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Abstract 

High throughput gene expression analysis using qPCR is commonly used to identify 

molecular markers of complex cellular processes. However, statistical analysis of multi-

dimensional, temporal gene expression data is complicated by limited biological 

replicates and large number of measurements. Moreover, many available statistical 

tools for analysis of time series data assume that the data sequence is static and does 

not evolve over time. With this assumption, the parameters used to model the time 

series are fixed and thus, can be estimated by pooling data together. However, in many 

cases, dynamic processes of biological systems involve abrupt changes at unknown 

time points, making the assumption of stationary time series break down. We addressed 

this problem using a combination of statistical methods including hierarchical clustering, 

change point detection, and multiple testing. We applied this multi-step method to multi-

dimensional, temporal gene expression data that resulted from our study of colony size-

dependent neural cell differentiation of stem cells. The gene expression data were time 

series as the observations were recorded sequentially over time. Hierarchical clustering 

segregated the genes into three distinct clusters based on their temporal expression 

profiles; change point detection identified specific time points at which the entire dataset 

was divided into several homogenous subsets to allow a separate analysis of each 

subset; and multiple testing procedure identified the differentially expressed genes in 

each cluster within each subset of data. We established that our multi-step approach 

pinpoints specific sets of genes that underlie colony size-mediated neural differentiation 

of stem cells and demonstrated its advantages over conventional parametric and non-

parametric tests that do not take into account temporal dynamics of the data. 
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Importantly, our proposed approach is broadly applicable to any multivariate data sets 

of limited sample size from high throughput and high content screening such as in drug 

and biomarker discovery studies. 

Key words: multivariate data analysis, stem cell colony size, neural differentiation, 

change point detection, qPCR data analysis 
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Introduction 

Technological capabilities to produce large arrays of biological data of genes, 

transcripts, proteins, metabolites, and other biomolecules such as non-coding, 

regulatory RNAs provide an unprecedented opportunity to identify molecular markers of 

complex cellular processes such as stem cell differentiation.1,2 Understanding complex 

molecular events at gene, transcript, or protein levels allows the discovery of 

biomarkers associated with normal physiological processes and disease conditions. 

Biomarker discovery helps to improve early disease detection, determine disease 

prognosis, monitor the response to therapy, and select promising treatments.3–5 

However, extracting meaningful information from complex datasets that result from high 

throughput gene, transcript, or protein level studies is not trivial. The first challenge is 

multi-dimensionality of the data. Genomic and proteomic studies typically involve 

measuring hundreds of factors at a time leading to the known issue of “large p, small 

n”, where the number of measurements, p, is far greater than the number of 

independent samples, n.1,2,6 The analysis of hundreds to thousands of measurements 

without appropriate statistical methods often leads to results with poor biological 

interpretability and plausibility. Although there are some recent developments to analyze 

very large data sets, the performance of these methods relies on a key assumption that 

the data sequence is static to test parameters of interest by pooling together the data. 

However, this can lead to inaccurate results because biological processes are very 

often dynamic and involve temporal changes at unknown time points. Another challenge 

of analyzing time series data is to identify a proper statistical tool that takes the changes 
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into account. Therefore, innovative approaches to integrate statistical tools and expert 

knowledge-based methods are crucial to analyze multi-dimensional time series data.  

qPCR is a widely-used technique to quantify gene expression patterns and changes in 

cells. Similar to the challenges of analyzing data resulting from other high throughput 

techniques, testing statistical significance of qPCR data is often complicated by limited 

biological sample replicates, and lack of normal distribution and inherent variations of 

the data.7,8 As such, conventional statistical tests that rely on large sample sizes often 

do not result in statistically significant differences between different experimental 

conditions, despite clear and visible differences in the data. Moreover, the challenges of 

limited sample size, large variance, and dynamic data structure also hamper the 

performance of conventional statistical tests. Thus, these tests may not elicit statistically 

significant differences among experimental conditions. More rigorous data analysis 

using reliable and suitable statistical tests are required to analyze such qPCR data. 

Our goal was to explain the colony size-dependent neural differentiation of stem cells 

using a gene expression profiling. This study was motivated by our finding that 

increasing the size of mouse embryonic stem cell (mESC) colonies disproportionately 

increased the expression of various neural cell proteins and enhanced the efficiency of 

deriving neural cells.9,10 The main objectives were to (i) identify genes with distinct 

expression levels among different colony sizes that mediate colony size effect on neural 

differentiation of mESCs, and (ii) examine temporal differences in the expression of 

these genes among different colony sizes of mESCs. We performed temporal qPCR to 

assess differences in neural differentiation among three different colony sizes of 

mESCs. We used three biological replicates for each colony size (sample) and 
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measured fold change values of 28 genes over 15 time points (days), resulting in 420 

data points for each of the three colony sizes. Therefore, a robust and efficient statistical 

tool to analyze the multivariate, time series gene expression data was required to 

overcome the obstacles discussed above. 

