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A scalable filtration method for high throughput screening 

based on cell deformability 

Navjot Kaur Gill, Chau Ly, Kendra D. Nyberg, Linus Lee, Dongping Qi, Bobby Tofig, 

Mariana Reis-Sobreiro, Oliver Dorigo, JianYu Rao, Ruprecht Wiedemeyer, Beth Karlan, 

Kate Lawrenson, Michael R Freeman, Robert Damoiseaux, Amy C. Rowat 

Abstract 

Cell deformability is a label-free biomarker of cell state in physiological and disease contexts 

ranging from stem cell differentiation to cancer progression. Harnessing deformability as a 

phenotype for screening applications requires a method that can simultaneously measure the 

deformability of hundreds of cell samples and can interface with existing high throughput 

facilities. Here we present a scalable cell filtration device, which relies on the pressure-driven 

deformation of cells through a series of pillars that are separated by micron-scale gaps on the 

timescale of seconds: less deformable cells occlude the gaps more readily than more 

deformable cells, resulting in decreased filtrate volume which is measured using a plate reader. 

The key innovation in this method is that we design customized arrays of individual filtration 

devices in a standard 96-well format using soft lithography, which enables multiwell input 

samples and filtrate outputs to be processed with higher throughput using automated pipette 

arrays and plate readers. To validate high throughput filtration to detect changes in cell 

deformability, we show the differential filtration of human ovarian cancer cells that have acquired 

cisplatin-resistance, which is corroborated with cell stiffness measurements using quantitative 

deformability cytometry. We also demonstrate differences in the filtration of human cancer cell 

lines, including ovarian cancer cells that overexpress transcription factors (Snail, Slug), which 

are implicated in epithelial-to-mesenchymal transition; breast cancer cells (malignant versus 

benign); and prostate cancer cells that exhibit a malignant phenotype. We additionally show 

how the filtration of ovarian cancer cells is affected by treatment with drugs known to perturb the 
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cytoskeleton and the nucleus. Our results across multiple cancer cell types with both genetic 

and pharmacologic manipulations demonstrate the potential of this scalable filtration device to 

screen cells based on their deformability. 

 

Key words: Cell mechanical properties, cell mechanotype, microfluidics, cancer cells 

 

Introduction 

High throughput (HT) assays enable screening of cells against thousands of compounds in 

chemical libraries1-4. Typical screens are based on molecular readouts such as gene or protein 

expression5-7, or cellular behaviors such as proliferation8,9, apoptosis10,11, or invasion12,13. 

Screens based on such molecular and cellular metrics have enabled the identification of drugs 

with clinical efficacy14,15. For example, the commonly used anti-cancer agent, paclitaxel, was 

discovered in a high throughput screen based on its ability to stop cell proliferation16. While the 

development of treatment strategies using existing drugs has led to significant progress in 

improving patient survival and disease outcome17-21, the majority of deaths occur due to 

metastasis and recurrence22-24. Thus, there is an urgent need to identify novel therapeutic 

agents. A promising strategy to discover new compounds is by assaying alternative cellular 

phenotypes that are implicated in cancer progression and metastasis25, such as cellular 

metabolism26, adhesion13,27, or deformability28-31.  

Screening for chemotherapeutics based on the intrinsic deformability of cells has exciting 

potential. A variety of clinically used chemotherapy agents, such as daunorubicin and paclitaxel, 

increase the stiffness of cancer cells28,32-34; this induced stiffening may result from cell death32 

and/or stabilization of microtubules to cause cell cycle arrest and stop proliferation28,35. Other 

desirable targets for cancer therapies include Rho GTPase36 and Rho-associated protein 

kinase37, which regulate actin structure, dynamics, and cell motility; these are also major 
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regulators of cellular deformability36,38,39. Since the deformability of cancer cells is associated 

with cellular invasion29,40-42, compounds that make cancer cells stiffer may also decrease their 

invasion. Consistent with this idea, we previously found that ovarian cancer cells (OVCA433) 

with induced expression of transcription factors implicated in epithelial-to-mesenchymal 

transition 43 are more deformable than epithelial-like cells28; EMT is also accompanied by 

increased cell invasion44. Our previous work also shows that ovarian cancer cells with acquired 

resistance to the common chemotherapy agent cisplatin have mesenchymal-type features and 

are more deformable than cisplatin-sensitive cells28. Thus, identifying small molecules based on 

their ability to revert the deformability of cancer cells—especially mesenchymal-like, drug-

resistant cells—to levels of less invasive and/or normal cells could provide a route to identify 

complementary compounds that inhibit cancer cell behaviors such as proliferation and motility. 

While cancer cell deformability as a phenotype has potential for drug discovery, there are 

thousands of drugs in typical libraries for high throughput screening. However, existing 

mechanotyping methods rely on sequential measurements of individual cell samples. Methods 

to measure cell mechanical properties, such as atomic force microscopy or magnetic twisting 

cytometry, achieve measurements of elastic modulus through detailed force-deformation 

profiling on single cells, but have limited throughput45-48. Microfluidic-based methods enable 

rapid measurements of the deformability of single cell populations49-51, but rely on customized 

image analysis of individual cells and samples sequentially, which is a computationally 

expensive bottleneck. Such methods are thus challenging to integrate into high throughput 

facilities that rely on treating and processing hundreds of samples in multiwell plates 

simultaneously. If a method to measure cell deformability could be integrated into existing high 

throughput sample handling platforms that use multiwell inputs and readouts, this would enable 

deformability to be used as a phenotype for drug discovery. 

 To enable simultaneous measurements of cell deformability, we recently developed the 

parallel microfiltration method28,52. Parallel microfiltration relies on the filtration of a cell 
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suspension across a polycarbonate membrane with micron-scale pores; stiffer cells are more 

likely to occlude pores compared to more deformable cells. The concept of filtration for 

measuring cell deformability has been established for different red and white blood cell types53-

55, as well as cancer cells28,41,42. While we previously established proof-of-concept 

measurements of cell deformability using a prototype parallel microfiltration device, there are 

numerous challenges to scaling up this method. The prototype device requires measuring the 

retained sample volumes across the plate, which involves additional steps of liquid handling. 

Moreover, manual assembly is required to set up the device: commercially available 

polycarbonate membranes are manually placed in the prototype device, which is tightened to 

achieve a pressure-tight seal28. Such manual processing introduces user variation, and thus 

measurement variability. All of these challenges hinder the scale-up of parallel microfiltration for 

robust, HT assays. 

