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Abstract

One of the key components for environmental risk assessment of engineered nanomaterials 
(ENMs) is data on bioaccumulation potential. Accurately measuring bioaccumulation can be 
critical for regulatory decision making regarding material hazard and risk, and for understanding 
the mechanism of toxicity. This perspective provides expert guidance for performing ENM 
bioaccumulation measurements across a broad range of test organisms and species. To accomplish 
this aim, we critically evaluated ENM bioaccumulation within three categories of organisms: 
single-celled species, multicellular species excluding plants, and multicellular plants. For aqueous 
exposures of suspended single-celled and small multicellular species, it is critical to perform a 
robust procedure to separate suspended ENMs and small organisms to avoid overestimating 
bioaccumulation. For many multicellular organisms, it is essential to differentiate between the 
ENMs adsorbed to external surfaces or in the digestive tract and the amount absorbed across 
epithelial tissues. For multicellular plants, key considerations include how exposure route and the 
role of the rhizosphere may affect the quantitative measurement of uptake, and that the efficiency 
of washing procedures to remove loosely attached ENMs to the roots is not well understood. 
Within each organism category, case studies are provided to illustrate key methodological 
considerations for conducting robust bioaccumulation experiments for different species within 
each major group. The full scope of ENM bioaccumulation measurements and interpretations are 
discussed including conducting the organism exposure, separating organisms from the ENMs in 
the test media after exposure, analytical methods to quantify ENMs in the tissues or cells, and 
modeling the ENM bioaccumulation results. One key finding to improve bioaccumulation 
measurements was the critical need for further analytical method development to identify and 
quantify ENMs in complex matrices. Overall, the discussion, suggestions, and case studies 
described herein will help improve the robustness of ENM bioaccumulation studies.

Environmental Significance Statement

While the potential for engineered nanomaterials (ENMs) to bioaccumulate has been the focus of 
substantial research attention, how best to conduct needed measurements has yet to be 
comprehensively evaluated for the broad range of organisms present in the environment. This 
analysis develops key recommendations for improving the quality of ENM bioaccumulation 
measurements during different steps of the measurement procedure, such as how to avoid artifacts 
in the analytical measurements in the organism tissue and environmental media, and unique 
considerations for different types of test organisms. The suggested strategies and discussion 
described herein will help to improve the robustness of ENM bioaccumulation measurements and 
promote the sustainable development of products utilizing ENMs.  
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Introduction

There is a broad range of potential applications of engineered nanomaterials (ENMs), 
materials with at least one dimension between 1 nm and 100 nm,1, 2 stemming from their novel or 
enhanced properties as compared to equivalent materials of larger sizes or conventional chemical 
form. Thus, it is anticipated that ENMs will be increasingly used in consumer products and for 
commercial applications in the future.3-5 To responsibly develop ENM-enabled products, it is 
critical to develop a comprehensive understanding of the potential environmental and human 
health risks that ENMs may pose during a product’s life cycle (i.e., manufacturing, usage, and 
disposal).6-9 

Regulatory decision making on potential environmental risks focus on the extent to which 
substances such as ENMs exhibit persistent, bioaccumulative, and toxic (PBT) behaviors. This 
highlights the importance of understanding the capacity for ENMs to bioaccumulate in organisms 
and subsequently transfer through and biomagnify within food chains. In addition, fundamentally 
understanding the target organs and absorption, distribution, metabolism and excretion (ADME) 
processes that together determine bioaccumulation extent and dynamics are important to 
identifying the hazards of ENMs to whole organisms, as well as to specific target organs, systems 
(e.g., digestive system), or organelles. 

As for conventional chemicals, it is recognized that an understanding of the toxicokinetics 
of ENM uptake is important for determining their behavior and risk. There is a broad range of 
studies in the nanotoxicological literature evaluating the bioaccumulation and biomagnification of 
various ENMs including carbon nanotubes (CNTs),10, 11 fullerenes,12, 13 graphene family 
nanomaterials (GFNs),14, 15 Au ENMs,16-18 Ag ENMs,19, 20 CuO ENMs21 and cadmium selenide 
quantum dots.22, 23 Results from these studies have often shown that ENMs behave differently from 
conventional bioaccumulative substances such as hydrophobic organic chemicals. For example, 
ingested ENMs may accumulate on or in gut tissues of organisms and are often not readily 
absorbed across epithelial surfaces for systemic circulation.11, 15, 24 Further, ENMs are likely 
absorbed by vesicular transport across cell membranes, rather than passive diffusion or facilitated 
uptake on solute transporters. Thus, the typical assumption for organic chemicals and metals of 
rapid absorption across the tissues and distribution into specific tissues or organelles (e.g., lipids 
for hydrophobic organic substances; inorganic biominerals for some metals) may not generally be 
applicable for ENMs.  While it is possible for terrestrial wildlife to be exposed through inhalation, 
there have not been studies on this topic to our knowledge relating to environmental exposure, 
except for the extensive literature in which rodents are exposed through inhalation to assess 
potential worker safety or consumer health risks.24-27 Therefore, this paper will mainly focus on 
ENM exposure in soil, sediments, or water. Further complicating our understanding of ENM 
bioaccumulation is the dynamic nature of ENM fate, with some ENMs releasing dissolved 
constituents21, 28, 29 and with some biota capable of reducing dissolved elements to an ENM form.  

