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Abstract  

It has been a challenge to use transitional metal oxides as anode materials in Li-ion 

batteries due to their low electronic conductivity, poor rate capability and large volume change 

during charge/discharge processes. Here, we present the first demonstration of a unique self-

recovery of capacity in transition metal oxide anode. This was achieved by reducing tungsten 

trioxide (WO3) via the incorporation of urea, followed by annealing under nitrogen environment. 

The reduced WO3 successfully self-retained the Li-ion cell capacity after undergoing a sharp 

decrease upon cycling. Significantly, the reduced WO3 also exhibited excellent rate capability. 

While the reduced WO3 exhibited an interesting cycling phenomenon where the capacity was 

significantly self-recovered after an initial sharp decrease. The quick self-recovery of 193.21%, 

179.19% and 166.38% for the reduced WO3 were observed at the 15
th 

(521.59/457.41 mAh/g), 

36
th 

(538.49/536.61 mAh/g) and 45
th

 (555.39/555.39 mAh/g) cycles respectively compared to 

their respective preceding discharge capacity. This unique self-recovery phenomenon can be 

attributed to the lithium plating and conversion reaction which might be due to the activation of 

oxygen vacancies that act as defects which make the WO3 electrode more electrochemically 

reactive with cycling. The reduced WO3 exhibited superior electrochemical performance with 
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959.1/638.9 mAh/g (1
st
 cycle) and 558.68/550.23 mAh/g (100

th
 cycle) vs pristine WO3 with 

670.16/403.79 mAh/g (1
st
 cycle) and 236.53/234.39 mAh/g (100

th
 cycle)

 
at a current density of 

100 mA/g.  

Keywords: Lithium ion battery, tungsten trioxide, urea, lithium plating, self-recovery. 

1. Introduction 

Rechargeable lithium-ion batteries (LIBs) have been monumental in applications such as 

portable electronics, electric vehicles and stationary grid storage 
1-4

. However, the current 

demand of large scale energy applications of LIBs is hindered due to their low capacities and 

short cycling lifetime 
5, 6

. To improve their capacities, electrode materials should be able to 

reversibly store a large amount of Li ions and exhibit fast ionic/electronic transfer performance 

within the cell. There are mainly three mechanisms of storing lithium ions including intercalation 

(e.g., graphite or lithium titanate), alloying (e.g., tin or silicon) and conversion (e.g., transitional 

metal oxides). Although graphite has been employed commercially as anode material for LIBs 

thanks to low cost and good cycling stability, the theoretical specific capacity is as low as 372 

mAh/g 
7
. Silicon and tin have been developed recently with higher theoretical specific capacities 

of 4200 mAh/g and 990 mAh/g respectively; however, they suffer from large volume 

expansion/contraction which is detrimental for cycling stability 
8, 9

.  

A number of transitional metal oxides such as SnO2 
10

, Fe3O4 
11

, MnO2 
12

, Mn3O4
13

, MoO3 

14
, NiO 

15
, and Co3O4 

16
  have been widely investigated as LIB anodes. However, it should be 

noted that these materials have a poor cyclability mainly due to the electrode disintegration 

resulting from volume change during lithiation/de-lithiation processes
17

. Other issues in these 

materials include low electronic conductivity, unstable solid electrolyte interface layer and high 

irreversible capacity due to the formation of Li2O 
10, 13, 18, 19

. 
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To address the issue of poor cyclability, WO3 have attracted many interests as a potential 

anode for LIBs. WO3 is a wide band gap n-type semiconductor and one of the most attractive 

transition metal oxides as anode materials thanks to high theoretical capacity (693 mAhg
-1

), low 

cost and natural abundance. It also provides a higher safety for LIBs due to its intrinsic high 

melting temperature and strong mechanical stability 
20-24

. Among anode materials of 

nanostructured WO3 thin films
18

, SnO2/WO3 core-shell
25

, both Chrysanthemum-like and cookie 

like WO3⋅0.33H2O
19, 26

, WO3 flowers comprising porous single crystalline nanoplates
27, 28

, WO3 

microflowers and nanowires 
28

, hexagonal ultrathin WO3 nano-ribbons
29

 and WO3 

nanoparticles
30

 , showed at least one of the shortcomings either  the lower initial discharge or 

unstable capacity, lower coulombic efficiency or lower capacity retention and  fast capacity 

fading.  