We used a combination of hierarchical clustering, change point detection, and multiple t-

tests to statistically analyze the data. We first implemented an agglomerative 

hierarchical clustering approach to segregate genes representing pluripotent cells, 

neural stem cells, and specific neural cells into three distinct clusters based on temporal 

expression profiles of the genes. Then, we applied an E-divisive change point detection 

method to the clusters of genes.12 This identified specific time points at which the entire 

dataset partitioned into several homogeneous subsets, each having its own constant 

parameters. Finally, within each homogeneous subset, we identified the differentially 

expressed genes in each cluster using false discovery rate (FDR)-controlled multiple t-

tests. Combining the change point detection method with multiple t-tests pinpointed 

specific sets of genes that determine colony size-mediated neural differentiation of 

mESCs. We also discuss the advantages of our robust multi-step statistical approach 

over conventional parametric and non-parametric statistical methods that do not 

consider the temporal dynamics of the data. 

Materials and Methods 

Mouse embryonic stem cells (mESCs) culture and differentiation  

Stromal PA6 cells (Riken) and undifferentiated mESCs (EB5, Riken) were maintained 

separately on 0.1% gelatin coated dishes as described before.11 For preparation of the 
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stromal layer, PA6 cells were grown to a confluent monolayer on a gelatin coated 35 

mm Petri dish and mitotically inactivated with 10 µg/ml mitomycin-c (Sigma) for 2 hrs. 

PA6 cells were washed and then incubated overnight at 37ºC and 5% CO2 in a 

differentiation medium. A polymeric aqueous two-phase system was used to microprint 

mESCs in size controlled niche over stromal cells as described before.12 Briefly, a 

defined number of mESCs was suspended in a 6.4%(w/v) aqueous solution of dextran 

(DEX, Mw: 500 kDa; Pharmacosmos) prepared in a differentiation medium. Regular 

culture medium in Petri dishes containing stromal cells was replaced with the 5.0%(w/v) 

aqueous polyethylene glycol (PEG, Mw: 35 kDa; Sigma) solution prepared with the 

differentiation medium. A liquid handling robot equipped with 50 nl hydrophobic slot pins 

aspirated the mESCs suspension in the aqueous DEX phase from a 384-well source 

plate. Inserting the pins into the Petri dishes containing the aqueous PEG phase 

resulted in autonomous dispensing of the content of pins on the stromal layer without 

contacting the stromal cells (Fig 1a). mESCs remained confined within the DEX phase 

drops (Fig 1b) and adhered to the PA6 cell layer. The two-phase solution was replaced 

with fresh differentiation medium after incubating the cells for 3 hours (Fig 1c). Printed 

mESCs proliferated to form individual colonies of controlled size determined by the 

density of mESCs within each drop.  

Immunofluorescence and neural protein expression analysis 

mESC colonies were fixed in 3.7% formaldehyde on day 8 of co-culture with stromal 

cells. Immunocytochemistry was performed for a neural progenitor cell marker, TuJ, 

with a rabbit monoclonal class III β-tubulin primary antibody (Biolegend). Expression 

was visualized using a rhodamine red conjugated rabbit monoclonal secondary antibody 
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(Jackson Immunoresearch). Each colony was imaged in sections, which were merged 

using Photoshop CS (Adobe) to generate a single image of the entire colony. Neural 

differentiation of mESC colonies stained with TUJ was quantified using an adaptive 

thresholding plugin in ImageJ and our previously defined method.10  

Gene expression analysis 

Total mRNA was isolated daily from mESC colonies for a duration of two weeks using 

an RNA isolation kit. cDNA was synthesized from 1 µg of total RNA using random 

hexamer primers post removing DNase using RNase-free DNase kit. Real time qPCR 

was performed with a Lightcycler 480 II instrument using a SYBR Green Master Mix 

using predefined protocol.11 Expression levels of mRNA for different marker genes were 

calculated relative to GAPDH and β-actin using the ∆∆Ct method. The fold change in 

mRNA expression of all genes was determined according to the 2-∆∆Ct method. All 

experiments were performed in triplicates. 

Statistical Analysis  

Out of 28 genes analyzed, 22 pluripotency and neural cell marker genes were 

considered in three distinct clusters according to our previous study.13 Because the 

focus of this study was to identify differentially expressed neural genes, two clusters 

(labeled clusters 1 and 2) comprising of 17 neural lineage marker genes were subjected 

to further statistical tests. For each colony size, two vectors whose elements were the 

temporal ∆∆Ct values of genes in clusters 1 and 2, were defined. Then, delta vectors 

(δt) were calculated as the differences between respective vectors for each two colony 

sizes. Statistical tests were performed to identify the differentially expressed genes from 
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the δt vectors in two steps. In the first step, an E-divisive change point detection method 

was applied to the δt vectors that represented the differences in - ∆∆Ct values of genes 

within one cluster, to identify time points at which a population mean shift occurs for at 

least one gene in the δt vector.14 The change point divided the temporal trajectory of δt 

into two homogenous subsets, each having a population counterpart of δt that is static 

within each subset. Then, as the second step, by pooling together the observations 

within each subset, the standard one-sample t-test with Benjamini-Hochberg’s false 

discovery rate (FDR) control method was used to identify the statistically significant 

elements of δt in each population.15 The nominal significance level was chosen at 0.01 

to control the FDR. 