While a large number of ENM bioaccumulation studies have been conducted, differences 
in the experimental methods used such as quantification method, exposure time, ENM 
physicochemical characteristics and associated transformation during exposure, and ENM 
dispersion methods, make comparisons difficult, even when the same taxa and same type of ENM 
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were tested. In addition, the terminology used among studies to describe bioaccumulation-related 
results is neither consistent nor standardized, which can lead to confusion when comparing the 
results of different studies. There may also be artifacts or biases when quantifying concentrations 
in organisms such as different gut voidance approaches or methods to remove gut contents from 
consideration, incomplete separation of the test species from suspended ENMs, and variations in 
methods for the removal of loosely attached ENMs from the outer surface by washing. Therefore, 
the value of many studies is to demonstrate the potential for bioaccumulation or biomagnification 
based on individual study conditions; extrapolating to real-world conditions outside of the 
laboratory depends on environmental measurements that can confirm that such potentials manifest 
in field conditions.

In this perspective, the overall aim is to assess the current literature on ENM 
bioaccumulation methods and describe best practices for making measurements to support 
comparability across ENM bioaccumulation studies. To accomplish this aim, we propose 
bioaccumulation terminology, describe relevant analytical methods, and offer guidance for 
conducting bioaccumulation studies for a number of different groups of test organisms. In addition, 
we describe key considerations for associated measurements, such as approaches to differentiate 
between ENMs remaining in the gut tracts of organisms and those absorbed by multicellular 
organisms after oral exposure. When available, we also describe strategies using the unique 
physiologies and behaviors of the organisms to provide additional insights into ENM 
bioaccumulation quantification. 

Bioaccumulation terminology, metrics, and considerations for ENM bioaccumulation test 
design

There are several issues to be considered in the vocabulary and quantification of ENM 
bioaccumulation. First, terminology from studying the bioaccumulation of other chemicals should 
be scrutinized for applicability, as common terms relating to physicochemical characteristics and 
transport processes differ for ENMs. Second, testing guidelines30-32 may recommend modeling 
approaches and bioaccumulation metrics without stating modeling assumptions. Before use, 
models should be evaluated to identify assumptions and their validity for ENMs. Issues related to 
ENM bioaccumulation measurements and metrics have been addressed before in the context of a 
specific type of ENMs10 and a specific organism33 but are discussed more generally here covering 
all types of ENMs and several organism groups. 

A non-exhaustive list of common terms used in the general subject of bioavailability and 
bioaccumulation is provided, and critically adapted for application to ENMs (Box 1). There are 
many other terms that are potentially of interest but not listed herein, including “bioaccessibility” 
and “bioactivity” which have been used in discussing ENMs in soils although they can also be 
applied to all environmental organisms and humans.34 In our listing of terms, we do not aim to be 
exhaustive, but rather to make suggestions based on synthesis across relevant sources, when and 
how common terms can apply to ENM bioaccumulation considerations.

In general, bioaccumulation is defined as the accumulation of a chemical in, or on, an 
organism from all sources including water, air, soil, sediment and food (Box 1).35 Bioconcentration 
(i.e., chemical accumulation in an organism from water only) is a process that contributes to 
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chemical bioaccumulation but can only be measured using controlled laboratory conditions.36 The 
concept of “bioconcentration” is based on lipid-water partitioning properties of hydrophobic 
organic chemicals. The applicability of equilibrium partitioning theory has been rejected for ENMs 
for multiple reasons.37, 38 For ENMs, organismal uptake routes and biotransformation are either 
unknown or occur via multiple pathways. As such, the use of the term “bioconcentration” for 
ENMs would be recommended only in limited occasions where, in well-controlled 

laboratory conditions, organisms are exposed to ENMs in the test medium without added 

food and active uptake of ENMs by ingestion does not occur. The term “bioaccumulation” 
is preferred, as it captures all potential ENM associations with organisms, including sorption to 
external surfaces and uptake via ingestion. As will be discussed in additional detail below, 
differentiating between internalized ENMs and those adsorbed to external surfaces is analytically 
challenging. Sorption to organisms as a specific ENM bioaccumulation mode is included since 
membrane-adsorbed ENMs have been shown to exert toxicity via released metal ions.39 