 Here we present a scalable high throughput filtration (HTF) method that enables multiple 

samples to be measured simultaneously. Inspired by strategies to scale-up microfluidic devices 

for HT applications56-60, the core of HTF is a custom-fabricated array of 96 microfiltration 

devices; each device contains a series of pillars with well-defined micron-scale gaps from 6 to 

14 µm that are smaller than the diameter of single cells. Cells are driven to passively deform 

through the gaps on the timescale of seconds to minutes in response to applied pressure. The 

ability of cells to deform through the gaps determines the fluidic resistance of a single device: a 

larger number of cells that occlude gaps results in a higher fluidic resistance, less flow through 

the filtration device, and thus a smaller filtrate volume. Importantly, the volume of collected 

filtrate can be rapidly measured in multiwell format using a plate reader, thereby enabling 

automation of cell filtration measurements. To characterize the HTF method and operational 

parameters, we measure the filtration of cisplatin-sensitive (OVCAR5 Cis-S) versus -resistant 

human ovarian cancer (OVCAR5 Cis-R) cells, which we independently confirm have distinct 

elastic moduli using quantitative deformability cytometry61. To validate the HTF method to 
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distinguish cell samples, we screen human ovarian cancer (OVCA433 GFP, Snail and Slug) 

cells with induced EMT by overexpression of transcription factors (Snail, Slug), and treat these 

cells with a panel of cytoskeletal and nuclear perturbing drugs that modulate cell deformability. 

To demonstrate broader applicability of HTF for screening cells based on cell deformability, we 

filter malignant human breast cancer cells (MDA-MB-468, MDA-MB-231) versus non-

tumorigenic breast epithelial (MCF10A) cells, and weakly metastatic prostate cancer (DU145) 

cells versus DU145 cells transformed with knock down of nuclear envelope protein, emerin 

(DU145 Emerin KD), which are highly metastatic. Taken together, our results demonstrate the 

potential of HTF as a scalable platform for screening based on cell deformability. 

 

Methods 

Cell culture: Human ovarian cancer (OVCA433), breast cancer (triple negative MDA-MB-468 

and MDA-MB-231), and prostate cancer (DU145) cells are cultured in DMEM (+L-Glutamine, 

+Glucose, +Sodium Pyruvate) supplemented with 10% FBS, 1% Anti-anti (Gibco). For 

OVCA433 GFP (control), SNAI1-overexpressing cells (OVCA433 Snail), and SNAI2-

overexpressing cells (OVCA433 Slug) (Qi et al., 2015) we use the same media with the addition 

of blasticidin S HCl (5 µg/ml, Corning Cellgro). To culture the cisplatin-sensitive and -resistant 

cells, OVCAR5 Cis-S/OVCAR5 Cis-R, we use Dulbecco’s Modified Eagle Medium (DMEM) with 

10% FBS, 1% Penicillin-Streptomycin, and 10 µM cisplatin (Sigma-Aldrich) for the resistant 

cells. To culture immortalized non-tumorigenic breast epithelial (MCF10A) cells, we use 

Mammary Epithelial Cell Growth Basal Medium (MEBM) (Lonza) supplemented with bovine 

pituitary extract (52 μg/mL), hydrocortisone (0.5 μg/mL), human EGF (10 ng/mL), and insulin (5 

μg/mL) (MEGM Bullet Kit, Lonza) as well as 100 ng/mL cholera toxin (Sigma Aldrich). DU145 

Emerin KD cells are cultured in DMEM with 10% FBS, 1% Penicillin-Streptomycin, and 2 µg/mL 

puromycin (Thermo Fisher Scientific). Prior to filtration measurements, cells are washed with 1x 

Phosphate-Buffered Saline (PBS, DNase-, RNase- & Protease- free, Mediatech, Manassas, 

Page 5 of 38 Lab on a Chip



 6 

USA), treated with trypsin, and resuspended in fresh medium to a density of 0.5 x 106 cells/mL. 

To minimize clusters of cells, cell suspensions are passed through a 35 µm cell strainer (BD 

Falcon) prior to each filtration measurement.  

 

Drug treatments: Stock solutions of paclitaxel (451656, Corning Cellgro), cytochalasin-D 

(C8273, Sigma-Aldrich), colchicine (C9754, Sigma-Aldrich), paclitaxel (T7402, Sigma-Aldrich), 

blebbistatin (ab120425, Abcam), SB43154 (1614, Tocris), verteporfin (5305, Tocris), and 

trichostatin-A (1406, Tocris) are prepared according to manufacturer instructions. Cells are 

treated with 0.1 to 10 µM of drugs as indicated for 24 h prior to measurements.  

 

Device fabrication: To fabricate the HTF microfluidic device array, two polydimethylsiloxane 

(PDMS, Sylgard 184 silicone elastomer, Dow Corning) layers are individually fabricated and 

then covalently bonded together. To produce the first layer that contains the 10 µm-height 

filtration devices, we spin coat SU-8 3005 photoresist (Microchem) at spin speed of 100 rpm to 

a thickness of 10 µm on a 6” silicon wafer (Silicon Valley microelectronics). The thickness of the 

photoresist is confirmed to be 9.7 ± 0.1 µm using a Dektak 150 Surface Profilometer (Veeco). A 

10:1 w/w base to crosslinker ratio of PDMS is poured onto the master wafer, degassed using a 

desiccator vacuum for 20 minutes, and cured at 65 °C for 2 h. We use the same protocol to 

mold the second layer that contains outlets that are cast using a 96 x 250 µL array of pipette 

tips. The surfaces of the two layers to be bonded are then exposed to UV light in the presence 

of ozone62 for 5 minutes using a UVO cleaner 42 (Jetlight). Outlets in the second PDMS layer 

are aligned with the inlet regions of the filtration devices in the first PDMS layer and pressed 

gently to bond. Filtration measurements are performed 24 h after bonding to ensure consistent 

surface properties across experiments63.  
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HT-cell filtration: Cell suspension (350 µL) at 0.5 x 106 cells/mL or otherwise shown cell 

concentration is loaded into each well of the 96-well loading plate. We adapt plasmid filtration 

plate (HyperSep filter plate, Thermo Fisher) with filters removed as the loading plate. To 

measure cell number, we use an automated cell counter (TC20, BioRad); these measurements 

also yield cell size distributions. Defined air pressure is applied using pressurized air and 

monitored using a pressure gauge (0 - 100 kPa, Noshok Inc., Berea, OH, USA). To measure the 

filtrate volume, we determine the absorbance of the filtrate volume using plate reader. To rapidly 

optimize parameters for a particular cell type, we temporarily seal unused sections of the 

filtration device array by taping wells in the loading plate using laboratory paper tape (VWR). 

 

Absorbance measurements: To quantify filtrate volumes, we measure the absorbance of the 

resultant cell suspensions in the 96-well collection plate. Since the cell medium contains phenol 

red, we measure absorbance at 560 nm using a plate reader (Infinite M1000, Tecan).  

 

Cellular imaging: To image the cells that occlude the interpillar gaps during filtration, cells are 

labeled with Calcein-AM (5 µM, Invitrogen) prior to filtering through devices that are bonded to a 

glass coverslip. Images are acquired using a fluorescence microscope (Zeiss Observer A.1 

Axio) equipped with a 10x objective (10x/EC Plan-Neofluar, 0.3 Ph1 M27, Zeiss), a light source 

(HBO 103W/2 mercury vapor short-arc lamp), and filter set 13 (Zeiss). To quantify % occluded 

gaps, we count the total number of gaps and occluded gaps. 