To compare the results from the above analyses with conventional statistical tests 

without taking the temporal dynamics of the data into account, the -∆∆Ct values 

obtained daily from samples of each colony size were considered as a separate sample. 

Then, student’s t-test and Mann-Whitney U test were performed to test the difference 

between samples representing two different colony sizes. Benjamini-Hochberg’s false 

discovery rate (FDR) control method was applied to both tests to assess the statistical 

significance of the difference observed after one-to-one comparison among the three 

colony sizes for each gene.15 The nominal significance level was chosen at 0.01 to 

control the FDR. 
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Result and Discussion  

Colony size effect on neural differentiation of mESCs: Protein expression 

mESCs within the printed DEX phase drop adhered to the stromal layer and proliferated 

to generate a single colony during incubation (Fig 1d-e). The mitotically arrested PA6 

cells remained intact for 2 weeks while the proliferating mESCs differentiated into neural 

cells as shown by thick neurite processes extending out from the colonies (Fig 1e-f). 

The size of mESC colonies was controlled through the density of printed mESCs in the 

50 nl DEX phase drops. Densities of 100, 250, and 500 cells per 50 nl drops yielded 

individual mESC colonies with average diameters of 1.00±0.05 mm, 1.35±0.04 mm, and 

2.20±0.10 mm by day 8 (Fig 1g). We label these colonies small, medium, and large. 

Culturing mESCs with stromal PA6 cells induces neural differentiation via intercellular 

signaling.16,17 We recently showed that spatial organization of mESCs can further 

regulate this process.10 Using the two-phase system cell printing technique, we 

generated mESCs colonies of three different sizes on stromal cells and immunostained 

the differentiating cells in the colonies for a neural cell protein marker, TuJ, at regular 

intervals for 2 weeks. Fig 1h-j show colonies of three different sizes stained for TuJ on 

day 8 of culture on stromal PA6 cells. Longer and denser neural processes extended 

out from the periphery of the large colonies compared to the medium colonies, and from 

the medium colonies compared to the small colonies. When protein expression data 

were normalized to the colony size, the large mESC colonies yielded disproportionately 

greater expression of TuJ (Fig 1k) and other neural cell proteins,10 indicating the role of 

endogenous factors of mESCs to self-regulate their own neural differentiation. 
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Colony size effect on neural differentiation of mESCs: Gene expression 

To elucidate this finding, we performed a comprehensive temporal gene expression 

profiling study to identify major genes and transcription factors that mediate colony size 

effect on neural differentiation of mESCs. Out of 28 genes analyzed, we conducted a 

time-course gene expression profiling of 22 stage-specific gene markers of pluripotency, 

neural progenitors, specific neuronal and glial cells, as well as the transcription factors 

and regulators of neurogenic pathways in colonies of three different sizes for two 

weeks. Selection of this set of genes was based on a comprehensive literature review. 

To ensure the specificity of neural differentiation of mESCs in our engineered niches, 

we also performed qPCR analysis of the mesodermal marker genes NKX 2.5, GATA4, 

FLK1, and PECAM. Table S1 lists all the genes and their primers sequences. 

On each day, we performed qPCR on three experimental replicates for each colony 

size. And for each experiment, we obtained 15 samples over the two-week culture. 

Without taking into account that each qPCR reaction was run in duplicates, this gave a 

total of 3780 qPCR reactions (including the two reference genes and four mesodermal 

markers). We used GAPDH and β-actin as reference genes and undifferentiated 

mESCs as the negative control. Fig 2 schematically shows the experimental workflow. 

We calculated ∆∆Ct values and represented fold change as 2-∆∆Ct. Consistent with the 

protein expression study,10 a majority of the neural genes showed the highest mRNA 

fold change in the large colonies, followed by the medium, and then the small colonies. 

Fig 3 represents the temporal mRNA fold change for five pluripotency marker genes. 

Expression of these genes, such as Oct4 and Nanog, steadily decreased and remained 

low over time irrespective of the colony size. Fig 4 shows temporal mRNA fold change 
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for six marker genes of neural stem and progenitor cells, whereas Fig 5 shows mRNA 

fold change of 11 marker genes for specific neuronal and glial cells. Results in Fig 4 and 

Fig 5 suggest the following key conclusions. First, with increase in the colony size, there 

was a greater mRNA fold change for neural stem and progenitor cell markers as well as 

specific neuronal cells and astrocyte markers. Second, the temporal expression of 

neural genes showed a colony size-dependent effect where the expression levels 

increased earlier in the large colonies followed by the medium and the small colonies. 