Use of carbon matrix to form composite with potential anode materials has been the 

conventional approach to augment their electrochemical performance. Lie et al. reported a 

composite of WO3-x/graphene synthesized in H2/Ar atmosphere to facilitate fast Li diffusion and 

enhancement in electrode conductivity at high current densities
17

. Use of urea and/or N2 doping 

is another approach that has been used while synthesizing anode and cathode materials in LIBs
31-

37
.  Previous works showed that the urea and/or N2 doping has been used as the source of carbon 

to increase  the catalytic activity of materials which can decrease particles sizes, introduce 

secondary particles, and increase the porosity in the materials, which can enhance LIB capacity 

and cycling performance. WO3 making composite with carbon can lead to higher capacity due to 

the contribution of the capacity from carbon 
17, 38

. However, in our study, no additional carbon 

was used to form composite with WO3. Better catalytic performance was observed by using 

ammonia gas rather than using H2 or N2 individually
39

. However, the urea incorporation under 

Page 3 of 24 Nanoscale



4 

 

nitrogen annealing has not been utilized to treat WO3 where the synergic effect of urea and N2 

doping is to create more oxygen vacancies to increase the catalytic activity and defects that 

reactivates within the material after number of cycling for self-recovery of capacity in LIBs. 
 

 Here, we demonstrate a unique capacity self-recovery in LIBs at constant current density 

using the WO3 electrode that was reduced by incorporating urea, followed by annealing in the N2 

environment. To the best of our knowledge, this is the first discovery and demonstration of the 

unique capacity self-recovery in LIBs. The result suggested that urea treatment of anode 

materials in nitrogen atmosphere can become a promising technique, for example in silicon and 

other transitional metal oxides like MoO3, to develop self-recovering high performance LIBs. 

2. Experimental Details  

2.1 Materials and Preparations 

1g tungsten(VI) trioxide WO3 (typically 99.9% pure), 1ml alpha-terpinol (Sigma-

Aldrich) and 0.1g Urea 99% (Acros Organics) were mixed together to make a slurry using a 

mortar and pestle. The slurry of urea treated WO3 was kept inside a tube-furnace under nitrogen 

flow. The temperature was maintained at 500°C for 2 h to synthesize the reduced WO3 (R-WO3). 

Pristine WO3 is designated as P-WO3. 

Urea decomposes to ammonia at temperature ~ 180 °C and then the ammonia 

decomposes further at higher temperatures (> 400 °C) into N2 gas and reactive H2 that can 

reduce WO3 and create oxygen vacancies
40-45

.  

H2N–CO–NH2    NH3 + HNCO 

2NH3     N2 + 3H2 

WO3 + xH2   xH2O + WO3-x  
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2.2 Electrode fabrication 

P-WO3 and R-WO3 powders were separately mixed with super-P carbon black and 

polyvinylidine fluoride (PVDF) at a weight ratio of 80:10:10 respectively in the N-Methyl-2-

pyrrolidone (NMP) solvent to form slurries using the mortar and pestle. The slurry was coated on 

a copper foil current collector by doctor blading and then dried overnight in a vacuum oven at 

100°C. The dried samples were cut into circular disks with a diameter of 12.7 mm and used as 

the working electrode. The total areal mass loading was typically ~2.5 mg/cm
-2

 and the areal 

mass loading of active material WO3 was ~2.0 mg/cm
-2

 for both P- WO3 and R- WO3 electrodes. 

2.3 Electrochemical characterization  

CR-2032 Li-ion coin cell was assembled using lithium metal as the counter and reference 

electrode inside an argon-filled glove box. Celgard was used as separator and liquid electrolyte 

consisted of 1M LiPF6 dissolved in a solvent mixture of ethylene carbonate, dimethyl carbonate 

and diethyl carbonate in the volume ratio of 4:2:4. 

  X-ray diffractogram (XRD) and crystallite size measurements of the samples were 

conducted on a Rigaku SmartLab diffractometer with Cu-Kα radiation (λ=1.54178 Angstrom). 

