

delivery and diffusion of the reagent to create a concentration gradient that enables 

nanoscale patterning.  We use continuum simulations to explore the relevant process 
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parameters and systemic considerations for the design of a nanonozzle system capable of 

growing a nanoribbon using a CVD reaction. Finally, we compare our results with 

analytical models which enable us to bracket the performance of the nanonozzle.

RESULTS AND DISCUSSION

The Nanonozzle Concept.  A conceptual illustration of a nanonozzle is depicted in Figure 

1(a,b), wherein a plume of reagent originates from a single walled carbon nanotube (the 

nanonozzle) translating at a fixed velocity, and gives rise to a nanoribbon or 

nanostructure with known growth kinetics on a planar substrate.  In Figure 1(c), we 

illustrate an engineering schematic of the envisioned nanonozzle. Specifically, a nozzle 

of radius r, translating at velocity v, is placed at a distance h from a substrate with the 

growing ribbon. The reagent, with a bulk, vapor phase diffusivity D, is emitted from the 

nozzle mouth at a flow rate Q.  We simplify the growth to first-order reaction kinetics, 

with a rate constant k, and growth occurring at the edge of the growing structure, leading 

to consumption of the growth reagent and extension of the ribbon, which has a specific 

area (i.e., material area per unit mass) σ. In future work, a more detailed calculation 

model could incorporate multiple growth precursors and exact growth kinetics based on 

mechanisms such as the Langmuir-Hinshelwood model. The growing ribbon possesses a 

location-dependent width W at a distance x from the nanonozzle. Table 1 summarizes the 

physical variables relevant to the operation of the conceived nanonozzle system. 

In terms of the boundary conditions (formulated below), far away from the 

nanonozzle, in the x and y directions, the concentration of the precursor is zero. In the z 

direction, a no flux boundary condition is applied at the growth substrate and at the top of 
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the of the system.  The competition between reaction and diffusion of the growth reagent 

creates a concentration gradient, which favors growth close to the nozzle, thereby 

ensuring that the structure does not grow significantly at locations far away from the 

nozzle. The surface growth and kinetics are modeled based on graphene synthesis on a 

catalytic copper surface, which occurs by first nucleating a seed crystal of graphene, with 

subsequent growth outward from the edges in a monolayer.  In the following analysis, we 

assume that the starting seed crystal exists and that a ribbon grows as a monolayer 

extending from the seed crystal. Future work could explore the growth of multilayered 

materials using the nanonozzle. We assume that the only reaction that occurs is reagent 

addition to the edges of the ribbon and that the nucleation of additional seeds is 

negligible. Note that, in practice, the seed(s) nucleated on the substrate could be readily 

located using a grid of lithographic markers deposited prior to the nucleation step. Since, 

as explained later, a potential candidate for the nanonozzle is a near-field scanning optical 

microscopy (NSOM) tip, we anticipate that imaging capabilities would be built into the 

direct-write framework, thereby making it easy to position the nozzle at any desired 

location.
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Figure 1. (a) Idealized illustration of graphene nanoribbon growth by a nanonozzle 
formed from a single walled carbon nanotube (SWNT) that delivers reagent to the site of 
the growing nanoribbon. (b) Zoomed-in image depicting molecular species emanating 
from the nozzle mouth and adding to the edge of the growing ribbon. (c) Engineering 
diagram of the nanonozzle setup with a ribbon growing on a substrate. The nozzle, which 
translates at a velocity v, has a radius r and is placed at a distance h from the substrate. 
The location-dependent ribbon width, W, at a distance x from the nozzle is indicated. The 
growth substrate is located at z  0 . The left and right edges of the growth ribbon, 
represented using mathematical functions, sL(x, y)  0 and sR(x, y)  0 , respectively, are 
also shown.

Page 8 of 42Nanoscale



9

Table 1. Summary of the relevant physical parameters and variables in the nanonozzle 
system, along with their SI units.

Description SI units
D Diffusion constant m2 s-1

k Edge reaction constant m2 s-1

σ Material area per mass m2 mol-1

h Nozzle outlet height m
Q Reagent flow rate out of nozzle mol s-1

v Stage translation velocity m s-1

r Nozzle outlet radius m

x Distance from the nozzle outlet along 
surface

m

W Ribbon width at distance x m

Nanonozzle Simulations. To explore the concept of a nanonozzle, we developed a simple 

continuum simulation framework for the system.  The example considered is modeled on 

a monolayer ribbon, growing only at the edges of the existing ribbon, and starting from a 

seed at the beginning of the simulation.  Considering the case of mass transport by 

diffusion only (the vapor phase is stagnant), we applied the following molar balance 

equations for the bulk vapor:

C
t

 D 2C
x2 

2C
y2 

2C
z2







 gen  (1)

where C(x, y, z,t)  represents the location- and time-dependent concentration of the 

growth reagent in the vapor phase, x, y, and z represent the coordinates of a point in space 