Third, the gene expression trajectories were similar in all three colony sizes. Expression 

of neural stem cells marker genes such as Sox1 and Pax6, rose to a peak level around 

days 4-7 and declined thereafter, whereas the gene expression of markers of specific 

neural cell lineages such as GAP43 and GFAP continuously increased throughout the 

14 days of culture. These results are consistent with the role of these markers in terms 

of loss of pluripotency (Oct4 and Nanog), commitment to a neural cells (Sox1 and 

Pax6), followed by differentiation into specific neural cells (GFAP and GAP43).18–21  

Statistical analysis of multivariate, temporal gene expression data 

Although the gene expression profiles displayed a clear colony size-dependent effect, 

evaluating the statistical significance of the expression differences was challenging. As 

seen in Fig 3-5, the gene expression levels in the three colony sizes were not steady 

over the two-week culture and transiently varied. For example, the highest difference in 

expression levels among the three colony sizes in Fig 4 was observed between days 4-

6 for Pax6 gene, and between days 8-10 for Nestin and Wnt1. This indicates that in 

addition to differences in the expression levels of these specific genes between colonies 

of different sizes, the time points at which the differences occur is a key factor 
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underlying colony size-mediated neural differentiation of mESCs. Below, we present a 

multi-step statistical approach to analyze the multivariate, temporal qPCR data. 

Application of multi-step statistical analysis 

Step 1: Hierarchical clustering 

With cluster analysis, data points are placed in discrete sets according to a similarity 

measure and a grouping algorithm.22 The reduction in the data results from forming g 

groups out of n data points, where g < n. The most common method of cluster analysis 

is agglomerative hierarchical cluster analysis. This analysis first merges the two closest 

data points into a single group. Then, similarities of this group to all other groups are 

calculated. Repeatedly, the two closest groups are combined until only a single group 

remains. The results are usually expressed in a dendrogram, a two-dimensional 

hierarchical tree diagram representing the complex multivariate relationships among the 

objects. In past studies focused on biomarker discovery and gene expression profiling, 

clustering was used as an initial screen to separate the samples into different classes 

based on gene/marker expression profiles. After clustering of data, further analysis 

identified the markers that best characterized the segregation of the data.23,24 Clustering 

has also been used after biomarker discovery to verify that the expression levels of 

identified markers can help separate two samples effectively into distinct clusters.24,25 

In our previous study using co-cultures of mESCs-stromal cells, applying agglomerative 

hierarchical clustering on a set of 22 genes of pluripotency and neural cells segregated 

them into three distinct clusters based on their temporal expression trajectories.13 

Genes in these clusters represented distinct phases of transition of mESCs from a 
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pluripotent stage to neural progenitor cells, and to terminally-differentiated neuronal or 

glial cells. Considering our interest in identifying genes responsible for colony size-

mediated neural differentiation, in this study, we focused on two clusters of genes that 

represent markers of neural progenitors and specific neuronal and glial cells. The 

cluster containing the pluripotency marker genes (Oct4, Nanog, Wnt8a, Notch2, and 

Notch3) was not considered for further statistical analysis because the expression of 

these genes quickly downregulated and showed minimal differences among the three 

colony sizes. The first cluster consists of genes that were highly expressed between 

days 4 and 11 and then either downregulated or leveled off. Genes in this cluster (Fig 4) 

mark the onset of neural differentiation: Sox1, CDH2, Wnt1, Notch1, Nestin, and Pax6. 

The second cluster represents a group of genes whose expression increased steadily 

as the culture progressed in time (Fig 5). This cluster contained several specific 

neuronal and glial markers and included TuJ, NCAM, TH, GAD1, Synaptophysin, ChAT, 

MAP2, Olig1, GFAP, NeuN, and GAP43. 

Step 2: E-divisive change point detection  

For each colony size, we defined two vectors whose elements are the temporal ∆∆Ct 

values of genes in clusters 1 and 2. That is, Yit = (Yit,1, Yit,2, …, Yit,6)
 T for cluster 1, and 

Yit = (Yit,1, Yit,2, …, Yit,11)
 T for cluster 2, over time t (t ϵ {0, 1, 2, …, 14}) for colony sizes 

small (i=1), medium (i=2), and large (i=3). For example, a vector representing the first 

cluster for the small colony contained ∆∆Ct values of six genes at 15 time points. Then, 

delta vectors (δt) were calculated as the differences between respective vectors for 

each two colony sizes (i.e., large vs. medium, medium vs. small, and small vs. large): 

δYt
32 = Y3t – Y2t, δYt

21 = Y2t – Y1t, δYt
31 = Y3t – Y1t, over time t (t ϵ {0, 1, 2, … , 14}).  
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Then, we used a hierarchical E-divisive method to identify time points at which at least 

one of the genes in the δt vector had a statistically significant mean shift at the identified 

change point. For example, if the change point was detected on day Tq when comparing 

small and medium colonies, then δYT0
21 = δYT1

21 = … = δYTq
21 ≠ δYTq+1 = … = δYT14

21.21 

In other words, the average of δt values on days 0-Tq was significantly different from the 

average of δt values on days Tq -14 for at least one gene (p < 0.01). Thus, all 

observations before Tq belonged to one population. Similarly, all observations after Tq 

represented a second population. 