Topography of thin films were measured using Agilent SPM 5500 atomic force microscope 

(AFM) equipped with MAC III controller using a tip with resonance frequency of 75 kHz. 

Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) 

characterization were carried out using a Hitachi S-4300 N SEM. Isotherm adsorption analysis 

with N2 were carried out using an ASAP 2020 Micropore Analyzer at 77 K (liquid nitrogen 

bath). Brunauer-Emmett-Teller (BET) equation was used to calculate the specific surface areas. 

The absorption characterization was performed using Agilent 8453 UV-vis spectrophotometer. 

For this, 0.1g of each P-WO3 and R-WO3 powder was dissolved separately in aqueous solution 
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of nitric acid with 1:1 volume ratio. Tauc’s plots were obtained using Tauc’s equation αhν =

A(hν − E	)
�,  where A is constant, hν is photon energy, Eg is band gap, α is absorption 

coefficient and n (1/2 for WO3) is exponent coefficient which denotes the nature of electron 

transition from valence to conduction band. Cyclic voltammetry (CV) was measured by an 

electrochemical workstation (Ametek VERSASTAT3-200 potentiostat) having a potential range 

of 0.01V- 3.0V at a scan rate of 0.0002V/s. The electrochemical impedance spectroscopy (EIS) 

was done using the same electrochemical workstation with a 10mV amplitude AC signal with the 

frequency ranging from100 kHz to 0.01 Hz. Galvanostatic charge-discharge measurements of the 

coin cells were carried out using LAND CT2001A system in a potential range of 0.01-3.0 V (vs 

Li
+
/Li) at a current density of 100 mA/g. 

3. Results and Discussions 

3.1 Structural characterization  

Figure 1a shows XRD patterns of the P-WO3 and R-WO3. The sharp peaks strongly 

indicate that P-WO3 is crystalline in nature. The peaks of P-WO3 can be indexed as monoclinic 

crystalline phase WO3 (JCPDS file no. 43-1035) 
46, 47

. As shown in Figure 1a, the peaks became 

broader for R-WO3 suggesting a transition to amorphous nature that can be attributed to the 

defects created by oxygen vacancies in R-WO3
48, 49

. The monoclinic diffraction peaks as seen in 

P-WO3 disappeared with emergence of some new peaks for R-WO3. The peaks showing the 

planes (120), (112), (122), (222), (321), (004), (240), (340), (414) and (422) at 2θ of ~ 26°, 28°, 

36°, 41.8°, 44°, 46°, 63°, 71° and 77° respectively in the P-WO3 disappeared in the R-WO3. The 

new peaks at the 2θ of ~ 41°, ~54° and ~ 58° (indicated by #) for R-WO3 have been indexed as 

the monoclinic WO2.9 (JCPDS file no. 05-0386) and that at the 2θ of ~ 48° (indicated by *) as the 

monoclinic WO2.92 (JCPDS file no. 30-1387). The appearance of these new peaks, similar to 
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previous reports
17, 49, 50

, is an indication of successful reduction of WO3. Similarly, figure 1b 

shows the Raman spectra for R -WO3 and P-WO3. The four main peaks at ~264 cm
-1

, ~324 cm
-1

, 

~710 cm
-1

 and ~801 cm
-1

 can be attributed to the monoclinic crystal structure of WO3. For R-

WO3, the Raman peaks become broader indicating the formation of an amorphous phase of WO3 

that can be attributed to the oxygen vacancies
45, 49

.   