 

Cell cycle analysis: To perform cell cycle analysis, adhered cells are harvested and 

resuspended in fresh medium to a density of 2 x 106 cells/mL. Cells are washed once in PBS 

containing 1% FBS (Gibco) by centrifugation and resuspended in 70% ethanol (Fisher 

Scientific) solution made in PBS. Cells are fixed in the ethanol solution overnight at -20 °C. Cells 

are washed once in PBS by centrifugation and stained with propidium iodide (PI) staining 
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solution at a density of 2 x 106 cells/mL for 30 minutes at 37 °C. PI staining solution contains 50 

ug/mL PI (Thermo Fisher Scientific), 2.5 mg/mL RNase solution (Invitrogen) in PBS. To 

minimize clusters of cells, cell suspensions are passed through cell strainer with 35 µm mesh 

size (BD Falcon) prior to analysis using flow cytometry (LSRFortessa cell analyzer, BD Falcon). 

 

q-DC: Quantitative deformability cytometry (q-DC) is a microfluidic method that enables single-

cell measurements of apparent elastic modulus, fluidity, and transit time through micron-scale 

constrictions61. To fabricate devices using soft lithography, a 10:1 w/w base to crosslinker ratio 

of polydimethylsiloxane (PDMS) is poured onto a master wafer. The device is subsequently 

bonded to a glass coverslip (1.5 thickness) using plasma treatment. Within 24 h of device 

fabrication, cell suspensions of 2 × 106 cells/mL are driven through constrictions of 9 μm (width) 

x 10 μm (height) by applying 55 kPa of air pressure. We capture images of cellular deformations 

on the millisecond timescale using a high-speed CMOS camera with a capture rate of 1600 

frames/s (Vision Research, Wayne, New Jersey) that is mounted on an inverted microscope 

(Zeiss, Oberkochen, Germany) equipped with a 20x/0.40NA objective (Zeiss). We use a 

customized MATLAB code to analyse the time-dependent strain of individual cells. To determine 

the applied stress, we use agarose calibration particles that we fabricate using oil-in-water 

emulsions61. Stress-strain curves are obtained for single cells and a power-law rheology model 

is fitted to compute elastic modulus and fluidity61. 

 
Statistical methods: HTF results are expressed as mean ± SD. We use the Student’s t-test 

method to analyze significance and obtain p-values. For the non-parametric distributions of 

apparent elastic modulus, fluidity, transit time and cell size, we use the Mann-Whitney U test to 

determine statistical significance. 
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HTF device concept 

Theoretical framework. To drive the flow of cell suspension through individual filtration devices 

(Fig 1A), we apply air pressure uniformly across the array of devices. Each device contains 

rows of pillars spaced with an interpillar gap size that is ~2x smaller than the cell diameter; thus, 

while cell medium flows freely through the gaps, cells that transit through gaps are required to 

deform with ~40 to 60% strains61. If a cell does not transit, it occludes the gap (Fig 1B). The 

probability of occlusion depends on the driving pressure, filtration time, cell-to-gap size ratio, 

and cell deformability28,41,42,61. For suspensions of cells that have a similar size distribution and 

are filtered at a fixed driving pressure, cell deformability is a major contributor to 

filtration28,41,42,64,65: stiffer cells with higher elastic moduli tend to occlude narrow gaps more 

frequently than more compliant cells with lower elastic moduli28,66,67. While cells are in contact 

with the pillar surface as they transit through narrow gaps, transit is dominated by the ability of 

cells to deform and change shape61,65,68,69. 

To understand the physical mechanism of HT filtration, we investigate how key 

experimental parameters—filtration time, cell density, and driving pressure—affect the filtration 

of a suspension of human ovarian cancer (OVCAR5 Cis-R) cells. We first investigate the time-

dependence of filtration by imaging the pillar array over the filtration time period. At timescales 

of 30 to 120 s, we observe there is a monotonic increase in the number of occlusions as an 

increasing number of cells block the interpillar gaps (Fig 1C, D).  

To further understand the changes in fluidic resistance that occur with filtration, we 

perform Monte Carlo simulations to predict filtrate volume over time. We consider the filtration 

device as an electric circuit70 (Fig 1A), where R is the fluidic resistance, Pinlet is the driving 

pressure, Patm is atmospheric pressure, and Q is the resultant fluid flow: 

𝑃𝑖𝑛𝑙𝑒𝑡 − 𝑃𝑎𝑡𝑚 = 𝑄𝑅. 
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As we observe experimentally that the number of occluded gaps increases linearly as a function 

of time (Fig 1D), we model the change in fluidic resistance as a function of the number of 

occluded gaps, 

𝑅(𝑡) ~ 
𝑅𝑖𝑛𝑖𝑡𝑖𝑎𝑙

(1 − 
𝑁𝑜𝑐𝑐𝑙𝑢𝑑𝑒𝑑

𝑁𝑡𝑜𝑡𝑎𝑙
)

 , 

where Rintial is the initial fluidic resistance, Noccluded is the number of occluded gaps, Ntotal is the 

total number of gaps, and t is time. The Monte Carlo simulation determines the filtrate volume 

per time by iterating through time steps of 1 ms (Fig 1E). As cells occlude gaps, the fluidic 

resistance increases, which is consistent with a modified Darcy’s Law28. Experimental 

measurements of filtrate volume obtained by filtration of OVCAR5 cisplatin-resistant (Cis-R) 

cells are in agreement with the simulations (Fig 1E), which validates this model describing the 

filtration process.  
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Figure 1. Defining the physical mechanism of HT filtration. (A) To simulate the filtration 
process, we consider the filtration device as an electric circuit, where R is the fluidic resistance, 
Q is the flow, Pinlet is the driving pressure, and Patm is atmospheric pressure. (B) Schematic 
illustration showing simulation setup whereby fluidic resistance is determined by the number of 
occluded (O) versus open gaps. (C) Images of the pillar array over the filtration time. Brightfield 
images are overlaid with fluorescence to show OVCAR5 Cis-R cells (labeled with Calcein-AM) 
trapped in the array of pillars. Scale, 100 µm. (D) Quantification of occluded 10 µm gaps in HTF 
devices over the filtration time course for OVCAR5 Cis-R cells filtered at a driving pressure of 28 
kPa and 0.5 x 106 cells/mL. Each data point represents mean ± SD from two independent 
experiments. (E) The percentage of the initial loaded volume collected as filtrate is defined as % 
Filtrate. Plot shows % Filtrate as a function of time. Triangles show experimental data obtained 
for OVCAR5 Cis-R cells filtered through 10 µm gaps at a driving pressure of 28 kPa for 90 s 
with 0.5 x 106 cells/mL. Each data point represents mean ± standard deviation (SD) over three 
independent experiments. Dashed line shows results of Monte Carlo (MC) simulations. 
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HTF device fabrication & operation  

Device fabrication. To scale up the filtration assay so that multiple cell samples can be 

measured simultaneously, we fabricate an array of 96 microfluidic filtration devices using soft 

lithography. The HTF device array consists of two polydimethylsiloxane (PDMS) layers, which 

are each fabricated separately and then bonded together (Fig 2A). One PDMS layer contains 

the individual filtration devices that are fabricated using standard photolithography methods to 

have a customized array of micron-scale gaps (Fig 2B-D) and a height of 10 µm71. To produce 

inlets that align with 96-well plates, we use an array of 96 x 250 µL pipette tips as a mold (Fig 