Applying this method, we identified a change point of day 6 for cluster 1 genes among 

all three colony sizes compared pairwise (Fig 6a). The constituent genes of this cluster 

showed a steady expression increase during the first few days when mESCs undergo 

differentiation to neural stem cells, followed by a steady decline during the differentiation 

of neural stem cells to specific neuronal and glial progenitors. Therefore, the activity of 

these genes was predominantly confined to a few days towards the end of the first week 

of culture, validating the detected day 6 change point. Comparing the expression of the 

cluster 2 genes for each two colony sizes gave a change point of day 6 between large 

and small colonies, and day 7 between large and medium as well as between medium 

and small colonies (Fig 6a). Considering that the genes in this cluster had insignificant 

expression during the first week of culture but showed high activities as neural stem 

cells differentiated to distinct neuronal and glial lineage cells, these change points 

indicate emergence of differences in gene markers of specific neuronal and glial cells 

among the three colony sizes.  
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As a non-parametric statistic, the E-divisive change point detection method does not 

rely on assumptions that the data are derived from a certain probability distribution, 

does not require data pre-processing, and is computationally efficient compared to other 

parametric methods. A similar application of the non-parametric change point statistic 

was was reported for microarray data to detect differentially expressed genes among 

different tumor samples.26 An important outcome of applying change point detection to 

our multivariate qPCR data was that it divided the time series expression data of each 

gene from 14 days into two statistically distinct homogeneous populations based on the 

temporal changes in the gene expression. This step accounted for the variability due to 

temporal dynamics in the gene expression data and enabled the use of standard 

parametric tests (t-tests) separately on each of the new homogenous populations of 

data as described below. 

Step 3: Multiple t-tests 

Next, using the homogeneous subsets of data, we identified the genes with significant 

expression differences among the three colony sizes before and after the change 

points. In our experimental setup (Fig 2), the expression levels of multiple genes were 

quantified for each experimental group at 15 time points (i.e., days 0 - 14). The gene 

expression data from different time points are independent as the experimental samples 

were terminated to prepare RNA for the qPCR experiments on each day. As a result, 

the δt elements are independently and identically distributed within each homogenous 

subset formed after applying the change point detection method. We therefore applied 

multiple t-tests to assess the statistical significance of δt. To avoid finding a random 

false positive in the multiple comparisons problem, we compensated for the false 
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discovery rate (FDR) using a correction method known as the Benjamini–Hochberg 

method.27 This method arranges the individual p values in an ascending order and 

ranks them according to their position. Then, it compares each individual, ranked 

p value, �(�), obtained from t-test to its Benjamini-Hochberg critical value, (i/m)×Q, 

where i is the rank, m is the total number of tests, and Q is the selected false discovery 

rate. The largest p value that has p(�) < (i/m)×Q, and all of smaller p values denote 

statistical significance.15 

The detection of specific change points (e.g., day 6) implied that the δt values before the 

change point (i.e., days 1-6) and after the change point (i.e., days 7-14) represent two 

different populations. Therefore, we conducted multiple one sample t-tests with 

controlled FDR for each set of δt values before and after the change points to identify 

differentially-expressed genes in each set. Since all the gene expression data had a 

common starting point of -∆∆Ct = 0, the δt values (i.e., the differences between the -

∆∆Ct values of each two colony sizes) were also equal to zero in the beginning. The 

second step of statistical analysis was therefore to identify the components (i.e., genes) 

of the δt vectors that were significantly different from zero, before and/or after the 

identified change points (the nominal significance level, Q= 0.01). The results are 

summarized in Venn diagrams for both gene clusters, and between each pair of 

colonies within each cluster (Fig 6b). We note that this analysis only revealed significant 

differentially expressed genes between each two colony sizes. The actual temporal 

mRNA fold change values are represented in Fig 4 and Fig 5. 
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Differentially-expressed genes among different mESC colony sizes: Cluster 1 

For cluster 1 that contained genes representing specific functions in differentiation of 

ESCs and early patterning of the nervous system, our analysis detected a change point 

of day 6 among all three colony sizes. This agrees with our protein expression data that 

showed the greatest activity of neural stem and progenitor markers around days 4 to 

8.28,29 As seen in panels i – iii of Fig 6b, Pax6 expression was different only before the 

change point in large vs. small colonies, and in medium vs. small colonies. In large vs. 

small colonies, the expression levels of Sox1, Nestin, and CDH2 were different both 

before and after the change point. Both Pax6 and Sox1 are active in neural stem cells 

and their differentiation to specific neuronal and glial progenitors.30,31 Therefore, higher 

expression of these genes in larger colonies indicates greater activities in differentiating 

mESCs to generate more neural progenitors. Moreover, Pax6 expression was different 

only before the change point where the neural stem cell state precedes the appearance 

of post mitotic neurons, whereas Sox1 expression remained different even after the 

change point. This indicates a temporary role for Pax6 and but a more persistent role for 