 

 

Figure 1. a) XRD patterns and b) Raman spectra for P -WO3 and R-WO3   

The crystallite size (τ) of P-WO3 and R-WO3 was estimated using Scherrer equation: τ = 

Kλ/β cosθ, where θ is the usual Bragg angle, λ is the radiation wavelength, β is peak width 

and K is a constant at 0.9. The crystallite sizes estimated from the main peaks of the planes 

(020), (220) and (022) of WO3 are summarized in Table 1 and the estimated crystallite size from 

each 2-theta angle is summarized in supporting information (Table S1). The crystallite size was 

smaller for R-WO3 compared to P-WO3 can be attributed to the impact of calcination in inert 

atmosphere
51

. This smaller crystallite size for R-WO3 improves the kinetics of lithium ions, 

thereby shortening their diffusion path lengths which lead to higher coulombic efficiency and 

capacity in LIBs 
51-54

.  
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Table 1. Estimated crystallite size  

sample 2θ  

(°) 

crystallite size 

(nm) 

P-WO3 23.59 463 

R-WO3 23.45 94 

P-WO3 24.37 395 

R-WO3 24.69 62 

P-WO3 33.27 81.1 

R-WO3 33.28 45.4 

 

Figures 2a, b show the AFM topography images of P-WO3 and R-WO3, respectively. It is 

obvious that the particles of the P-WO3 are larger than those of R-WO3. The time for 

insertion/deinsertion decreases with the square of the decrease in particle size
55

. In order to 

demonstrate the surface area increase, BET specific surface area measurement was carried out. 

The BET specific surface area (SSA) of P-WO3 and R-WO3 was calculated to be 4.59 m
2
/g and 

47.59 m
2
/g respectively. The N2 adsorption-desorption isotherms of P-WO3 and R-WO3 powder 

sample are shown in supporting information Figure S4. This decrease in the particle size 

increases the surface area of R-WO3, giving rise to the enhancement of active sites of the anode 

19, 56
. The rate of lithium insertion/deinsertion increases due to shoter distances for lithium-ion 

transport within the particles and further, high surface area allows better surface contact with the 

electrolyte to enhance the lithium ion flux across the interface
56

. Figures 2 e, h show the SEM 

images of P-WO3 and R-WO3 along with elemental mapping images of oxygen, O (figs. 2f, i) 

and tungsten, W (figs. 2g, j) respectively. The elemental mapping images show that O and W 

elements are homogeneously distributed across both P-WO3 and R-WO3. The EDS images for P-

WO3 and R-WO3 are shown in supporting information Figures S1, S2 respectively. Table 2 

represents the percentage concentrations by weight of W and O in the P-WO3 and R-WO3. The 
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percentage concentration by weight of W and O in P-WO3 were found to be 78.26% and 21.74% 

respectively, while R-WO3 showed 80.28% and 19.72% respectively. It can be seen that the 

oxygen concentration was reduced in R-WO3 compared to P-WO3. This reduction indicates the 

successful reduction of WO3 to WO3-x.   
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Figure 2. AFM topography images of a) P-WO3 and b) R-WO3, c), d) High 

magnification AFM image of P-WO3 and R-WO3 respectively; e) SEM image of P-WO3 
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with EDS mapping of f) O and g) W; h) SEM image of R-WO3 with EDS mapping of i) 

O and j) W. 

Table 2. Percentage concentration by weight of W and O in P-WO3 and R-WO3. 

 

Optical properties of P-WO3 and R-WO3 were investigated to determine the effect of 

oxygen deficiencies. Figure 3 shows Tauc’s plots for P-WO3 and R-WO3 to find their optical 

bandgap (Eg). The absorption coefficient α due to interband transition near the band gap is well 

described by the Tauc’s equation in which the intercept of tangent to the curve with the x-axis 

determines the value of the optical band gap (Eg )
57

. R-WO3 has an Eg of ~2.32 eV, while P-WO3 

has an Eg of ~2.85 eV. This decrease in band gap might be attributed to the introduction of 

oxygen vacancies inside urea activated N2 annealed R-WO3 
58-60

. The lower bandgap suggests a 

higher electronic conductivity in R-WO3, which can enhance the capacity in LIBs 
61

. Inset in 

figure 3 shows the optical images of (A) P-WO3 and (B) R-WO3. The light yellowish green color 

of P-WO3 turned into dark blue after the reduction of WO3 by urea activation under the N2 

annealing at 500°C which supports the band gap reduction.  