(note that the growth substrate is located at z  0 ), t denotes time,  D is the diffusivity of 

the growth reagent, and gen represents a molar generation term per unit volume. The 

generation term is equal to the reagent flow rate ( Q ) at the nozzle outlet (located within 
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the spatial region xN ,min  x  xN ,max , yN ,min  y  yN ,max , zN ,min  z  zN ,max ) and zero 

everywhere else, as follows:

gen(x, y, z,t) 
Q;

xN ,min  x  xN ,max ,

yN ,min  y  yN ,max ,

zN ,min  z  zN ,max

0; otherwise














 (2)

Note that, as the ribbon grows, the functions sL(x, y)  and sR (x, y)  should be updated to 

reflect the new left (L) and right (R) boundaries of the ribbon, according to the amount of 

material consumed from the gas phase in the timestep t , and the material area per unit 

mass, σ:

{yL | sL(x, yL )  0} yL   kC(x, yL ,0.5z,t)t  (3)

{yR | sR(x, yR )  0} yR  kC(x, yR ,0.5z,t)t  (4)

In practice, in the simulation, the ribbon boundaries sL(x, y)  and sR (x, y)  are tracked 

based on an auxiliary variable R(x, y,t)  which denotes the ribbon coverage in the pixel 

centered at location (x, y) . If R(x, y,t)  0 , it means the ribbon is not yet grown at 

location (x, y)  at time t. On the other hand, if R(x, y,t)  1 it means the ribbon has fully 

grown in the pixel centered at location (x, y)  at time t. Note that R(x, y,t)  is incremented 

during the current timestep, only if the adjoining (either orthogonally or diagonally) 

pixel(s) have already grown ribbons, according to the following equations:
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C(x, yL/ R ,0.5z,t  t) 
C(x, yL/R ,0.5z,t)

1
k

A






tgrowth(x, yL/ R ,t)
 (5)

R(x, yL/R ,t  t)  R(x, yL/R ,t) 
V
A

C(x, yL/ R ,0.5z,t)  C(x, yL/R ,0.5z,t  t)   

(6)

where A  xy  is the area of the pixel (with length x  and width y ) at the edge of 

the growing ribbon, V  xyz  is the volume of the voxel just above the edge of the 

growing ribbon (with length x , width y , and height z ), C(x, yL/ R ,0.5z,t)  is the 

reagent concentration just above the growth pixel at the beginning of the timestep, and 

Eq. (5) is written assuming the growth pixel as a well-mixed system (a continuous 

stirred-tank reactor33). Typically, each pixel on the surface has an “available time for 

ribbon growth”, tgrowth(x, yL/ R ,t  0)  t . Note that, in some cases, it is possible for the 

growth pixel to completely grow the ribbon using less time than t , i.e., 

tgrowth(x, yL/ R ,t) 
(1 R(x, yL/ R ,t))V

kCminA
, where Cmin  is the concentration just above the 

completely-grown pixel once all the reagent required for growth has been consumed. In 

such cases, the reagent concentration above the completely-grown pixel is set to Cmin , as 

defined below, and the extra “available time for ribbon growth” is transferred to the 

adjoining pixel, as expressed in Eq. (9):

Cmin  C(x, yL/R ,0.5z,t) 
A

V
(1 R(x, yL/ R ,t))  (7)
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R(x, yL/R ,t  t)  1; provided Cmin  0  (8)

tgrowth(x  x, yL/ R ,t  t)  tgrowth(x  x, yL/ R ,t)  t 
(1 R(x, yL/ R ,t))V

kCminA






 (9)

Afterwards, the stage is translated by shifting the ribbon position to match the growth rate 

at the leading edge, (x0 ,0) , of the ribbon to the growth rate at the edges, such that:

{x0 | sL(x0 ,0)  sR(x0 ,0)  0} x0   kC(x0 ,0,0.5z,t)t  (10)

The boundary conditions are C
xxB

 C
x0

 0  in the x direction, 

C
y yB

 C
y0

 0  in the y direction, and 
c
z zzB


c
z z0

 0  in the z direction, where the 

simulation box lies within the spatial region 0  x  xB ,0  y  yB ,0  z  zB . The 

equations are solved using a finite-difference scheme, with the explicit Euler method for 

time integration, and the use of central difference formulae to represent the spatial 

concentration derivatives. To assist in exploring the parameter space, we can also set a 

constant stage velocity and have the growth at the leading edge adjust to match that 

velocity, effectively assuming an arbitrary anisotropic growth rate that allows the ribbon 

to extend at the appropriate rate relative to the defined width extension rate constant.  The 

final width along the length of the ribbon is saved as the result of the simulation.