Sox1 in driving neural stem cells to specific neuronal and glial precursors. Our result is 

consistent with previous reports that increasing Pax6 levels was sufficient to drive 

neural stem cells toward neuronal cells by upregulating Neurogenin 2, and that neuronal 

precursors maintaining a prolonged expression of Pax6 failed to become neuronal 

cells.32 On the other hand, Sox1 marks the cells with a neurogenic potential, has an 

initial role of self-renewal of neural stem cells pool, and its persistent expression leads 

to neuronal cells.20 Greater expression of Sox1 with increase in the colony size 

indicates larger yield of neuronal cells from mESCs. 
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The genes that were expressed differently between each pair of colony sizes only after 

the change points are shown in the blue circles, whereas those that were expressed 

differently throughout the culture are located at the interface of the orange and blue 

circles. From cluster 1 genes, Wnt1 and Notch1 levels were different only after the 

change point when comparing the large and small colonies. Nestin, CDH2, Wnt1, and 

Sox1 expression was different between the large and medium colonies only after day 6. 

And only CDH2 (N-cadherin) showed different expression levels between the medium 

and small colonies. Wnt1, which had different expression levels between each pair of 

the colony sizes after the change point, belongs to the canonical Wnt family that 

promotes proliferation of cells during central nervous system development and helps 

induce sensory and midbrain dopaminergic neurons.33 Therefore, increased Wnt1 

expression and very high levels of this marker with increase in colony size (Fig 4) 

suggest that Wnt1 augments neural cell commitment of mESCs and promotes 

dopaminergic neuron and astrocyte differentiation in a colony size-mediated manner.34 

CDH2 (N-cadherin) is a key marker that showed differential expression levels among all 

three colony sizes. CDH2 is an intercellular junctional protein that maintains β-catenin 

signaling during cortical development, regulates Wnt signaling, and induces radial glial 

progenitor cells.35 Moreover, CDH2 supports neuronal circuit maturation through axonal 

extension and regulates neurites outgrowth through fibroblast growth factor receptor 

signaling.36 As shown in Fig 4, higher fold change of CDH2 in the large colonies 

correlates well with the longer neurites length in this niche observed in our previous 

study.10 
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Differentially-expressed genes among different mESC colony sizes: Cluster 2 

For the cluster 2 genes, our analysis identified day 6 as the change point when 

comparing the large and small colonies, and day 7 when comparing the other two pairs 

of colony sizes. This cluster contains genes whose expression continuously increased 

throughout the two-week culture, or increased and then leveled off at some time point. 

These genes are associated with growth and development of neuronal and glial cells, or 

with specific cell types such as dopaminergic, GABAergic, and cholinergic neurons. A 

change point of day 6 or 7 is reasonable as previous studies showed that in the 

presence of stromal cells, neural stem cells differentiate into specific neuronal and glial 

precursors around this time point.37,38 This is also consistent with our study that showed 

a substantial increase in the expression of the genes during the second week of culture 

(Fig 5). Additionally, an earlier change point between the large and small colonies (Fig 

6a) together with greater fold change of the genes in the large colonies (Fig 5) imply 

earlier commitment of stem cells to neural cells in the large colonies, in agreement with 

the protein expression results that showed the largest difference between these two 

colony sizes (cf. Fig 1h and 1j).10 

From the cluster 2 genes, GAP43, Synaptophysin, MAP2, and Olig1 showed expression 

differences between the large and small colonies prior to the change point (Fig 6b-iv), 

and GAP43, Synaptophysin, NeuN, and GFAP had different levels between the large 

and medium colonies. Genes in this cluster had a similar expression in the medium and 

small colonies prior to the change point. Difference in the expression of these genes 

before the change point is in part due to the differences already present in their 

progenitor cells. For example, higher expression of MAP2 was seen in the large colony 
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as soon as the Nestin-positive cells, which are already present in greater quantities in 

the large colonies, differentiated into MAP2-positive neurons. Closer scrutiny of results 

in Fig 4 and Fig 5 showed that except for Olig1, other neural factors had greater fold 

change with increase in the size of colonies. 

After the change point, all 11 genes of cluster 2 showed significant expression 

differences between the large and small colonies (Fig 6b-iv). Comparing the large and 

medium colonies also showed that eight markers were statistically different between the 

two configurations (Fig 6b-v). And between the medium and small colonies, nine genes 

from this cluster showed significant differences after the change point (Fig 6b-vi). For 

cluster 2, detection of a change point and significant expression differences of the same 

gene before and after the change point (e.g., GAP43 and Synaptophysin) indicates that 

the colonies with a richer content of neural stem cells lead to more specific neural cells. 

A closer observation of temporal trajectories of such genes in Fig 5 reveals that the 

differences in gene expression levels steadily increased after the change point and 

throughout the culture. 