2A). The other layer contains the outlets and is fabricated by pouring PDMS onto a plain silicon 

wafer and casting holes using the same array of 96 pipette tips; the resultant holes are then 

aligned with the outlets of the devices in the upper layer. The two layers are covalently bonded 

together by exposing to UV light in the presence of ozone62,72. To enable insertion of tubing 

simultaneously across 96 wells, we custom-fabricate a spacer plate out of polylactic acid using 

3D printing (Fig 2E10), and affix outlet tubing that inserts into the molded outlets of the second 

PDMS layer. To load samples into the devices, we fabricate a loading plate that consists of a 

96-well plate with protrusions at the bottom of each well (Fig 2E6), which insert directly into the 

inlet holes of the top PDMS layer (Fig 2E9). The assembled two-layer HTF device array with the 

attached loading and spacer plates is inserted into a custom-built plate holder (Fig 2E8), which 

is placed on top of a standard 96-well plate (Fig 2E11) in which the filtrate is collected. While we 

demonstrate here fabrication of a 96-array device, the procedure is scalable and could be 

modified to generate arrays of devices that interface with a range of plate sizes from 24 to 384-

wells. Importantly, the customizable architecture of the HTF device enables fabrication of device 

arrays that have a range of gap sizes, which can enable rapid determination of the optimal gap 

size for filtration in a single experiment. 
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Device operation. To load the device, suspensions of cells in media are transferred into the 

loading plate using a 96-pin multichannel head. To apply uniform air pressure to drive cell 

suspensions through the filtration devices uniformly across the device array, we secure a 

pressure chamber (Fig 2E2) on top of the plate holder using clamps (Fig 2E5); placement of a 

rubber sealing pad (Fig 2E4) between the holder and the pressure chamber ensures air-tight 

sealing. To apply a well-defined magnitude of positive air pressure we use compressed air (via 

Fig 2E3), which is monitored using a pressure gauge (Fig 2E1), as displayed in Fig 2F. Upon 

applying air pressure, the cell suspensions are driven to enter into each device; the resultant 

filtrate containing cells and media that have filtered through the device is measured by 

determining the absorbance of phenol red (560 nm), which is contained in the cell media, as an 

indicator of filtrate volume; such measurements can be obtained using a plate reader in a 

multiwell plate format. To equate absorbance and filtrate volume, we generate a standard curve 

and confirm that the presence of cells in the media has no effect on absorbance (Supp Fig 1A), 

substantiating that absorbance measurements can be used to reliably report filtration volume. 
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Figure 2. Architecture of the HTF system. (A) Schematic showing fabrication of the two-layer 
PDMS array of devices that is fabricated by bonding together top and bottom PDMS layers. 
Inlets and outlets are molded using a standard 96-array of pipette tips. (B) Plan view of array of 
96 filtration devices. Inset shows: (C) single filtration device. Arrow indicates direction of fluid 
flow from inlet (I) to outlet (O). Scale, 1 mm. Inset shows: (D) array of pillars with defined 
interpillar gap size through which cells are filtered. Scale, 100 µm. (E) Schematic of HTF 
system: 1. Pressure gauge; 2. Pressure chamber; 3. Connection to pressure source; 4. Rubber 
sealing pad; 5. Clamps; 6. Loading plate; 7. Rubber sealing pad; 8. Custom fabricated plate 
holder; 9. PDMS array of devices; 10. Spacer plate with affixed tubing; 11. Standard 96 well 
filtrate collection plate. (F) Photo of the HTF system.  
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Results and Discussion 

Optimizing conditions for the HTF assay 

 We first demonstrate the process of optimizing HTF for a single cell type using OVCAR5 

Cis-R cells for proof-of-concept. A key parameter for cell filtration is the gap size. The 

magnitude of filtration at a given pressure and time depends on the probability that cells will 

occlude the gaps, which is determined by cell deformability and cell size relative to the gap 

size63,66. When the gap size is larger than the cell diameter, no deformation is required for cells 

to flow through the gaps. When the gap size is smaller than the cell size, cells are required to 

deform through the gap. With increasingly smaller gaps there is increasing probability of 

occlusion. We previously established filtration conditions for OVCAR5 Cis-R cells with 10 µm 

pore membranes that yield a filtrate volume of ~40-60%28; this is optimal to simultaneously 

detect samples with both increased or decreased filtration in a parallel assay. Therefore, we use 

HTF devices with 10 µm gap size to optimize cell density and filtration pressure for these 

OVCAR5 Cis-R cells. 

Since the number of cells flowing through the pillars per volume per time sets the rate of 

occlusion, filtration measurements are sensitive to cell density28. With a low cell density there 

are fewer occlusions and thus minimal changes to fluidic resistance, which precludes differential 

measurements between samples. By contrast, with higher cell densities, cells may cluster at the 

interpillar gaps, which can be observed over longer filtration times (Fig 1C); such clustering can 

result in decreased filtrate volume but may be sensitive to cell-cell interactions rather than single 

cell deformability. To determine the optimal cell density for filtration of human ovarian cancer 

cells, we assess the filtration of OVCAR5 Cis-R cells over a range of cell densities from 0.1 x 

106 to 3.0 x 106 cells/mL at a fixed filtration pressure and time (28 kPa, 90 s). With increasing 

cell density, we observe a reduction in absorbance indicating decreased filtrate volume (Supp 

Fig 1B); this is consistent with the higher probability of occlusion and subsequent increased 

fluidic resistance. With cell densities > 1.5 x 106 cells/mL, we find there are no further 
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observable changes in filtration, reflecting significant occlusion of interpillar gaps. At densities < 

0.3 x 106 cells/mL, we observe 88.5 ± 4.9% filtrate; since the dead volume of the device is ~44 

µL, this is the maximum measurable filtrate. Based on these findings, we determine the optimal 

cell density for filtration of human ovarian cancer cells is 0.5 x 106 cells/mL; at this density a 

sufficient number of occlusions occurs to yield a measurable filtrate while requiring the minimal 

number of cells.  

 Another essential parameter in filtration is the driving pressure, which drives fluid flow 

and thus impacts the number of cells that arrive at the pillars per unit time. The driving pressure 

must be sufficient to generate flow of cell suspension through the array of pillars, yet not 

excessive to completely filter the sample volume, which would preclude differential filtration 

measurements. To define the optimal driving pressure for OVCAR5 Cis-R cells, we conduct a 

pressure sweep from 14 kPa to 35 kPa. With increasing driving pressure, we observe increased 

filtration, with % filtrate values that range from 41.4 to 88.5% (Supp Fig 1C). The driving 

pressure for a particular experiment should be set according to the goals of the screen. For 

example, to design a screen where desired hits increase cell deformability, a control filtrate 

value around ~20% will ensure detection of compounds that result in the largest increase in % 

filtrate; to identify compounds that decrease cell deformability and thereby lower % filtrate, the 

control % filtrate should be ~80%. It is important to note that to rapidly optimize pressure, time, 

and gap size for a particular cell type, sections of the customized 96-device array can be used 

by temporarily sealing unused wells in the loading plate using laboratory paper tape. Moreover, 

while we show optimization of HTF parameters for OVCAR5 Cis-R cells, the settings can be 

readily applied to other cancer cell types with similar cell size distributions (cell to gap size ratio 

from ~1.3 to 1.8).  