Buckingham Π Analysis. A Buckingham Π analysis can reduce the number of relevant 

variables to a smaller set of physically-motivated, dimensionless variables. From Table 

1, we see that there are 9 relevant variables in our system. Since there are 3 physical 
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dimensions (moles, length, and time) amongst the 9 variables, there are 6 dimensionless 

variables which can be constructed. Applying the analysis to the nannozzle system yields 

the following recognizable dimensionless groups:

1 
k
D

 (11)

2 
h
r

 (12)

3 
D
hv

 (13)

4 
 Q

k
 (14)

5 
X
r

 (15)

6 
W
r

 (16)

where, Π1 is the Damkӧhler number of the system and quantifies the competition between 

reaction and diffusion, Π2 is the height to radius ratio of the nanonozzle, Π3 is the inverse 

Peclet number, representing the ratio of diffusion velocity and nozzle velocity, Π4 is the 

ratio between the molar rates of inflow and consumption, Π5 is the dimensionless axial 

coordinate, and Π6 is the dimensionless width of the growing ribbon.  These 

dimensionless variables should aid in the analysis and interpretation of simulation data, 

and are used to understand the simulation results later in the paper.
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Example Simulation Results.  Figure 2 shows an example progression of the simulation, 

visualizing diffusion from the nozzle and the subsequent growth of the ribbon under 

conditions where: Π1 = k/D = 0.2, Π2 = h/r = 0.0193, Π3 = D/(hv) = 0.0862, and Π4 = 

Q/k = 562.5.  In the initial pane (Figure 2(a)), the stage has not initiated translation, as 

the reagent has not yet sufficiently diffused to the ribbon seed below.  In the subsequent 

panes (Figure 2(b)-(d)), the stage translates to match the growth rate of the leading edge 

of the ribbon, resulting in an elongated island, and ultimately an extended ribbon.

Figure 2. Example progression of diffusion from nanonozzle and nanoribbon growth 
over time: (a) t  200t ,  (b) t  400t , (c) t  600t , and (d) t  800t , where t

 
 is 

the timestep of the simulation. Red color on the surface illustrates the monolayer 
coverage of the ribbon; the black cylinder represents the nanonozzle delivering reagent 
above the surface; the dot density and color vary as a visualization of a continuous three-

Page 14 of 42Nanoscale



15

dimensional, gas phase reagent concentration profile. The simulation conditions are: Π1 = 
k/D = 0.2, Π2 = h/r = 0.0193, Π3 = D/(hv) = 0.0862, and Π4 = Q/k = 562.5. 

Formulation of the Ribbon Extension Inequality (REI).  An important operational 

variable for the proposed direct-write scheme is the translation velocity, which must be 

bounded by the growth rate of the structure.  To explore this connection between the 

translation velocity and the system parameters, we derive a three-dimensional (3D), 

analytical model to determine the minimum ribbon width possible using the nanonozzle 

system, because many properties of the ribbon scale with its width, including a quantum 

confined band gap for the case of graphene.  Note that it is very challenging to derive an 

exact, analytical solution for the nanonozzle system, because it involves the solution to a 

second-order partial differential equation in three dimensions, coupled with a chemical 

reaction on a surface, leading to the development of a moving front (the edge of the 

ribbon). Therefore, to obtain an analytical solution for the system in 3D, we need to make 

certain assumptions, that will make the problem tractable for solving it exactly. Later in 

the paper, we evaluate how good these assumptions are by comparing the analytically-

obtained solutions for the ribbon width to the numerically-obtained values from the 

nanonozzle simulations. Accordingly, we assume that the reaction is negligible relative to 

diffusion, meaning the growth of the ribbon does not influence the concentration profile 

in the gaseous phase.  A first order reaction rate still controls the rate at which the ribbon 

width increases. For comparison, the Appendix includes solutions for 1D and 2D 

example models that are simple enough to be solved while including a reaction term for 

the bulk reactant consumption. Those models indicate that the ratio between reaction and 

diffusion rates is an important parameter which influences the ribbon width obtained 

from the nanonozzle. 
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With the assumption that the gaseous concentration is negligibly decreased by the 

reaction, we start with the steady-state concentration profile for diffusion from a point 

source above a surface, given by equation (17) below (this equation can be derived using 

the well-known method of images34).  This equation provides an approximate solution for 

the case of low reaction rate at the surface.

C(r, z) 
Q

4 Dh
1

z
h 1 2

 r
h 2


1

z
h 1 2

 r
h 2



















 (17)

where Q is the molar flow rate from the nozzle, D is the diffusion constant, and h is the 

height of the nozzle outlet above the growth surface.  Considering the concentration at 

the surface (z = 0), the equation becomes:

C(z  0) 
Q

2 D
1

h2  r 2
 (18)

If we assume that the consumption of the material due to reaction is small relative 

to the rate at which the material is supplied via diffusion, then this equation can be used 

to calculate the width of the growing nanoribbon.  For a first order reaction, the growth 

rate of the ribbon width, W, can be defined in terms of the concentration profile.

dW
dt

 2kwC  (19)

where kw is the reaction rate constant for growth from a ribbon edge in the width direction 

and σ is the molar surface area. The factor of two appears because the ribbon extends in 