The calculation of a bioaccumulation parameter, such as either the bioaccumulation factor 
(BAF), bioconcentration factor (BCF) or the biomagnification factor (BMF), is useful for 
expressing the bioaccumulative potential of ENMs for the purposes of hazard assessment. 
Considering the possible ENM exposure routes and association modes with cells, tissues, and 
organisms described above, we recommend using two approaches for deriving bioaccumulation 
parameters in ENM studies: biodynamic models for representing ENM bioaccumulation in 
laboratory studies (“kinetic BAF” or BAFk) and the ratio of tissue or organism-associated ENM 
concentration to the concentration of ENM in the surrounding media (BAF) in laboratory, 
mesocosm, or field studies. Note that BAF is ideally measured under steady state conditions when 
ENM uptake and elimination rates are constant and steady state can be achieved within the lifetime 
of an organism.40 However, we are intentionally not constraining the definition to steady state 
conditions here, as such conditions may be observable under laboratory conditions but may not 
occur in environmental systems that are open and inherently dynamic. In contrast, in depositional 
sediment systems, steady-state conditions may occur.

In designing and interpreting bioaccumulation tests, both ENM and test organism 
characteristics need to be considered (Figure 1). For instance, different test organism sizes and 
ventilation rates, exposure duration (hours to months), exposure type (flow-through, static, or 
semi-static), feeding regimes, and elimination periods are several of the many variables that 
influence the outcome and interpretation of ENM bioaccumulation tests. Additionally, ENM 
physico-chemical factors and environmental variables affecting ENM fate determine the potential 
for ENM exposure, uptake and bioaccumulation in biota, as well as biotransformation in the 
environment and organisms,41 and thus should be considered when designing and interpreting 
bioaccumulation tests (Figure 1).

Organism exposure and ENM transformations in different media 

The form of a given ENM, which can change in different environmental media and over 
time, is critical to understanding its potential bioaccumulation by organisms (Figure 1). The 
transformations that ENMs undergo in different environment media have been thoroughly 
described.42-51 As a summary of the field, Lowry et al.45 discussed four broad types of 
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transformations including chemical, physical, biological and macromolecular interactions. From 
the perspective of transformations having the greatest impact on bioaccumulation, the three main 
processes affecting the transformations ENMs experience during exposure are agglomeration, 
dissolution, and chemical transformation (e.g., oxidation or reduction). While homoagglomeration 
and heteroagglomeration affect most ENMs in environmental media, dissolution is primarily 
relevant for ENMs composed of metals (e.g., quantum dots,52 CuO ENMs,21, 53, 54 and Ag ENMs19, 

55, 56).  The impact of these processes on bioaccumulation remains unclear but in general larger 
contaminants or agglomerated ENMs are considered less bioavailable than individual contaminant 
molecules/ions or individual ENMs.57  Furthermore, agglomeration generally leads to gravitational 
settling of particles,44 increasing their interactions with sedimentary and soil surfaces and 
associated organisms while reducing their bioavailability to pelagic organisms.58-61 
Disagglomeration may also occur in the environmental matrix or in the gut environment after 
intake, although these mechanisms are poorly understood.62 Dissolution also complicates our 
understanding of ENM bioaccumulation. For example, for metal ENMs, if bioaccumulation is 
observed by an organism, it is often unclear if the metal accumulated was delivered in the form of 
ENM or ionic metal. 