WO3 Element Line Intensity(c/s) Error2-sig Conc. Units 

Pristine O Kα 69.78 1.245 21.739 wt% 

W Lα 18.91 0.648 78.261 wt% 

Reduced O Kα 67.93 1.229 19.718 wt% 

W Lα 21.23 0.687 80.282 wt% 
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Figure 3. Tauc plot for P-WO3 and R-WO3. Inset: optical images of (A) P-WO3 and (B) R-WO3 

3.2 Electrochemical Performance 

Figures 4a and 4c show cyclic voltammograms of P-WO3 and R-WO3 electrodes 

respectively. In the 1
st
 cycle, the cathodic peaks were observed at 2.3 V, 0.59 V and 0.01 V 

during the lithiation for both electrodes. The peak at 2.3 V is attributed to the partial lithiation of 

WO3 to LixWO3 while the peak at 0.59 V corresponds to the conversion reaction which converts 

LixWO3 to W and Li2O and the formation of SEI layer 
18

. The reduction peak at 0.01 V 

represents the reduction of W cation to W
0
 which can be expressed by the second equation given 

below
 62, 63

. Similarly, the anodic peaks were observed at 1.2 V and 2.0 V during delithation. The 

peak at 1.2 V corresponds to the oxidation reaction of W to LixWO3; the peak at 2.0 V 

corresponds to the formation of WO3 from LixWO3 
62

. It can be observed that the intensity of 

both reduction and oxidation peaks of R-WO3 were higher than that of P-WO3. In addition, the 
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R-WO3 exhibited comparable intensities of reduction and oxidation peaks even for the 10
th

 and 

35
th

 cycles whereas P-WO3 exhibited no relevant peaks. This indicates that the urea incorporated 

annealing technique improved the electrochemical activity and cyclic stability of the WO3 

electrode. The charge and discharge mechanisms are illustrated below. 


�� + ���� + ��� ↔ ���
��………. (1) 

���.�
�� + 4.9��� + 4.9�� 	↔ 
 + 3����………. (2) 

The electrochemical performance of P-WO3 and R-WO3 was characterized by 

galvanostatic charge/discharge tests at a constant current density of 100 mA/g and voltage 

profiles of P-WO3 and R-WO3 are shown in figures 4b and 4d.  The Li
+ 

ions electrochemically 

react with WO3 in multiple steps and can be observed by the appearance of the voltage plateaus 

at 2.3V, 0.59 V and 0.01 during lithiation and 1.2V and 2.0V during delithiation. For the 1
st
 

discharge, a small sloping voltage was observed at 2.3 V which corresponds to the lithiation of 

WO3 to LixWO3, followed by a plateau 0.59 V due to the conversion of LixWO3. The plateau at 

0.01 V corresponds to the conversion of W cation to W
0 62, 63

. Similarly, for the charging, the 

sloping voltage at 1.2 V corresponds to the oxidation of W to LixWO3; the peak at 2.0 V 

corresponds to formation of  WO3 from LixWO3 
62

. For higher cycles at 100 mA/g, R-WO3 still 

exhibited sloping voltage profile while the P-WO3 showed sharp slope voltage profiles indicating 

surface storage as complemented by the C-V measurements for higher cycles. 
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Figure 4.   Cyclic voltammograms of (a) P-WO3, (c) R-WO3 and Galvanostatic charge/discharge 

voltage profiles of (b) P-WO3, (d) R-WO3 at 100 mA/g.  

 

At constant current density of 100 mA/g (Figure 5 a) ,  P-WO3 and R-WO3 anodes 

delivered an initial discharge capacity of 670.16 mAh/g and 959.15 mAh/g exhibiting coulombic 

efficiency of 60.25% and 66.62% respectively. The discharge capacities for P-WO3 and R-WO3 

were reduced to 500 mAh/g and 575.1 mAh/g in the following 2nd cycle, respectively. The initial 

irreversible capacity loss might be attributed  to decomposition of electrolyte and the formation 

of solid-electrolyte interface (SEI) layer on the electrode surface
64

. The P-WO3 exhibited a sharp 

decrease in the capacity for the first 10 cycles and poor cycling performance with a decrease of 

discharge capacity from 670.16 mAh/g for the 1
st
 cycle to 236.5 mAh/g for the 100

th
 cycle. 