 We next demonstrate the optimization of HTF to maximize the difference in readouts 

between 2 cell samples. As proof-of-concept, we establish conditions for HTF to distinguish 

between the OVCAR5 Cis-R and OVCAR5 Cis-S cells, which we previously found have distinct 
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filtration properties using the parallel microfiltration prototype device28. We first optimize driving 

pressure to maximize the difference in % filtrate between OVCAR5 Cis-S and Cis-R cells. The 

optimal driving pressure should maximize the difference in filtration between cell types within the 

range of ~7 to 88% filtrate, which is the dynamic range of filtrate measurements. To establish 

the optimal driving pressure for OVCAR5 Cis-S and Cis-R cells, we perform a pressure sweep 

from 14 kPa to 35 kPa at a fixed filtration time of 90 s (Supp Fig 1C). We find the Cis-R cells 

have higher % filtrate than Cis-S cells, consistent with our previous observations of the 

increased filtration of Cis-R versus Cis-S cells through the 10 µm-pores of a polycarbonate 

membrane28. As we observe the maximum difference in filtrate between OVCAR5 Cis-S and 

Cis-R at 28 kPa, we select this driving pressure for subsequent experiments. The observed 

differential filtration of OVCAR5 Cis-S versus Cis-R cells reflects a difference in how these cells 

deform through narrow gaps. A difference in cell size could impact filtration, however, 

comparisons of cell size distributions between Cis-S and Cis-R cells reveal no significant 

differences (Supp Fig 2A), indicating that cell size alone cannot explain the differential filtration. 

Cell physical properties also vary with stages of the cell cycle49,73, however, we find no 

significant differences in cell cycle stage between Cis-R and Cis-S cells (Supp Fig 2B).  

 

HTF is sensitive to cell deformability 

  To test the effects of cell deformability on filtration of OVCAR5 Cis-R and Cis-S cells, 

we pharmacologically perturb the cytoskeleton by treating cells with paclitaxel, which stabilizes 

microtubules and causes cells to be stiffer28,34,35. We find that treatment of OVCAR5 Cis-R cells 

with 0.1 µM paclitaxel results in a reduction of % filtrate to 23.5 ± 9.7% compared to vehicle 

control of 87.6 ± 4.9% (p = 5.3 x 10-4) (Fig 3B); this is consistent with increased cell stiffness 

following paclitaxel treatment. We also observe a smaller but significant reduction in filtrate of 

paclitaxel-treated OVCAR5 Cis-S cells from 34.1 ± 15.4% to 15.8 ± 5.8% (p = 9.0 x 10-4); this 

smaller effect may be attributed to the narrow range for decrease in filtrate absorbance in the 
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lower end of the dynamic range. We verify that paclitaxel treatment does not have a significant 

effect on size of the Cis-R and Cis-S cells, indicating that differential filtration of these paclitaxel-

treated cells reflects changes in cell deformability (Supp Fig 2C).  

 To confirm the distinct mechanical properties of the OVCAR5 Cis-R and Cis-S cells 

using an independent method, we measure the apparent elastic modulus (Ea), fluidity (β), and 

transit time (TT) of these cells through micron-scale constrictions of a microfluidic device using 

quantitative deformability cytometry (q-DC)61. We find that Cis-R cells have a ~21.9% lower Ea 

(Fig 3C, D) and ~10.0% increased β compared to Cis-S cells (Fig 3E, F), indicating they are 

more compliant (median Ea_Cis-R = 1.32 kPa versus Ea_Cis-S = 1.69 kPa , p = 1.4 x 10-8; median 

βCis-R = 0.33 versus βCis-S = 0.30, p = 3.9 x 10-6). Cis-R cells also exhibit a faster transit time 

through micron-scale constrictions compared to Cis-S cells (median TTCis-R = 15.0 ms versus 

TTCis-S = 34.8 ms, p = 3.9 x 10-33) (Fig 3G, H). Since measurements of Ea and β using q-DC are 

sensitive to the magnitude of deformation61, and the constriction size is fixed, these 

measurements could also be sensitive to cell size; however, we find no significant correlation 

between the measured cell diameters (d) and q-DC measurements (Pearson’s r: (Ea vs d)Cis-R_ = 

0.0, (Ea vs d)Cis-S = 0.0; (β vs d)Cis-R = -0.1, (β vs d)Cis-S = 0.0; (TT vs d)Cis-R = 0.0, (TT vs d)Cis-S = 

0.1). Taken together, these findings substantiate that differences in cell deformability can be 

detected by differences in % filtrate using HTF. 

Page 18 of 38Lab on a Chip



 19 

 
Figure 3. HTF is sensitive to cell deformability. (A) Differential filtration of human ovarian 
cancer OVCAR5 Cis-R and Cis-S cells and (B) OVCAR5 Cis-R and Cis-S cells treated with 0.1 
µM of the microtubule-stabilizing drug paclitaxel for 24 h prior to filtration through 10 µm gaps at 
28 kPa, 90 s, and 0.5 x 106 cells/mL. Data points in A and B represent mean ± SD from three 
independent experiments. Statistical significance is determined using student’s t-test. (C) 
Density scatter plots for measurements of apparent cell elastic modulus (Ea) using quantitative 
deformability cytometry (q-DC). Each dot represents a single cell. N > 700 per sample. (D) Box 
plots showing Ea measurements. (E) Density scatter plots for measurements of cell fluidity (β) 
using q-DC. Each dot represents a single cell. N > 700 per sample. (F) Box plots showing β 
measurements. (G) Density scatter plots for measurements of cell transit time (TT) using q-DC. 
Each dot represents a single cell. N > 1300 per sample. (H) Box plots showing TT 
measurements. Box plots show the 25th and 75th percentiles; whiskers denote 10th and 90th 
percentiles; and line is the median. Statistical significance is determined using the Mann 
Whitney U test. *** p < 0.001; ** p < 0.01; * p < 0.05.  
 
Resolving cell types based on differential filtration 

 To validate HTF to measure differences in filtration based on cell deformability, we 

investigate a set of three cell lines that represent both epithelial- and mesenchymal-like 
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phenotypes. EMT is implicated in cancer progression and metastasis, as mesenchymal-type 

cells tend to be more motile and invasive44. We and others previously showed that 

mesenchymal-type cells are more deformable than epithelial-type cells28,74. To investigate the 

filtration of epithelial- and mesenchymal-type cells using HTF, we compare human ovarian 

cancer (OVCA433) cells that are epithelial-type (OVCA433 GFP) and mesenchymal-type by 

transforming cells to overexpress genes (SNAI1, SNAI2) that are master regulators of EMT 

(OVCA433 Snail, OVCA433 Slug)28. 