Like most particles in environmental media, ENMs are likely to agglomerate, especially at 
higher ENM or background particle concentrations and under saline conditions, leading to 
sedimentation of ENMs from aqueous solution to the benthos.  At higher concentrations, ENMs 
are more apt to collide and agglomerate, while high saline (i.e., ionic strength) conditions reduce 
the electrophoretic mobility of ENMs and also promote agglomeration.46, 63  Other variables 
influencing agglomeration include the ENMs’ surface charge, shape and size along with the pH 
and temperature of the aqueous media. For metal ENMs, coatings such as citrate and 
polyvinylpyrrolidone (PVP) are used to stabilize ENMs against agglomeration; for carbon, boron 
nitride and other hydrophobic ENMs, surfactants, synthetic polymers, and natural organic matter 
have been used as dispersing agents.64 However, the environmental stability of these coatings may 
vary as they can be lost due to environmental degradation (e.g., microbial or photodegradation) or 
replaced by other natural organic ligands.65-67 When ENMs undergo agglomeration, the exposed 
surface area of the particles declines, potentially resulting in decreased ENM-cell contact and thus 
bioavailability. Agglomeration can also reduce the dissolution rate for ENMs that have dissolvable 
components. 

Many metal ENMs will undergo some degree of dissolution that involves the release of 
ionic forms of the metal into the aqueous phase.52-54 The degree of dissolution is driven by the type 
of ENM including the elemental composition and the ENM size, shape, and surface coating as well 
as the media characteristics. For example, media pH, temperature, natural organic matter (NOM) 
concentration, availability of anions such as chloride or sulfide, and salinity will influence 
dissolution and also the fate of the released metal (e.g., ionic silver will often be sequestered by 
the chloride ions in seawater to form insoluble AgCl).19, 55 As suggested above, because of the 
composition and manner in which they were synthesized, carbonaceous ENMs such as single- and 
multi-walled carbon nanotubes (SWCNT, MWCNT), GFNs and fullerenes do not undergo 
dissolution in the same way as metal ENMs although there can be release of ions from metal 
catalysts if used in the ENM synthesis process.63, 68 

Chemical transformations of ENMs can occur in the natural environment and during ENM 
bioaccumulation experiments. For example, graphene oxide can be reduced to form reduced 
graphene oxide (rGO) by microorganisms,69, 70 and other GFNs can also be oxidized and degraded 
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under certain environmentally relevant conditions, which can decrease their bioaccumulation and 
also result in organismal exposure to degradation products.71 Carbon nanotubes can also be 
oxidized or degraded by environmental processes,72-75 although the molecular stability of CNTs 
often means that degradation requires relatively extreme conditions or is slow.75, 76 It is also 
broadly known that metal and metal oxide ENMs can be chemically transformed through oxidation 
and reduction processes.28, 77, 78

Relevant analytical methods

This brief overview of methods for ENM detection and quantification provides context for 
subsequent discussions of bioaccumulation measurement strategies for different types of 
organisms. It is essential during bioaccumulation experiments to make accurate quantitative 
measurements of the ENM concentration in the biota and also the matrix of exposure. This will 
enable the calculation of bioaccumulation metrics such as BAF values. More extensive reviews of 
quantification procedures have been recently published for carbon and metal-based ENMs.63, 79-81 
Since many of the methods differ between ENM types (carbonaceous ENMs (CNMs) or metal-
based ENMs), the relevant methods will be discussed separately. While some techniques can 
quantitatively detect various types of ENMs in organisms within certain parameters (e.g., above a 
certain concentration in organism tissue), they typically do not provide information about the ENM 
size distribution in the tissue. Also, many techniques do not distinguish between ENMs versus ions 
in the case of metal ENMs. Other techniques, such as many microscopic methods, can provide 
definitive identification of ENMs in tissues, but they are typically qualitative or semi-quantitative. 

Bioaccumulation of CNMs is often detected using their unique characteristics such as their 
thermal or spectroscopic properties. In laboratory studies, isotope labeling is a frequently used 
approach to quantify bioaccumulation of CNTs, GFNs, and fullerenes.14, 15, 60, 82-86 Unlike CNTs 
or GFNs which are typically highly polydisperse, fullerenes can be quantified using mass 
spectroscopic techniques such as high-performance liquid chromatography (HPLC) or liquid 
chromatography-mass spectrometry (LC-MS).87, 88 In the absence of isotopically labeled samples, 
it is often necessary to use extraction or separation steps to isolate CNMs from the sample matrix 
prior to analysis.59, 89-92 However, few studies have been conducted to develop these methods for 
CNMs other than for fullerenes and SWCNTs.79 This remains an important area for future 
research. There are some methods that can be used for CNT quantification in organisms without 
extraction, such as a microwave method93-96 and near-infrared fluorescence for SWCNTs.97, 98

Bioaccumulation of metal-based ENMs (e.g., Ag ENMs,99-103 ZnO ENMs,104 CuO 
ENMs21, 62, 105) is most often assessed using total elemental analysis after digestion (e.g. acid 
assisted) with mass spectrometry or spectroscopy techniques. These measured concentrations 
include the original ENMs and various aged and decomposition products, such as released ions 
and biogenic/transformed structures. A major challenge with this approach is that these techniques 
do not distinguish between the background concentration of the main element (except for 
isotopically enriched ENMs), bioaccumulation of dissolved ions released from the ENMs, and 
bioaccumulation of the ENMs themselves. Thus, also testing the bioaccumulation of the dissolved 
metal is usually needed.