However, the R-WO3 exhibited an interesting cycling phenomenon where the capacity was 

significantly recovered and self-retained after the initial sharp decrease. The self-recovery for R-
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WO3 were observed at the 15
th 

(521.59/457.41 mAh/g), 36
th 

(538.49/536.61 mAh/g), 45
th

 

(555.39/555.39 mAh/g) cycles with gradual increase in the capacity after the 54
th

 cycle to  as 

high as 623.5/618.77 mAh/g at 70
th

 cycle and a steady 558.68/550.23 mAh/g at 100
th

 cycle. The 

respective self-recovery at 15
th

, 36
th

 and 45
th

 was 193.21%, 179.19% and 166.38% compared to 

their respective preceding discharge capacity. However, no such self-recovery phenomenon was 

observed for P-WO3. The observation of sloping discharge voltage plateau from 0.75 V to 0.002 

V corresponds to the common conversion reaction of WO3
63, 65

. The sloping plateau near 0.01 V 

can be attributed to the further lithiation of lithiated WO3 which corresponds to the complete 

reduction of W cation to W
o 62, 63

. The flat nature of discharge plateau at ~0.01 V can be 

attributed to the lithium plating as confirmed by SEM images and XRD pattern provided in the 

supporting information (Figure S5). Figures S5a, b in the supporting information show the 

cycling performances up to 17
th

 discharge that presented capacity self-recovery and 

corresponding voltage profile respectively. Figures S5c, d and e show the SEM images and 

corresponding XRD patterns of R-WO3 electrode on copper current collector before cycling and 

at 17
th

 discharge respectively. The SEM images show the presence of a dense surface and XRD 

confirms the surface consists of plated lithium. Similar observation of Li plating and Li ion 

intercalation on graphite encapsulated Li-metal hybrid anode battery was observed by Sun et 

al.
66

.  Thus, self-recovery of capacity in R-WO3 can be attributed to the lithium plating and 

conversion reaction. This self-recovery phenomenon observed in R-WO3 can be attributed to the 

insufficient crystallinity and existence of further activation process caused by the impurity or 

surface defects of the anode electrode calcined in N2 atmosphere at high temperature due to 

accelerating ion movement 
37, 67, 68

. Generally, the plating of lithium on anode material that 

occurs during over charge/discharge, at high current rates and charging/discharging at low 
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temperature is considered a major safety concern. However, the R-WO3 in this work, even after 

lithium plating demonstrated excellent coulombic efficiency as shown in Figure 5c. This new 

finding can open door to other opportunities exploring lithium plating to get higher capacities.  

The enhanced capacity in R-WO3, due to O2 vacancy, can be attributed to the lower band gap 

and improvement in charge transfer kinetics due to lower charge transfer resistance as observed 

in tauc’s plot and Nyquist plot respectively. The voltage profile plots in the supporting 

information (Figure S3) showed that the behavior of capacity self-recovery in R-WO3 is mainly 

from the lithium ions storage in R-WO3 and lithium plating at around 0.01V.  

Similarly, Figure 5b shows the rate capability performance of P-WO3 and R-WO3 at 

current densities of 35 mA/g, 70 mA/g, 140 mA/g, 280 mA/g and again at 35 mA/g for 5 cycles 

each and the discharge/charge capacities are summarized in Table 3. It can be noted that the R-

WO3 exhibited superior rate capability performance compared to P-WO3 with higher 

discharge/charge capacities for all the different current densities. A recovery of 633.7/645.7 

mAh/g specific capacity at 35 mA/g was observed for R-WO3 which accounted for 94.22% of 

the 2
nd

 specific charge capacity. In comparison, P-WO3 retained only 354.7/371.4 mAh/g 

accounting for 87.96%. This capacity recovery shows that the R-WO3 has excellent 

electrochemical reversibility and stability structure compared with P-WO3. Moreover, the R-

WO3 had superior coulombic efficiencies compared to P-WO3 mostly in the initial cycles as 

shown in Figures 5c,d. Figures 5e,f show the voltage profiles at different current densities for P-

WO3 and R-WO3 respectively. At higher current densities, the R-WO3 still exhibited sloping 

voltage profiles as that observed for the low current density whereas, the P-WO3 exhibited 

profiles indicating only surface storage.   This improvement in the capacity for R-WO3 can be 

attributed to the higher electrochemical catalytic activity resulting from higher surface area and 
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more active sites in R-WO3 with smaller crystallite sizes. This shortens the Li ion diffusion path 

length and promotes the sufficient electrode/electrolyte interface for the reaction 
31, 32, 34, 54, 67, 69

. 