 To determine HTF conditions that maximize the difference in filtrate between epithelial-

type control (OVCA433 GFP) cells and mesenchymal-type (OVCA433 Snail, OVCA433 Slug) 

cells, we first confirm the optimal interpillar gap size. Given the median cell size of 15 µm for 

OVCAR433 GFP, OVCAR433 Slug, and OVCAR433 Snail cells (Supp Fig 2D), we investigate 

filtration through devices with varying interpillar gap sizes from 6 to 14 µm within a single 

‘calibration’ experiment (Fig 4A). Our findings confirm that a gap size of 10 µm achieves the 

largest difference in filtrate volume between epithelial and mesenchymal-type cells at a fixed 

driving pressure of 28 kPa and 60 s filtration time (pSnail = 9.6 x 10-4, pSlug = 3.0 x 10-3) (Fig 4B). 

We observe no significant differences in cell size distributions for these cells (Supp Fig 2D), 

thereby excluding differences in size as a cause of the differential filtration. We find no 

significant differences in cell cycle stage among these cell lines (Supp Fig 2E), which could also 

impact cell deformability49,73. We also observe no differences in filtration of these cells with or 

without surfactant (Pluronics F-127) (Supp Fig 2F), which minimizes cell-PDMS interactions63; 

these findings are consistent with previous observations that the ability of cells to transit through 

micron-scale pores is largely determined by cell deformability rather than surface effects on 

these ~90 s timescales61,65,68,69. Another possible origin of the decreased filtrate of the epithelial-

type cells may be increased cell-cell interactions; however, we previously found that despite the 

higher E-cadherin expression of OVCA433 GFP cells compared to OVCA433 Snail and Slug, 

there were no significant differences in cell clustering on the timescales of these filtration 
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measurements28. Taken together, these observations suggest the increased filtration of the 

mesenchymal-type cells reflects their increased deformability. More broadly, this process of 

optimizing gap size to maximize resolution between samples within a single calibration 

experiment provides a framework for adapting HTF to new cell types and screening 

applications.  

To further investigate the applicability of HTF to other cell types, we conduct filtration 

experiments with human breast cancer cells including malignant triple negative (MDA-MB-468 

and MDA-MB-231) as well as immortalized benign (MCF10A) cells75. Given the similar size 

distributions of the breast and ovarian cell lines (Supp Fig 2A, D, G), we first tested the same 

HTF conditions as optimized for the ovarian cancer cell lines (10 µm gap, 28 kPa for 60 s). With 

these conditions, we observe a significant ~10.4 to 33.5% increased filtrate for malignant breast 

cancer cells compared to the benign cells (pMDA-MB-468 = 1.3 x 10-2; pMDA-MB-231 = 1.7 x 10-5) 

indicating that the malignant cells are more deformable than the benign cells (Fig 4C). These 

observations are consistent with previous reports that malignant human cell lines40,76,77 and cells 

from patient pleural effusions47 have a reduced elastic modulus compared to benign cells. We 

also confirm the effect of pharmacological perturbation of the cytoskeleton by treatment of 

malignant MDA-MB-231 cells with 0.1 µM paclitaxel, which results in a reduction of % filtrate to 

39.3 ± 10.3% compared to vehicle control of 66.4 ± 3.2% (p = 1.4 x 10-3) (Fig 4D); this is in line 

with the effect of paclitaxel on filtration of OVCAR5 Cis-R and Cis-S cells. We verify that the 

observed reduction in filtrate is not due to the effect of paclitaxel on the size of MDA-MB-231 

cells, indicating that differential filtration of paclitaxel-treated cells reflects changes in cell 

deformability (Supp Fig 2H). 

We additionally filter weakly metastatic prostate cancer (DU145) cells in parallel with 

highly metastatic cells that we generated by knockdown of the nuclear envelope protein, emerin 

(DU145 Emerin KD)78. As these prostate cancer cells have a similar size distribution as the 

other cell types (Supp Fig 2A, D, I), we also tested the same filtration settings as for the ovarian 
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cancer cells. We find that the highly metastatic cells with emerin KD have increased % filtrate 

(61.1 ± 13.9%) compared to the untransformed, weakly metastatic cells (17.0 ± 11.1%) (pDU145 

Emerin KD= 1.4 x 10-6) (Fig 4E). These observations using HTF are consistent with previous 

findings of altered nuclear mechanical stability with reduced levels of emerin79,80, including our 

previous study using the prototype PMF device81; notably, downregulation of emerin promotes 

malignant transformation of cancer cells81. Taken together, these observations confirm the 

application of HTF for screening cells that derive from distinct tissues.  

 

Figure 4. Using HTF to distinguish cell types. (A) Heat map of % filtrate for epithelial- (GFP) 
versus mesenchymal-type (Snail, Slug) human ovarian cancer (OVCA433) cells with different 
interpillar gap sizes in parallel. (B) % Filtrate versus gap size for OVCA433 cells. (C) Differential 
filtration of human breast cancer cells (MDA-MB-468, MDA-MB-231) and normal breast 
epithelial (MCF10A) cells. (D) MDA-MB-231 cells treated with 0.1 µM of paclitaxel for 24 h prior 
to filtration. (E) Differential filtration of human prostate cancer cells that are weakly metastatic 
(DU145) and transformed by knockdown 82 of emerin to be highly metastatic (DU145 Emerin 
KD). Filtration through 10 µm gaps at 28 kPa, 60 s, and 0.5 x 106 cells/mL for all cell types. Data 
points represent mean ± SD from three independent experiments and statistical significance is 
determined using student’s t-test. *** p < 0.001; ** p < 0.01; * p < 0.05. 
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Cell filtration is sensitive to cytoskeletal and nuclear perturbations 

 To establish the role of molecular mediators of cellular deformability in regulating 

filtration, we treat the EMT panel of human ovarian cancer (OVCA433 GFP, OVCA433 Snail, 

and OVCA433 Slug) cells with compounds that are well established to alter cell and nuclear 

mechanical properties and/or mechanosignaling pathways (Fig 5). Such pharmacological 

perturbations are commonly used to validate that a new mechanotyping technology is sensitive 

to changes in cell physical properties28,51,83. To perturb the cytoskeleton, we treat cells with 

compounds to inhibit actin polymerization (cytochalasin D), activate actin polymerization 

(colchicine), stabilize microtubules (paclitaxel), and inhibit myosin II activity (blebbistatin). We 

also treat cells with additional compounds that are known to alter cell mechanotype through 

signaling pathways that result in cytoskeletal changes including inhibitors of transforming growth 

factor (TGF)-β (SB43154) and the yes-associated-protein (YAP) transcription factor 

(verteporfin), which is implicated in cellular mechanosensing at the scale of tissues and 

organs84,85. To further investigate the effects of nuclear physical properties on cell filtration, we 

treat cells with the histone deacetylase inhibitor (trichostatin-A), which is established to make 

cell nuclei more deformable86.  

Using the filtration conditions established to maximize the difference in filtrate volume 

between the epithelial- and mesenchymal-type cells, the OVCA433 Snail and Slug 

mesenchymal-type cells exhibit 77.3 ± 5.8% and 80.2 ± 8.0% filtrate whereas the reference 

filtrate for DMSO treated OVCA433 GFP control, epithelial-type cells is 22.6 ± 4.4%. In a screen 

including these three cell types, it is thus possible to identify compounds that increase filtrate 

volume for the epithelial-type OVCA433 GFP cells and decrease filtrate of the mesenchymal-

type OVCA433 cells overexpressing Snail and Slug cells, which have reference filtrates of 

77.3% and 80.2% that are close to the upper limit of ~88% filtrate. 