For complex matrices such as soils and sediments, it is important to assess the relative 
availability of the different forms of metal or metal oxide ENMs (e.g., intact ENMs or dissolved 
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ions) in soil or sediment porewater or associated with soil or sediment particles, because ENMs in 
the porewater may be more bioavailable or easily transported in the environment.106 For plant 
exposures, a water-only (hydroponic) design enables the most straightforward ENM 
characterization, while characterization of ENMs in soils is more challenging as a result of the 
dynamic nature of ENM behavior in soil,107 particularly in the rhizosphere due to microbial 
processes and root exudation (although these processes would still occur to some degree in water-
only (i.e., hydroponic) exposures), and the complexity and heterogeneity of the soil matrix.108 
Information on the different forms that contribute to the total metal levels in soils or organisms 
can be obtained by analyzing the soils using a range of different pore water and weak extraction 
techniques such as sequential extraction105, 109 coupled with the use of filtration and/or 
centrifugation methods to separate particulate and dissolved species. However, the separation 
approach needs to be evaluated to determine if the procedure would unintentionally remove ENMs 
located in the pore water, confirm that specific steps can fully remove ENMs if desired, and to 
assess adsorption of ions or ENMs onto the sidewalls of the containers or to the membrane used 
for filtration. The resulting fractions can then be analyzed for metal content and possible 
speciation. Overall, filtering of extracts from more complex matrices (soil, sediment, tissues) may 
be difficult, because ions, ENMs, and other materials (e.g., NOM) may adsorb to the filter-
membrane. This may result in the capturing of smaller materials than expected based on the pore 
size cut-off of the filter used, and therefore may bias the characterization of the relative 
concentrations of the different forms of the ENM. Separation of ENMs from soils or sediments 
using field flow fractionation (FFF) has also been shown to be effective in certain situations.110, 111 
Additional discussion regarding quantification approaches for ENMs in soils, sediments, and 
organisms and discussion related to spiking ENMs in soils are provided in the Supporting 
Information. 

Stable isotope-enriched metal ENMs have proven useful for assessing the fate and 
biological uptake of ENMs, especially those based on elements that have high background levels 
in soil and biota. Studies with isotope-enriched ENMs can be conducted at environmentally 
relevant concentrations, because elements sourced from such ENMs can be readily separated from 
the natural background.112 For example, nominal concentrations up to 6400 mg/kg soil were used 
in one bioaccumulation study with typical ZnO ENMs,113 while isotopically enriched Zn allowed 
for detection of differences compared to the background Zn in soils at a concentrations of only 5 
mg/kg to 10 mg/kg soil.114 However, use of isotope-enriched ENMs does have some limitations. 
For example, by itself isotope-based discrimination cannot provide information on the ENM form, 
since, for example, it will not be known whether the isotopes remain present in particles or have 
formed free ionic species.114 In some cases, isotopic labelling approaches may be used to 
distinguish between intact ENMs and dissolved ions released from ENMs through constraining 
the isotopic compositions of elements taken up in dissolved form where there is a dissolved 
background of that element with natural isotopic abundance.115 Dual labelling strategies may 
provide possible insights into ENM fate and bioavailability when used in different forms.116 Prior 
to the use of stable isotope-enriched ENMs, it should be confirmed that uptake kinetics of the 
different forms of the ENM are similar for the different isotopes.
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Another promising approach to characterize metal-based ENMs in organisms is single 
particle inductively coupled plasma-mass spectrometry (spICP-MS), a technique that can provide 
size distributions, mass concentration, and number concentration of ENMs in suspensions and 
distinguish between ENMs and ions.80, 117-122 However, this technique has only been used in a 
limited number of ENM bioaccumulation studies and additional research is needed to assess 
potential biases from ENM extraction processes.121, 123-127  Additionally, this technique determines 
particle size based on assumed stoichiometry and crystal structure of particles, and the ENM size 
detection limit is relatively high for some elements.29, 128 Recently, the use of spICP-MS has also 
been optimized to characterize and quantify metal ENMs (concentrations and size distributions) 
in soil129 and soil organisms.20 A key component of this approach is to distinguish ENMs from 
ionic background concentrations, which requires an optimized dilution of the extracts.129 
Employing spICP-MS for the detection of ENMs in biota may be complicated by the fact that 
organisms may form biogenic nanostructures of the metals released from ENMs, a finding recently 
shown using transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy 
(EDS) for earthworms exposed to silver ENMs.20 The assumptions of the assumed stoichiometry 
and crystal structure for spICP-MS data interpretation are likely not met in such cases. Therefore, 
particles detected in the organisms may not be the same particles to which the organisms were 
exposed. In this case, it is essential to also perform spICP-MS analyses on control organisms 
exposed to ions, which can also contain nano-sized particles of biogenic origin.20