Page 16 of 42Nanoscale



17

two directions.  Assuming the ribbon width is small relative to the length scale of the 

system, the radial position, r, at the ribbon edge can be simplified to the rectangular 

coordinate x. Considering the v as a constant velocity for stage translocation to be equal 

to the rate of change in surface position, dx/dt, the ribbon growth rate can be integrated 

along length, x, to find the ribbon width at a fixed distance from the nozzle.

dW
0

W1

 
kwQ
 Dv

1

h2  x2
dx

0

X1

  (20)

W1 
kwQ
 Dv

arcsinh X1
h







 (21)

In order to grow a continuous ribbon, the velocity at which the stage translates 

below the nozzle must not exceed the rate at which the ribbon can grow in length from its 

leading edge.  This constraint gives a definition for the maximum velocity in terms of kl, 

the rate constant for growth from an edge in the length direction (which is equal to kw in 

the case of anisotropic surface growth), and the maximum reagent concentration 

occurring under the nozzle.

vmax  kl C r  0, z  0   (22)

vmax 
klQ
2 Dh

 (23)

This leads to the governing constraint of the ribbon extension inequality (REI) as:

v 
klQ
2 Dh

 (24)
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When programmed into a control algorithm for the translation stage, the REI ensures that 

the motion of the stage does not exceed the ribbon growth rate.  The REI also suggests 

that direct-write schemes require some real time assessment of the extension rate, or 

detailed knowledge of the growth kinetics, apart from the usual process parameters. Note 

that, there could be situations when the motion of the stage exceeds the ribbon growth 

rate, leading to the formation of a discontinuous ribbon. These are more likely to occur 

when the nozzle is placed beyond the leading edge of the ribbon. In all our illustrations, 

including Figure 1(c), we have made it a point to ensure that the nozzle is placed within 

the leading edge of the ribbon, thereby minimizing the occurrence of discontinuities in 

the ribbon.

The Minimum Feature Size.  As discussed above, the achievable resolution of the direct-

write technique is of central interest. Operating at the maximum velocity results in the 

minimum ribbon width by eliminating excess reaction at the ribbon edges, so this 

operating state is of particular interest. Applying the definition of vmax in equation (23) to 

the solution for the ribbon width in equation (21) yields the following:

W1,vvmax
 2harcsinh X1

h






 (25)

The minimum ribbon width in equation (25) at a fixed distance becomes 

dependent only on the length scale in the system, the nozzle outlet height, h.  It also does 

not converge to a finite width as X1  ∞.  To apply this concept practically to a real 

system, additional phenomena in the system will need to be considered to achieve finite 

width that is below the minimum described by equation (25).  For example, one relevant 
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approach is to apply local substrate heating to define a more limited reaction zone based 

on a temperature-sensitive reaction.  Another approach is to apply a convective flow to 

the system or a sweep gas at the periphery of the desired ribbon width, which would 

allow the concentration, and therefore the reaction rate, to drop off faster than with 

diffusion alone.

The previously derived analytical expressions can be rewritten in terms of the 

dimensionless variables identified in equations (11)–(16).  The analytical solution for 

ribbon width, equation (21), rewritten in terms of the dimensionless variables is:

6 
1

2234


arcsinh 5

2







 (26)

Additionally, the definition of the maximum velocity for low reaction rates given 

by the REI equation (23), which is a requirement of continuous growth, can be rewritten 

in dimensionless form as follows:

1
234

2
 1  (27)

Effect of the Operating Variables on the Direct-Write Nanonozzle. We are interested in 

the relationship between the design operating variables and the resulting properties, and 

use the formulated mathematical model to elucidate these connections.  Figure 3 plots the 

steady-state ribbon width at a fixed distance along the ribbon for a range of different 

parameters, comparing the results to the analytical solution in equation (21). Panel (a) 

depicts the ribbon width as a function of the Damkӧhler number, Π1 = k/D. Panel (c) 
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depicts the ribbon width as a function of the inverse Peclet number, Π3 = D/(hv). Panel 

(e) depicts the ribbon width as a function of Π4 = Q/k, which represents the competition 

between the flow rate and consumption. The ribbon width increases as a function of Π1, 

Π3, and Π4. This is expected because, as the reaction rate increases compared to the 

diffusion rate, the ribbon can grow to a larger width (panel (a)). Similarly, as the reagent 

diffusion rate increases compared to the nozzle translation velocity, more material 

reaches the surface in the time the nozzle covers a fixed distance, leading to a larger 

ribbon width (panel (c)). Finally, as more material is transported into the system 

compared to the consumption rate, the ribbon width must increase (panel (e)). 