As shown in Fig 5, we find that cytoskeletal-perturbing drugs consistently alter cell 

filtration. We first investigate actin, which is a major component of the cytoskeleton; the 
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organization and levels of filamentous87 actin are key determinants of cell deformability28,40. To 

inhibit polymerization of F-actin, we treat cells with cytochalasin D88; this results in a significant 

increase in % filtrate for the OVCA433 GFP cells to 81.6 ± 8.7% (p = 4.4 x 10-4), which is 

consistent with observations that inhibiting actin polymerization makes cells more 

deformable89,90. We also observe slight increases in filtrate for OVCA433 Slug to 86.7 ± 3.6% (p 

= 5.7 x 10-2) and OVCA433 Snail cells to 85.3 ± 6.6% (p = 8.3 x 10-2); the reduced effects of 

cytochalasin D treatment on the filtration of mesenchymal-type cells reflect the initial filtrates 

near the upper limit of 77.3% and 80.2% for OVCA433 Snail and Slug cells, which precludes 

measurements of larger increases in filtrate. By contrast, activating polymerization of F-actin 

with 10 µM colchicine91 induces a significant decrease in filtrate of mesenchymal-type cells to 

37.2 ± 2.9% for Snail and 39.4 ± 3.7% to Slug cells (pSnail = 1.5 x 10-3, pSlug = 1.7 x 10-3); these 

observations are aligned with previous findings of decreased cell deformability with this 

concentration of drug28,35,92. As the reference filtrate of OVCA433 GFP cells is 19.7 ± 3.3%, we 

do not detect any further significant reduction in filtration of these cells with colchicine treatment 

(Fig 5). Together these findings confirm the effects of actin cytoskeleton organization on 

filtration volume, which further validates HTF as a method to detect differences in cell 

deformability. 

Another major cytoskeletal component is microtubules. To stabilize microtubules, we 

treat cells with paclitaxel35,93. Following this treatment, we observe significant reductions in % 

filtrate for OVCA433 EMT-transformed cells to 15.3 ± 6.6% and 17.5 ± 5.8% (pSnail = 1.5 x 10-4, 

pSlug = 2.9 x 10-4), compared to vehicle treatment. We also find a smaller but significant 

decrease in filtrate of the OVCA433 GFP cells to 9.5 ± 2.9%, (p = 0.13 x 10-2), which is 

expected as the initial filtrate for these cells is already approaching the lower end of the dynamic 

range. These findings are aligned with previous results that paclitaxel decreases cellular 

deformability28,34,35. 
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Nonmuscle myosin II (NMII) is an important determinant of cell mechanotype as this 

protein crosslinks actin filaments and is implicated in generating physical forces that contribute 

to intracellular tension94-96. To determine the effects of NMII activity on filtration, we treat cells 

with the NMII inhibitor blebbistatin. We observe a slight increase in % filtrate for OVCA433 Snail 

to 86.0 ± 2.2% (pSnail = 7.2 x 10-2) and OVCA433 Slug to 84.5 ± 2.9% (pSlug = 8.6 x 10-2), 

indicating decreased cell deformability; these findings are consistent with previous reports that 

inhibiting NMII activity for cells in a suspended state causes them to be stiffer94, which may be 

explained by the reduction in myosin-mediated actin disassembly and remodeling97. There is no 

significant decrease in filtration of OVCA433 GFP cells with inhibition of NMII activity (p = 7.3 x 

10-2), suggesting that NMII activity may play a different role in regulating the mechanotype of 

epithelial-type cells.  

Two other pathways that regulate actin organization are mediated through TGF-β98,99 

and YAP100,101. Activation of TGF-β promotes actin stress fiber formation98,102 and EMT103,104. 

However, we find no significant changes in % filtrate of epithelial- and mesenchymal-type 

OVCA433 cells with the TGF-β inhibitor SB431542, indicating that inhibiting endogenous TGF-β 

activity does not affect cell filtration. These findings contrast previous studies that report 

increased cell deformability with activation of TGF-β105,106; however, in those studies, cells were 

grown in the presence of TGF-β supplementation, whereas we assess here effects of the 

inhibitor without additional activation of TGF-β. To investigate the role of YAP activity, we treat 

cells with the YAP inhibitor, verteporfin. Loss of YAP activity leads to stabilization of actin 

filaments via RhoA GTPase100,101. We find that verteporfin treatment reduces the filtration of 

mesenchymal-type cells to 66.3 ± 1.5% for OVCA433 Snail (pSnail = 6.2 x 10-2) and to 63.4 ± 

4.4% for OVCA433 Slug (pSlug = 2.2 x 10-2), which is consistent with a reduction in cell 

deformability due to YAP inhibition. We find no significant change in filtration for OVCA433 GFP 

with verteporfin (p = 9.8 x 10-1), which is likely due to the lower limit of the dynamic range. While 
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verteporfin may have additional off target effects107,108, these observations are consistent with 

previous reports that loss of YAP activity results in cell stiffening through increased F-actin100,101.  

We next investigate the effect of nuclear perturbation on cell filtration. The nucleus is 

typically the stiffest and largest organelle, which rate-limits the deformation of cells through 

narrow gaps109,110. To determine effects of nuclear structure on cell filtration, we treat cells with 

the histone deacetylase (HDAC) inhibitor, trichostatin A, which causes chromatin 

decondensation111,112. Treatment of cells with trichostatin A leads to increased % filtrate across 

both epithelial- and mesenchymal-type cells compared to vehicle control (pSnail = 9.1 x 10-2, pSlug 

= 7.2 x 10-2, pGFP = 3.7 x 10-4), indicating that the structural organization of the nucleus 

contributes to cell filtration (Fig 5). These findings are consistent with a previous report showing 

enhanced deformability of cell nuclei in intact cells with trichostatin A treatment86. Taken 

together, filtration of cells treated with this panel of compounds indicates that HTF is sensitive to 

perturbations of cytoskeletal and nuclear components.  

 

Figure 5. Effects of pharmacologic perturbations to cytoskeleton and nucleus on 
filtration. Treatment of OVCA433 (GFP, Snail, Slug) cells with a panel of drugs: actin 
polymerization inhibitor (cytochalasin D), actin polymerization activator (colchicine), microtubule 
stabilizer (paclitaxel), myosin II activity inhibitor (blebbistatin), TGF-β inhibitor (SB431542), YAP 
inhibitor (verteporfin), HDAC inhibitor (trichostatin A). All treatments at 10 µM for 24 h prior to 
filtration. Color represents filtrate relative to the DMSO treated cells. Filtration through 10 µm 
gap size at 28 kPa for 60 s, and 0.5 x 106 cells/mL. Statistical significance compared to the 
DMSO treated control is determined using student’s t-test. *** p < 0.001; ** p < 0.01; * p < 0.05. 
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To assess the quality of the HTF assay, we first characterize the variability in % filtrate 

measurements. The variability in % filtrate of media without any cells filtered through HTF 

device arrays is indicated by the SD of ± 6.6% with gap size of 10 µm, for 20 s at 28 kPa (Supp 

Fig 3A). For filtration of human ovarian cancer (OVCA433) cells we observe a SD of ± 10.6% in 

% filtrate across device arrays with a confidence interval of -0.6 to 20.4% using filtration 

conditions of 10 µm gap size, 28 kPa for 60 s and 0.5 x 106 cells/mL (Supp Fig 3B).  