Microscopic approaches can provide an alternative or additional methodology to verify the 
bioaccumulation of ENMs in tissues and cells. However, there are challenges related to providing 
quantitative information about the mass, particle number, or concentration in the biological sample 
from microscopic images. Also, microscopy in general can be limited by the ability to locate ENMs 
within the matrices when the concentrations are low. Nevertheless, EDS can be used for some 
ENMs to provide elemental information about the particles observed when using scanning electron 
microscopy (SEM) or TEM. The confidence in microscopic measurements of ENM 
bioaccumulation can be strengthened by comparing results to those obtained using mature 
orthogonal measurements such as total elemental analysis when applicable. Additional limitations 
for analysis using EM are time and labor-consuming sample preparation, and the potential for 
introduction of artifacts in the samples. In addition to common artifacts like osmium-containing 
deposit formation in the cells after osmium tetroxide post-fixation, ENM-specific artifacts have 
been reported in studies with Ag, ZnO, and MgO ENMs.130 Ag ENMs were shown to react with 
osmium tetroxide, while staining with uranyl acetate and lead citrate resulted in dissolution of ZnO 
and MgO ENMs. Thus, it was recommended to test the reactivity between the ENMs and the 
staining reagents, confirm observed particles by EDS, and use SEM in addition to TEM to confirm 
the position of ENMs in the sample.130 Nevertheless, EM methods have been extensively used to 
uniquely provide visual evidence of bioaccumulation for a wide range of ENMs such as cerium 
oxide,131 ZnO,131  TiO2,132 carbon nanotubes,11, 133-135 graphene family nanomaterials,14, 24 and Au 
ENMs136, 137 in a range of species. EM methods can also provide key information about the 
distribution of ENMs within cells such as intact CdSe QDs that have been biomagnified,23 
information that can be challenging to obtain using other approaches.
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X-ray absorption spectroscopy (XAS) is a technique that can obtain definitive information 
about the chemical form of metals in biological samples and can differentiate between the 
dissolved ions, metal or metal oxide ENMs in the initial form used to dose cells or organisms, and 
transformed ENMs that may have been produced.138-140 Overall, XAS is perhaps the most 
frequently used technique to characterize transformations of ENMs in complex matrices such as 
soils141-143 and biological matrices136, 140, 144, 145 and to characterize certain types of transformations 
in aqueous media such as sulfidation.146-149 XAS is available at synchrotron user facilities and thus 
not for routine analysis, yet there are many synchrotron facilities worldwide. XAS measures the 
local coordination environment of metal centers and the presence of an ENM is inferred from this. 
The smallest probe size for beamlines capable of performing XAS is ≈ 30 nm, which can enable 
localization of particles within tissues and provide information about the states of those particles 
such as if they have been transformed; for example, ENM dissolution can be inferred in cells from 
the oxidation state of a released component metalloid and its NP form.150 Assumptions that 
particles are in nanoparticulate form based on local coordination environment of metal atoms 
determined by XAS must be justified using deductions based on the XAS spectra or orthogonal 
measurements136 such as EM and EDS.150

Given that artifacts and biases can impact some measurements, orthogonal approaches are 
needed wherever possible to provide multiple lines of evidence for quantification and visualization 
of accumulated ENMs.29, 151 For example, three orthogonal techniques (scanning TEM (STEM) 
with EDS, spICP-MS, and ICP-optical emission spectroscopy (OES)) were utilized to assess 
bioaccumulation of TiO2 ENMs by hydroponically grown plants.123 STEM was coupled with EDS 
analysis to visualize the distribution and confirm the elemental composition of TiO2 ENMs inside 
the plants tissues; a similar approach was used for analysis of TiO2 ENMs in protozoans.132  ICP-
OES analysis was performed to determine the bulk elemental concentration of Ti, while spICP-
MS was used to analyze ENM size distribution inside plant tissues.123 Two plant digestion 
procedures (i.e. acid vs. enzymatic digestion) were also compared regarding their effects on the 
spICP-MS analysis. A similar approach was applied to quantify earthworm uptake kinetics of 
different forms of Ag-nanomaterials (including those biogenically formed from accumulated 
ions).20