Additionally, panels (b), (d), and (f) plot the ratio of the simulated ribbon width to the 

calculated ribbon width (based on equation (21)), corresponding to the plots in panels (a), 

(c), and (e), respectively. The closer this ratio is to 1.0, the better is the agreement of the 

analytical solution with the full simulation. 
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Figure 3: A comparison between the simulated results for ribbon width when varying (a) Π1 = 
k/D, (c) Π3 = D/(hv), and (e) Π4 = σQ/k  compared to the calculated analytical solution from 
equation (21), which is derived in the limit of low reaction rate. The ratio of simulated to 
calculated ribbon width is also given for (b) Π1, (d) Π3, and (f) Π4. The full parameters and 
corresponding Π group values of the simulations discussed above are summarized in Table 2 
through Table 5.
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Checking the Applicability of the Analytical Solution. The primary 

approximations that were made to justify the derivation of the analytical solution were 

that: (i) the reaction for ribbon growth does not alter the concentration profile from the no 

reaction case (k = 0), (ii) diffusion occurs from a point source, and (iii) the ribbon width 

is small relative to the length scale. The first assumption, (i), that the concentration 

profile is unperturbed by the reaction, is represented by the Damkӧhler number, Π1 = k/D.  

When Π1 is low, the reaction rate, i.e., the rate at which material is depleted from the 

gaseous phase to form the growing ribbon, is low relative to the rate at which diffusion 

transports material, and the concentration profile is undisturbed.  This can be seen in 

Figure 3(b), where the ratio of the simulated ribbon width to that of the calculated width 

diverges from 1 at higher Π1 values. On the other hand, Figure 3(d) demonstrates that, 

when Π3 = D/(hv), i.e., the inverse Peclet number, is varied, the ratio of the simulated 

ribbon width to that of the calculated width is nearly independent of Π3, holding steady 

around the value expected for the constant value of Π1 = 0.2 used in all runs in Figure 

3(d).  The same holds true for Π4, as shown in Figure 3(f), in terms of it not being a factor 

affecting the extent to which the simulations diverge from the analytical calculations.

Approximation (ii) used in deriving the analytical solution, that diffusion occurs 

from a point source, is valid only if the height of the nozzle outlet above the surface is 

large relative to the radius of the nozzle outlet, i.e., Π2 = h/r is large. The simulations 

used values of Π2 = 19.3, which justifies approximation (ii). The final approximation, 

(iii), that the width is small relative to the length scale of the system is more difficult to 

define distinctly.  In the case of an approximate point source, the most appropriate 

expression is that Π6/Π2 = W/h should be small when X ~ h.  This value, W/h when X=h, 
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ranges from 0.0001 to 2 in the above simulated results depicted in Figure 3(c) and (d), so 

it may contribute to the divergence of the simulated results from the calculated for some 

of the points.

1
 = 0.002

1
 = 0.02

1
 = 0.1

1
 = 0.2

1
 = 0.3

1
 = 0.4

Figure 4. A comparison between the simulated results for ribbon width and the calculated 
analytical solution from equation (21) when along the length of the simulated ribbon for a range 
of Π1 = k/D, values. Table 2 lists the values of the parameters utilized in the simulations.

The widths reported in Figure 3 occurred at a constant lateral distance, X/Δx = 

180, from the nozzle.  Figure 4 illustrates the ratio of the simulated width to the 

analytically calculated width along the full length of the simulation for the various Π1 

values shown in Figure 3(b).  As shown, the divergence of the simulated results from the 
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calculated does vary slightly along the length of the ribbon, though not as strongly as the 

variation with Π1.

The full parameters and corresponding Π values for the simulations discussed 

above are summarized in Table 2 through Table 5. Π1, Π2, Π3, and Π4 are defined as in 

equations (11)–(14). The box length, width, and height refer to the size of the simulated 

system. Δx, Δy, Δz denote the voxel size along the length, width, and height dimensions, 

respectively. Δt denotes the time step size.  The nozzle outlet x-, y-, and z-positions refer 

to the position of the center of the nozzle outlet. The nozzle size sets the length of a side 

of the nozzle outlet, which is square in shape, thereby determining the spatial positions in 

the xy plane that are treated as the nozzle outlet defined by equation (2). The variables Q, 

D, σ, v, and k are defined in Table 1.

Table 2. Values of dimensionless variables and simulation parameters for the results depicted in 
Figure 3(a)–(b).

Condition # 1 2 3 4 5 6 7 8 9 10

Π1 0.002 0.02 0.1 0.2 0.2 0.2 0.2 0.2 0.3 0.4

Π2 19.3 19.3 19.3 19.3 19.3 19.3 19.3 19.3 19.3 19.3

Π3 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086

Π4 563 563 563 563 563 563 563 563 563 563

Q×1011 5.63 5.63 5.63 5.63 11.3 5.63 5.63 5.63 5.63 5.63

Box Length / 
Δx

400 400 400 200 200 400 400 800 400 400

Box Width / 
Δy

160 160 160 100 100 160 240 240 160 160

Box Height / 
Δz

70 70 70 60 60 70 90 90 70 70

D 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

σ 2×107 2×108 1×109 2×109 1×109 2×109 2×109 2×109 3×109 4×109

v / (Δx/Δt) 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4

k 2×10-6 2×10-5 1×10-4 2×10-4 2×10-4 2×10-4 2×10-4 2×10-4 3×10-4 4×10-4
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Table 3. Π group values and simulation parameters for the results depicted in Figure 3(c)–(d).