The self-recovery of the capacity can be attributed to the reactivation of active sites of reduced 

WO3 due to oxygen vacancies that act as defects, making the WO3 electrode more 

electrochemically reactive with cycling
32, 70
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Figure 5. Cycling performance of P-WO3 and R-WO3 at constant current density a) specific 

capacity and c) coulombic efficiency; Rate capability of P-WO3 and R-WO3 b) specific capacity 

and d) coulombic efficiency; Charge-discharge voltage profiles at different current densities e) 

P-WO3 and f) R-WO3.   

Table 3. Comparison of capacities of P-WO3 and R-WO3 at different current densities. 

 

 

 

 

Electrochemical impedance spectroscopy (EIS) characterization was carried out to 

investigate electrical conductivity and electrochemical kinetics of P-WO3 and R-WO3 electrodes. 

Figure 6 shows the Nyquist plots of the two electrodes with a potential window of 0.01-3.0 V 

with frequency ranging from100 KHz to 0.01 Hz. In the Nyquist plot, the Z-real axis corresponds 

to the ohmic or series resistance (Rs) which is the total resistance of the electrolyte, separator, 

electrodes, spacer, spring and the casing. The semicircle in lower frequency range gives the 

charge transfer resistance (Rct) at the electrode/electrolyte interface and the constant phase 

Cycle number Current 

density 

(mA/g) 

Discharge/charge capacity 

(mAh/g) 

P-WO3 R-WO3 

1
st
 35 739.6/441.1 964.9/684.6 

2
nd

   35 487.2/422.2 719.2/685.3 

6
th
  70 237.0/217.4 586.7/568.0 

11
st
  140 133.7/122.4 500.3/480.1 

16
th
   280 88.3/87.1 378.2/360.7 

22
nd

   35 354.7/371.4 633.7/645.7 
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element (CPE) represents the electric double layer capacitance of the electrode/electrolyte 

interface and SEI film capacitance. The inclined line in the lower frequency region corresponds 

to Warburg impedance (W) which represents to the lithium-ion diffusion or Warburg diffusion in 

the cell 
71

. The equivalent circuit used for fitting of the experimental data is shown in figure 6 

inset. The Rct for P-WO3 and R-WO3 were 1195 Ω and 135.1 Ω respectively. This lower Rct in R-

WO3 indicates the improvement in charge transfer kinetics of R-WO3, which can be attributed to 

its smaller crystallite size and larger BET specific surface area (47.59 m
2
/g for R-WO3 vs 4.59 

m
2
/g for P-WO3) and allows better surface contact with the electrolyte to enhance the lithium ion 

flux across the interface
56, 72

. In addition, the synergic effect of H2 and N2 creates more oxygen 

vacancies and active sites in R-WO3. This provides a shallow electron donor for R-WO3 

introducing the band gap narrowing, facilitates easy charge transportation and improves the 

catalytic activity
39, 45, 48, 58, 60

.  
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Figure 6. Nyquist plots of P-WO3 and R-WO3 electrodes. Inset: equivalent electrical circuit 

used for fitting. 
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4. Conclusions 

In summary, in this work, we demonstrated a unique capacity self-recovery technique in 

a transition metal oxide anode based Li-ion battery. This was achieved using a novel technique to 

reduce WO3 by incorporating urea into WO3 under nitrogen annealing. The reduced WO3 

exhibited superior cycling capacities via self-recovery with improved rate capabilities over 

pristine WO3. The self-recovery characteristics of the reduced WO3 were attributed to lithium 

plating and conversion reaction due to larger surface area and the activation of oxygen vacancies 

that act as defects and make the WO3 electrode more electrochemically reactive. Similar 

technique can be used for other high capacity battery materials to improve their electrochemical 

reactivity, capacity and stability. 
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