Evaluation of detection limits for different analytical methods 

The detection limit of a quantification method impacts bioaccumulation methods because 
lower concentration detection limits will improve quantification of the exposure dose and 
concentration in the biota, enabling testing at lower and more environmentally relevant ENM 
concentrations. Decreasing the detection limit will also enable better differentiation between 
ENMs in biota versus the background from other potentially interfering compounds. This is 
especially important for ENMs composed of elements which are present at a high concentration in 
the environment, for example Cu, and for some CNMs.

The lowest achievable mass detection limit when quantifying ENMs in environmental 
matrices—for many analytical techniques—will be similar to that achieved when using the same 
technique to quantify the element comprising the ENM. For example, elemental techniques based 
on measuring carbon to quantify CNMs (e.g., total organic carbon analysis or thermal optical 
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transmittance) will have a lowest achievable detection limit at the concentration for detecting total 
carbon.63, 79, 152-154 A similar relationship exists for techniques based on elemental concentration 
measurements of metal-based ENMs (e.g., ICP-MS). An exception is spICP-MS, which can detect 
individual ENMs as a result of the substantially shorter dwell times (50 µs to 10 ms) compared to 
total elemental analysis (approximately 300 ms). Since a spike in the intensity signal is detected 
in this shorter dwell time windows, spICP-MS has far lower mass detection limits than those for 
total elemental analysis.117, 120 In general, the ENM size and concentration detection limits need to 
be determined on a case-by-case basis for each ENM and matrix combination and depend upon 
the sensitivity of the instrument to distinguish the ENM from the matrix among other 
considerations. To further investigate the recovery and detection limit for a particular ENM in a 
test organism, it is possible to spike a known mass (often applied as a volume of an ENM 
suspension with a known concentration) or range of masses directly to a mass of organism tissue 
similar to the mass that will be used in the experiments, and then perform the analytical procedure 
including any sample digestion steps.91, 121, 124 However, it is possible that this approach may 
overestimate the recovery and detection limit if internalization of the ENM within the tissue or 
cells would lower the recovery of or otherwise bias the analytical method. Furthermore, dissolution 
of metal ENMs in organisms would increase the ionic background concentration, potentially 
increasing the smallest ENM size that can be detected.

Theoretically, microscopic techniques such as EM could be used to detect a single ENM 
particle in an organism. However, detection is not the same as quantification since the latter 
requires understanding the detection limit if comparative analysis is a goal. In practice, the 
detection limit (particle concentration of an ENM in a volume of tissue or number of cells) in a 
specific matrix depends on several factors such as the capacity of a particular microscopic 
technique to differentiate the ENM of interest from other natural or incidental particles and other 
materials in the matrix including avoiding false-positive or false-negative results, the number of 
cells or area of tissue analyzed, and the acquisition of enough visual information in two dimensions 
such that a three dimensional impression of ENM distribution in tissue can be acquired. The first 
two challenges are also present for other scenarios where TEM is used quantitatively such as for 
the standard method for determining asbestos concentrations in air samples155 or for counting the 
nanoparticle number concentration in a suspension.156 In studies assessing whether an ENM can 
be detected in a biological matrix after exposure, it is not possible to determine the detection limit 
from the information provided unless the area of tissue analyzed is reported. For the asbestos 
quantification method, a known area (determined by the number of grids viewed) are analyzed, 
allowing for calculating the detection limit. Without a similar approach to ENM quantification, it 
is infeasible to statistically relate the lack of observing an ENM in the tissue to the ENM 
concentration in that tissue. Thus, a recommendation for EM, if it is to be used quantitatively, is 
to attend to establishing the NP detection limit. Further, attention to the three-dimensional nature 
of biological specimens with their bioaccumulated ENMs would be needed, such as by imaging 
numerous sections representative of the tissue and arriving at a statistically defensible scheme for 
assembling data across sections into a model of the whole tissue specimen.