Condition # 11 12 13 14 15

Π1 0.2 0.2 0.2 0.2 0.2

Π2 19.3 19.3 19.3 19.3 19.3

Π3 0.005 0.011 0.022 0.043 0.086

Π4 1125 1125 1125 1125 1125

Q×1010 1.13 1.13 1.13 1.13 1.13

Box Length / 
Δx

400 400 400 400 400

Box Width / 
Δy

240 240 240 240 240

Box Height / 
Δz

90 90 90 90 90

D 0.001 0.001 0.001 0.001 0.001

σ 2×109 2×109 2×109 2×109 2×109

v / (Δx/Δt) 6.4 3.2 1.6 0.8 0.4

k 2×10-4 2×10-4 2×10-4 2×10-4 2×10-4

Table 4. Π group values and simulation parameters for the results depicted in Figure 3(e)–(f).

Condition # 16 17 18 19 20 21 22 23 24 25

Π1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

Π2 19.3 19.3 19.3 19.3 19.3 19.3 19.3 19.3 19.3 19.3

Π3 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086

Π4 28 141 141 563 563 563 563 563 563 1125

Q×1011 5.63 1.41 5.63 5.63 11.3 5.63 5.63 5.63 5.63 5.63

Box Length / 
Δx

400 200 200 200 200 400 400 800 400 400

Box Width / 
Δy

240 100 100 100 100 160 240 240 240 240

Box Height / 
Δz

90 60 60 60 60 70 90 90 90 90

D 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

σ 1×108 2×109 5×108 2×109 1×109 2×109 2×109 2×109 2×109 4×109

v / (Δx/Δt) 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4

k 2×10-4 2×10-4 2×10-4 2×10-4 2×10-4 2×10-4 2×10-4 2×10-4 2×10-4 2×10-4
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Table 5. Simulation parameters that are held constant for all results in Figure 3.

Parameter Value

Δx 0.001

Δy 0.001

Δz 0.001

Δt 0.0001

Nozzle Size / Δx 3

(Nozzle Outlet x-Position) / Δx 20

(Nozzle Outlet y-Position) / (Box Width) 0.5

(Nozzle Outlet z-Position) / Δz 30

Towards Realizing an Experimental Nanonozzle System. Perfecting an experimental 

nanonozzle system for nanoribbon synthesis and patterning will require precisely 

controlled instrumentation.  However, there are established elements which can provide a 

starting point; tips for near-field scanning optical microscopy (NSOM) normally provide 

a conduit for light to pass through an aperture ranging from tens to hundreds of 

nanometers in diameter, and operate at a distance of tens of nanometers above a surface.35 

Interfacing an NSOM tip with a nanofluidic conduit, instead of light, is an approach that 

can take advantage of existing technology for controlling a tip at a short distance from a 

surface. Table 6 utilizes geometric estimates from an NSOM tip along with physical 

parameters based on graphene and current graphene synthesis to summarize values for 

the parameters relevant to an experimentally realizable nanonozzle system.

Table 6. Estimates for the values of parameters relevant to an experimentally realizable 
nanonozzle system.

Variable Description SI Units Estimated 
Value

Source

D Diffusion constant m2 s-1 10-5 Diffusion of methane in 
air36

k Edge reaction 
constant

m2 s-1 1.0×10-6 Equation (23)
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σ Material area per 
mass

m2 mol-1 6.1×10-5 Graphene material 
property

h Nozzle outlet height m 5×10-8 50 nm as achievable height
Q Reagent flow rate out 

of nozzle
mol s-1 8.6×10-13 Hagen–Poiseuille estimate 

for nozzle flow rate 
assuming water as a proxy 
for the reagent, with a 
pressure drop of 10 atm 
over a nozzle length of 10 
m

v Stage translation 
velocity

m s-1 1.7×10-11 Target velocity of 1 
nm/min

r Nozzle outlet radius m 2.5×10-8 Possible NSOM tip 
aperture around 50 nm

In Table 6, a chemical reaction is assumed to occur with a reagent of similar 

diffusivity to the currently used common graphene feedstock, methane. We assume a 

minimum stage velocity of 1 nm/min for a practically viable direct-write system and use 

equation (23) for the maximum stage velocity to calculate the necessary edge reaction 

rate, k, of 1.0×10-6 m2 s-1 for such a system. This calculated value not only satisfies the 

approximation made in the derivation of equation (23) that k/D << 1, but also provides a 

benchmark for choosing possibly reaction chemistries for an experimental demonstration. 