Greater expression of growth- and development-associated genes such as NCAM, 

GAP43, and MAP2 in large colonies implies greater density and longer neurite 

processes.39,40 This is consistent with the higher neurites length and density 

measurements performed at a protein level in our previous study.10 Larger mRNA fold 

change values for Synaptophysin in the large colony than in the medium and small 

colonies indicate greater neuronal maturation and synaptic development. Higher 

expression of specific neuronal cell markers such as GAD1, ChAT, and TH implies 

potentially greater number of functional neurons generated in the large colony. Again, 
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this is consistent with our previous protein expression analysis that showed higher 

levels of GFAP expression and greater number of TH-positive neuronal cells with 

increase in the colony size.10  

To ensure the specificity of neural differentiation of mESCs in these niches, we 

performed qPCR analysis on the mesodermal marker genes NKX 2.5, GATA4, FLK1, 

and PECAM. Interestingly, the small colony configuration had higher fold change of 

mesodermal markers than the medium and large colonies (Fig S1). This, along with the 

results presented above, indicates that larger colonies are more efficient in restricting 

the fate of differentiating mESCs toward neural cell lineages, whereas the small 

colonies provide a more supportive niche for mesodermal cell differentiation. This is 

consistent with the results obtained from previous studies that showed decreasing the 

size of mESC embryoid bodies (EBs) enhanced their response to BMP4 signal to 

induce mesodermal differentiation.41,42 EBs of ~450 µm diameter, which are smaller 

than the small colony in our study, also showed maximum mesodermal differentiation.43 

Performance of conventional statistical tests to analyze the multivariate, temporal 

gene expression data 

To demonstrate the significance of selecting the multi-step statistical tests to analyze 

our multivariate, temporal gene expression data, we performed a parametric Student’s t-

test and a non-parametric Mann Whitney U-test on all pooled data without taking 

temporal dynamics of the data into account. Below, we summarize the results. 

Student’s t-test 
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Student’s t-test is a conventional method of choice to analyze statistical difference 

between two experimental groups. Therefore, we conducted three separate t-tests to 

compare gene expression differences of large colony and small colony, large colony 

and medium colony, and medium colony and small colony. This allowed us to compare 

the results from the t-tests with those from the multi-step method. Student’s t-test 

provides a test to determine whether the means of the groups are statistically the 

same.44 Because the experimental samples from different days were independent, we 

pooled the temporal ∆∆Ct data from days 0-14 for each colony size into a single 

population and conducted student’s t-tests for 17 neural genes. We subjected the 

resulting p values to the Benjamini–Hochberg FDR correction to avoid the random 

false positive identification of significant genes. The results are included in Table 1. 

After applying FDR corrections, the expression of none of the genes was significantly 

different between medium and small colonies. Only CDH2 expression was different 

between large and medium colonies. And eight genes, CDH2, Pax6, Notch1, ChAT, 

Synaptophysin, Wnt1, Sox1, and GAP43, were also different between large and small 

colonies.  

It is important to note that there were genes such as NCAM, GFAP, TH, and MAP2 that 

had hundreds of fold-change differences among different colony sizes (Fig 4 and Fig 5). 

However, t-tests performed ignoring the temporal heterogeneity of the data failed to 

elicit statistically significant differences in the expression of these genes among the 

three colony sizes. Student’s t-test functions on the assumption that the sequence of 

observations is independent and normally distributed.45 However, with the dynamic 

temporal profile of gene expression and large differences in expression levels between 
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days 0 and 14 within each group, the assumption is not fulfilled. Therefore, simply 

applying t-tests without taking into account the temporal dynamics of the data is 

insufficient to establish the significance of some of the key genes in colony size-

mediated neural differentiation of mESCs. 

Mann-Whitney U-test 

We also considered another conventional statistical technique, a non-parametric 

equivalent of t-test known as Mann-Whitney U-test or Wilcoxon rank-sum test. This test 

converts original quantities to ranks (e.g., the smallest quantity has rank=1, the second 

smallest quantity has rank=2, etc.) before calculating the statistical parameter U and its 

significance.46,47 Due to performing multiple tests on each experimental group, we 

applied FDR correction to avoid false positive results. The genes that were identified 

statistically different between different colony sizes are listed in Table 2 with their 

respective adjusted p-values post FDR correction. While the expression of none of the 

genes was statistically different between medium and small colonies, only four genes, 

Nestin, CDH2, Sox1, and ChAT, showed differential expression between large and 

medium colonies, and only 11 genes were identified different between large and small 

colonies. In contrast, our multi-step analysis using change point detection showed that 

all 17 neural genes were differentially expressed between large and small colonies at 

some point over the 14-day period.  

Unlike t-test, Mann-Whitney U-test does not assume normal distribution of data. 

However, it still assumes that the sequence of data is independent and identically 

distributed. Besides, an inherent disadvantage of this test is substituting ranks for the 

original experimental quantities and loss of information on magnitude of differences 
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between the experimental groups. Although Mann-Whitney U-test identified more 

differentially-expressed genes between pairs of different colony sizes, it still was not as 

powerful as the multiple tests following the change point detection analysis. 