To further assess the quality of the HTF assay for a higher throughput screen, we use 

the filtration results across the panel of cytoskeletal and nuclear perturbing compounds (Fig 5): 

this enables us to evaluate the Z’-factor, which provides a metric for evaluating the statistical 

robustness of filtration measurements based on the difference in maximum and minimum 

readouts113. The Z’-factor reflects the dynamic range of HTF measurements and also accounts 

for data variation as it is determined by the mean and standard deviation of drug treated 

samples with maximum (µc+ ,𝜎c+) and minimum (µc− ,𝜎c−) filtrates for each cell type, 

𝑍′ = 1 − 
(3𝜎𝑚𝑎𝑥  +  3𝜎𝑚𝑖𝑛)

|𝜇𝑚𝑎𝑥 – 𝜇𝑚𝑖𝑛|
. 

A value of Z’ > 0.5 is an indication of high assay quality. As proof-of-concept, we use 

data of OVCA433 GFP cells treated with cytochalasin D that exhibits maximum filtrate and with 

paclitaxel that results in the minimum filtrate; each of these compounds are established to 

increase and decrease cellular deformability, respectively28; the resultant Z’ = 0.61 for the 

OVCA433 GFP cells. We also determine Z’ values of 0.63 for OVCA433 Snail and 0.61 

OVCA433 Slug cells, reflecting the good quality of the HTF assay. While the Z’-factor provides a 

metric to evaluate assay quality without intervention of test compounds, we further assess the 

suitability of HTF for a higher throughput screen to identify hit compounds that modulate cell 

deformability by evaluating the Z-factor113,       

𝑍 = 1 −  
(3𝜎𝑠  +  3𝜎𝑐)

|𝜇𝑠  −  𝜇𝑐|
 , 
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where µs, 𝜎s are the sample mean and standard deviation, and µc, 𝜎c are the control 

mean/standard deviation. For an ideal HT assay, Z = 1, while 0.5 < Z < 1 indicates an excellent 

assay with greater likelihood of identifying statistically robust hits; by contrast, Z < 0 indicates 

that the screen will not yield any meaningful results. Envisioning a screen to identify hits that 

cause mesenchymal-type cells to become less invasive, and thereby less deformable, we 

consider the untreated cells as the control and the paclitaxel-treated cells as the sample; this 

yields Z = 0.34 to 0.40. For a screen to identify hits that cause OVCA433 GFP epithelial-type 

cells to become more deformable, we consider untreated OVCA433 GFP as the control and 

cytochalasin D-treated cells as the sample, which yields Z = 0.34. While these are relatively low 

Z-factors for a high quality HT screen, values of Z’ and Z > 0 indicate that the assay is functional 

and further optimization is needed to successfully configure HTF for a particular HT screen113.  

One strategy to improve the Z-factor is to reduce filtrate variability between devices; this 

could be achieved by optimizing device geometry to minimize the presence of air bubbles or 

other factors that cause variability in flow during filtration. Another strategy to increase the Z-

factor is to reduce the dead volume of the HTF setup; this sets the upper limit of measurable 

filtrate volume and thus dynamic range of HTF measurements. Into the future, injection 

molding114 or micromachining57,115 may enable more consistent fabrication of filtration devices 

that also eliminate the need for separate components such as loading and outlet plates. 

Additional future analysis is required to precisely define how sensitive HTF is to small changes 

in cell elastic modulus by filtration of calibration particles or cells treated with a compound that 

results in known changes in cell stiffness; in this way, the sensitivity of filtration volume to 

changes in elastic modulus could be precisely quantified. 

 As with all HT-screening methods, the power of HTF lies in the ability to rapidly screen 

samples using a readout that is quick, user-friendly, and inexpensive to obtain. Top ‘hit’ 

compounds can be identified based on their ability to induce the largest changes in filtrate 

volume. We show here that filtration is modulated by cell deformability. However, other factors, 
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such as cell size, cell cycle stage, cell-cell clustering, and density of the cell suspension, also 

regulate filtration. Validation of top hits in greater detail using secondary orthogonal assays can 

be used to select hits for the desired trait(s) that impact filtration.  

With the challenges in identifying effective treatment strategies for cancer, cell filtration 

provides an elegant way to screen cells in a way that complements specific molecular 

biomarkers, such as E-cadherin and vimentin for EMT-status116, EpCAM and MUC-1 for cancer 

stem cells117, or Ki67 for cell proliferation118. We show here that filtration is sensitive to the 

altered deformability of chemoresistant cancer cells as well as epithelial- versus mesenchymal-

type cancer cells, which have distinct mechanical properties74. Cancer cell deformability shows 

strong associations with invasion in many contexts29,40,77,119, and may have functional 

consequences in metastasis where cells are required to undergo large deformations25,110. 

Molecular mediators that regulate mechanotype also generate forces required for cell 

movement and shape changes120. Thus, HTF could be a complementary tool for drug discovery 

that harnesses cell deformability as a surrogate phenotype to rapidly evaluate the effects of 

drugs or novel genes to inhibit invasion. HTF could also be used to address basic research 

questions through a Crispr/Cas9 or shRNA screen to define molecular mediators of cell 

deformability. While we envision HTF is amenable to screening established cell lines and/or 

patient-derived cells, future efforts to scale down the device volume could enable testing of 

primary patient samples. A distinct advantage of HTF is that the assay requires minutes to 

assess cell deformability using filtration; by contrast, existing methods that screen based on cell 

invasion, motility, or even proliferation, require 10-100 hours per assay12,13,121. While HTF offers 

these unique advantages, complementary assays to measure other factors that may contribute 

to cell invasion/migration, such as adhesion122 and cell-cell interactions123,124, could be used to 

identify synergistic treatments. Future work will define the extent to which HTF may identify 

novel hits in the HT screening space relative to existing methods. 
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Conclusion 

Here we describe the HTF method, which provides a scalable platform for simultaneous 

measurements of cell filtration. We show that HTF captures differences in the filtration of 

different cell types, including malignant versus benign, cisplatin-resistant versus cisplatin-

sensitive cells, epithelial-type versus mesenchymal-type cells, as well as the effects of small 

molecules that alter the cytoskeleton and nucleus. As HTF evaluates the ability of single cells to 

passively deform through narrow gaps on the timescale of seconds to minutes, the method 

offers unique advantages that complement existing cell invasion assays which measure the 

ability of cells to actively migrate through narrow geometries125-127. Importantly, HTF bridges the 

gap in throughput between measurements of cell deformability and HT screening, which opens 

up opportunities to uncover novel molecules or pathways that regulate cell deformability. While 

we have demonstrated here the application of cell filtration to screen cancer cells, changes in 

cell physical properties are implicated in a range of diseases from blood disorders128 to 

neurodegenerative diseases such as Alzheimer’s129. Cell filtration thus has potential to be used 

as a scalable readout for drug discovery in diverse disease contexts.  
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