From Table 6, it might appear that we have relaxed the assumption that r << h. However, 

note that, in equation (23), the radius of the nozzle does not appear explicitly, and only 

appears indirectly through the reagent flow rate, Q. Accordingly, for a smaller nozzle 

outlet, the same flow rate Q can be achieved by changing the pressure drop across the 

NSOM tip. Finally, note that our estimates for the physical variables are in line with 

previous work utilizing nanosized nozzles. For example, a nanojet with a diameter in the 

range 50-100 nm, placed at a distance of 50-100 nm from the surface was successfully 
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utilized as a conduit for microfabrication by pumping neutral, etching radicals towards a 

solid substrate.37

CONCLUSIONS

In this paper, we have introduced a nanonozzle system for direct-write synthesis of 

a nanostructure (modeled as a nanoribbon) using CVD. The proposed system has the 

potential to be a novel approach to control the orientation, pitch, and connectivity of 

nanomaterials on a substrate.  Simpler 1D and 2D analytical models reveal the 

importance of the ratio of reaction and diffusion rates in determining the ribbon width 

obtained from the nanonozzle.  The 3D analytical model provides a simple and 

reasonably accurate estimation for the expected ribbon width resulting from nanonozzle 

growth, validated by the more complex nanonozzle simulations, which are based on 

continuum transport equations.  Such simulations would allow the exploration of a wider 

range of conditions in more advanced models on this topic, exploring additional 

complexities such as reactions other than first-order, imposed convection, local heating, 

and other effects that can provide more control over the ribbon width.  The presented 

simulation framework can also be used to provide an estimate of the sensitivity in the 

system to perturbations in the operating conditions, e.g., examining the non-steady state 

operation of the nanonozzle as a measure of quality.  Future work could also explore the 

operation of multiple nozzles spaced apart by a suitable distance, so as to grow a periodic 

array of graphene nanoribbons for large-scale applications, with the most important 

consideration being preventing the ribbons from merging into each other by using 

smaller-diameter nanonozzles. To conclude, we hope that the models presented in this 
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work provide a means for estimating the necessary specifications for experimentally 

realizing direct-write synthesis via a nanonozzle.
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APPENDIX

We also developed lower dimensional (1D and 2D) analytical models, which highlighted 

the importance of the consumption term in obtaining a finite width and in determining the 

minimum width of the possible nanoribbons grown from a nanonozzle.  However, in the 

lower dimensional models this term was defined as a quasi-homogenous reaction, despite 

the fact that it can only occur at the ribbon edges.  To evaluate the feasibility of a 

nanonozzle system for nanoribbon growth, we performed continuum 3D simulations that 

more accurately represent the reaction occurring only at the edges of the nanoribbon.  In 

the simple 2D model, the consumption term does not have a rigorous physical definition; 

it is important to determine whether or not reaction only at the edges is sufficient to yield 

a finite width nanoribbon, as well as to provide a measure to evaluate the basic 

correlations implied by the simple models.
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1D Model with Diffusion, Convection, and Reaction

Nozzle

Substrate
Ribbon

v

Figure 5. (a) Illustration representing 1D model for nanonozzle growth of a nanoribbon; blue 

arrow represents nozzle movement with velocity v; green arrow represents the diffusion of the 

reagent in the 1D direction; red bar represents the growing nanoribbon.

At its simplest, the nanonozzle system can be represented by a quasi-1D model, 

illustrated in Figure 5, where all material leaving the system though a homogeneous 

reaction term is added to the width. The ribbon width is treated as a variable along the 

one-dimensional length, but is assumed to be small enough that the 2D nature of the 

ribbon can be neglected. We consider the reference frame to be the tip of the nozzle, such 

that the movement of the nozzle can instead be written as a constant convective velocity 

in the x-direction, v.  For simplicity, the reagent is allowed to diffuse in only one 

direction away from the nozzle.  The 1D convection-diffusion equation in this case is as 

follows in equation (28):

v dC
dx

 D d 2C
dx2  kwC  (28)

Page 30 of 42Nanoscale



31

where C is the 1D concentration, D is the diffusion coefficient, and kw is the rate constant 

for a first order reaction representing the growth in width of the nanoribbon.  The solution 

to this equation is given by equation (29), where Ci is the concentration at x=0.

C(x)  Ci e
v 4 D kwv2

2 D
x
 (29)

Note that Ci can alternatively be replaced with a term derived from a constant 

flow of material from the nanonozzle outlet, n.  This alternative form is given by equation 

(30).

C(x) 
n

kw D  n
2 

e
v 4 D kwv2

2 D
x
 (30)

The growth rate of the width at any given point x can then be described by 

equation (31), where σ is the areal density of graphene.

dW (x)
dt

 kwC(x) 1


 (31)

To follow a fixed point along the ribbon in time, we account for the moving 

reference frame by making the substitution x → v t.  The expression can then be 

integrated over time to find the final nanoribbon width, as setup in equation (32) and 

solved in equation (33), with W0 representing the minimum width defined by the leading 

edge of the nanoribbon.