Both student’s t-test and Mann-Whitney U-test are widely used statistical techniques, 

but they failed to elicit all differentially-expressed genes identified by our multi-step 

method. This indicates that without taking the change points into account, these 

methods are inadequate to analyze dynamic and heterogeneous data such as our gene 

expression time series data. Temporal heterogeneity in the expression of each gene 

increased the variance of each population, resulting in wide overlap in the gene 

expression data distribution between each two colony sizes. For example, the NCAM 

gene had a few folds difference between large and small colonies during days 0-6, but 

more than 100 folds after day 7 (Fig 5a). The t-test performed on the sub-population 

(from day 7-14) obtained after applying change point detection identified this difference 

as statistically significant. However, the t-test performed on the entire population (from 

day 0-14) failed to identify NCAM as a statistically significant differentially-expressed 

gene between large and small colonies because very low gene expression differences 

during days 0-6 masked the significant differences during days 7-14.  

Another shortcoming of conventional t-test and Mann-Whitney U-test is disregarding the 

temporal dynamics of gene expression, making it difficult to know at what time points 

gene expression differences arise or reach a maximum. On the contrary using the 

change point detection method, we could temporally correlate the phenotypic changes 

observed in differentiating cells in colonies of different sizes, with the expression of 

significant genes at different time points. 
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The change point detection step can be particularly helpful in cases of multivariate 

problems such as genomic and proteomic studies concerned with the analysis of data 

consisting of “large p (i.e., the number of factors or measurements), and small n (i.e., 

the number of independent samples)”.2 Although the commonly used conventional 

statistical tests perform well when sufficient experimental replicates are available, 

adding an experimental replicate in such experimental setting involves additional cell 

culture and/or preparation steps, and intensive genomic or proteomic experiments. The 

change point detection method addresses this issue by grouping the measurements into 

homogenous populations and increasing the sample size to enable the use of 

conventional statistical tools to reliably identify molecular markers of interest.  

Conclusions 

We modulated the intercellular interactions of differentiating stem cells by controlling the 

size of stem cell colonies and evaluated the resulting changes in the efficiency of neural 

differentiation through a temporal gene expression study and a multi-step biostatistical 

analysis approach. This enabled capturing and comparing the evolution of gene 

markers of neural cells in differentiating stem cell colonies of different sizes. The results 

elucidated molecular markers of size-disproportionate enhanced neural differentiation of 

stem cells by increase in colony size. We established that applying a multi-step 

statistical analysis consisting of hierarchical clustering, E-divisive change point 

detection, and traditional multiple testing to temporal gene expression data of different 

experimental groups (colony sizes) identify major genes that underlie differences in the 

neural differentiation efficiency of stem cells. Beyond this work, our proposed approach 
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will benefit any high throughput and high content screening in drug and biomarker 

discovery that deals with temporally varying multivariate data analysis. 
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Figures 

 

Figure 1. Aqueous two-phase system mediated cell printing generates controlled size 

colonies. (a) Slot pins loaded with mESCs (beige) in the DEX phase is lowered on to 

PA6 cells (green) immersed in the PEG phase. (b, d) Pins content is autonomously 

dispensed to form isolated drops confining mESCs. (c) Printed mESCs attach to the 

stromal layer and proliferate to form a single colony. (e) A colony on day 8 of culture. (f) 

Neurite processes extend out from differentiating cells in mESC colonies. (g) Day 8 

measured diameter of colonies formed with a density of 100, 250, and 500 mESCs. (h-j) 

Immunostained images of TuJ-positive colonies of 3 different sizes on day 8 of culture. 

(k) Day 8 measured total neurites density normalized with colony perimeter. * p < 0.01. 

n=18  
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Figure 2. Schematic representation of the experimental setup. 

 

 

 

 

 

 

 

 

Page 33 of 38 Molecular Omics



 34

 

Figure 3. mRNA fold change values of pluripotency marker genes during 2-week 

culture period. n=3  
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Figure 4. mRNA fold change values of neural stem cell genes during 2-week culture 

period. n=3 
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Figure 5. mRNA fold change values of specific neuronal and glial cell genes during 2-

week culture period. n=3 
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Figure 6. (a) Detected gene expression change points among three different colony 

sizes. (b) Identification of genes with distinct expression patterns between the colonies 

before and after the change point. To generate the Venn diagrams, the nominal 

significance level was chosen at 0.01 to control the FDR.  

 

 

 

 

Page 37 of 38 Molecular Omics



 38

Table 1. Differentially expressed genes identified by t-test with the false discovery rate 

(FDR) controlled at the nominal significance level of 0.01. 

 

 

 

 

 

 

Table 2. Differentially expressed genes identified by Mann-Whitney U test with the false 

discovery rate (FDR) controlled at the nominal significance level of 0.01. 
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