Page 31 of 42 Nanoscale



32

W
t

 W0 
kw


C(x  v t)dt

0



  (32)

W
t

 W0 
Ci

2
1

4 D kw

v2 1








  (33)

Equation (33) provides a measure of the effect of diffusion on the width of the 

nanoribbons.  In this simple 1D model, all material ends up as part of the nanoribbon, 

therefore there is a minimum width (W0 + Ci / σ) in the limit of no diffusion.  However, 

diffusion can result in a larger width according to the size of the term (4Dkwv–2).  

Considering that the maximum translation speed of the nanoribbon is the growth rate 

along the length of the tube, as described by v = kℓCi/σ, then this term can be rewritten as 

follows:

W
t

 W0 
Ci

2
1

4 D kw
2

(kℓCi )
2 1











 (34)

Assuming that k = kℓ = 0.5 kw, i.e., the growth rate at the edge for both the width 

and the length is the same (accounting for the fact two edges are associated with growth 

of the width), equation (34) can be further simplified in the limit of low concentration, as 

shown in equation (35):

W t
Ci0

 W0 
2D
k

 (35)

This form highlights that the ratio of diffusion to reaction is what controls the 

minimum achievable width, which will be shown again the next model as well.
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2D Model with Diffusion and Reaction

Figure 6. (a) Illustration representing 2D model for nanonozzle growth of a nanoribbon; the blue 

arrow represents stage movement; the green arrows represent diffusion of reagent in the 2D plane 

of the substrate; the red bar represents growing nanoribbon. (b) Semi-log plot of component in 

equation (44) for nanoribbon width that is determined by the non-dimensionalized nanonozzle 

size, ρN.

Though simple, the 1D model is quite removed from a physical system.  A 2D 

model, illustrated in Figure 6(a), adds back some of the complexity.  In a 2D perspective, 

reagent leaves the nanonozzle and spreads out via diffusion in a plane, with the motion of 

the nozzle relative to the substrate acting as an effective convection term.  This full 2D 

case becomes too complex for an analytical solution; however, considering the case 

where convection is negligible and adding a first order consumption term across the 

entire surface, not only at the ribbon edge, yields usable results.

Ignoring convective terms appears to be a reasonable simplification under the 

assumption that the growth rate will be similar to the rates of current CVD growth 

processes for graphene, which advance at a rate of order 1 μm/min.12,38  Comparing this 

to diffusion coefficients in air, which are of order 10-6 m2/s, reveals that the Peclet 

Nozzle

Subst rate

Ribbonv
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number, the ratio of convective to diffusive contributions, is negligible at length scales 

smaller than ~10 m, and can therefore be ignored as we are considering length scales on 

the order of nanometers. The inclusion of a first order bulk consumption term is not as 

readily justified.  From the perspective or diffusion on a surface, the consumption term 

can be considered the rate at which reagent desorbs from the surface and is lost.  It can 

also be considered a proxy term to represent mass that forms the nanoribbon.  By 

including this term without rigorously justifying these perspectives, we will only use the 

results drawn from this model as qualitative observations that inform the direction for 

more advanced models.

Based on the assumptions listed above, the differential equation can be simplified 

in radial coordinates to yield equation (36), where k-A is the rate constant of the first order 

consumption term.

D
r


r

r C
r







 k AC  0  (36)

The solution is described by equation (37), with A as a constant to be defined by 

the boundary condition, K0 being the modified Bessel function of the 2nd kind, and ρ as 

non-dimensionalized radius.

C(r)  A K0

r
D

k A

















 A K0    (37)
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The boundary condition (BC) is defined in equation (38) as a constant flux 

outwards at the dimensionless nanonozzle radius, ρN:

BC: n  2 N D dC
d N

 (38)

As done previously, tracking the width at a given point on the substrate can be 

related to an integral along the length, as defined in equation (39):

W  W0 
kw

v
A K0  

N



 D
k A

d  (39)

In this case, there is no general analytical solution with a simple form.  However, 

making the assumption that ρN, the nanonozzle radius, is small, the simplifications 

described by equations (40) to (44) are possible:

lim
N 0

K0  
N



 d  
2  (40)

lim
N 0

A 
n

2 D
 (41)

lim
N 0

C(N ) ∼
n

2 D
ln 2

N







  E







 O 2   (42)

lim
N 0

W  W0 
nkw

4v D k A

 W0 
n

2C(N ) D k A

 (43)
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lim
N 0

W  W0 
D

k A



ln 2
N







  E

 (44)

where γE is Euler’s constant. The combined value of the numeric terms in equation (44) is 

plotted in Figure 6(b). An important observation from the result of this limit is that the 

flow out of the nozzle cancels out of the final expression for width.  This removes an 

intuitive parameter to control growth, and emphasizes the importance of the length scale 

defined by the ratio of diffusion to reaction rate.  In practice, the width can always be 

made larger by operating at a lower velocity than the maximum possible, but the 

minimum width is strictly defined by the transport and chemical properties.
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