Subcellular separation approaches
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One approach that can be used to better understand ENM bioaccumulation at the subcellular 
level (e.g., concentration of an ENM associated with organelles or metallothionein-like proteins) 
is to perform a subcellular separation technique.127 This data can improve the potential for 
toxicokinetic modelling by supporting the selection of appropriate multi-compartment models. 
Multiple subcellular fractionation techniques have been published for plants and other 
multicellular organisms.127, 157 This information may be informative in understanding toxicity 
mechanisms and the potential for the ENMs to exert toxicity through different adverse outcome 
pathways. For example, internalization of metals in biota reveals the internal distribution processes 
that occur during metal accumulation, and may, therefore, provide information on metal toxicity 
and tolerance after exposure to ions or metal-based ENMs.157-160 When applying subcellular 
fractionation for metal-based ENMs, measuring the metal concentration both as the total body 
burden and in subcellular fractions as a means to assess methodological losses (i.e., comparing the 
total body burden and the sum of the metal in each of the subcellular fractions) can reveal if an 
acceptable recovery is obtained. Similar measurements should be performed for CNMs. 

There are a number of steps needed for the analysis of tissue compartmentalization. First, the 
organisms or tissues need to be homogenized, and then the homogenate is subjected to a 
fractionation procedure such as differential centrifugation. One significant potential complication 
is if the homogenization process resuspends ENMs, such as those located in the cytosol. These 
suspended ENMs could then potentially adsorb to other cellular components during the separation 
steps or be removed from the supernatant by differential centrifugation steps especially if ENM 
agglomeration occurs. Therefore, appropriate control measurements need to be included such as 
performing the separation steps with dispersed ENMs added directly to the extraction buffer. In 
addition, one should conduct the homogenization process on an unexposed organism, spiking in 
dispersed ENMs, and then perform the extraction process.158 There is a possibility that the 
adsorption of a large number of dense ENMs could influence the separation of different organelles 
if there is a sufficiently large change in density of an organelle to cause it to be removed in a 
sequential differential centrifugation procedure at a different step. It may be possible to perform 
calculations using Stokes’ Law to theoretically estimate the potential for this to occur using a 
worst-case scenario such as by estimating the maximum potential loading of the ENMs onto each 
cellular fraction. However, performing this calculation would require information about the 
buoyant density and diameter of the organelles and of the ENMs. In addition, ENMs in cells may 
have their buoyant density decreased as a result of interactions with biomolecules.161 It is possible 
to compare results obtained from a subcellular separation process with orthogonal methods such 
as microscopic analysis using EM13, 158 or Raman spectroscopy.162 One approach to avoid some of 
the issues with sequential differential centrifugation approaches would be to use density gradient 
centrifugation since only a single centrifugation step is typically performed. Density gradient 
centrifugation separations rely on the use of centrifugal force to separate particles of different sizes, 
densities, and masses; larger and denser particles sediment at faster rates than less dense, smaller 
particles.163 It is possible to estimate the conditions that should be used for density gradient 
centrifugation using Stokes’ Law as described above if the relevant information is available.164 To 
facilitate identification of the ENM-containing subcellular fraction using density gradient 
centrifugation, using dye-labeled ENMs has been proposed.165 More information about density 
gradient centrifugation (e.g., density of ENMs and commonly used media) is provided in the 
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following section when discussing the separation of single-celled organisms and ENMs.

Case studies

Given the different considerations related to making accurate and robust bioaccumulation 
measurements for various species (Figure 1), multiple case studies will be discussed. Single-
celled organisms will be evaluated separately from multi-cellular species given that there are 
some important considerations for bioaccumulation measurements based on the size and 
complexity of the organism. In addition, plant species will be discussed separately from other 
multi-cellular organisms, reflecting differences in their physiology and also specific exposure 
considerations for studies between multicellular plants and other species. Descriptions of how to 
prepare and characterize the ENM exposure media (water and soil as examples) are provided in 
the Supporting Information.

Single-celled organisms 

To examine bioaccumulation in single-celled organisms, it is important to consider 
overarching topics that are relevant for multiple species such as separating them from suspended 
ENMs and considerations related to bioaccumulation by individual cells or cell populations. To 
provide more specific examples about how this information can be utilized, case studies are also 
provided for single-celled organisms without a cell wall and for biofilms.

Separation of single-celled organisms from suspended ENMs

For analytical techniques such as confocal microscopy,166, 167 coherent anti-Stokes Raman 
scattering microscopy,168 hyperspectral imaging,169-171 X-ray fluorescence,172, 173 or secondary ion 
mass spectrometry,174 separation steps may not be critical or necessary as the detection capabilities 
of these instruments allow for penetration past the cell surface without destruction of the organism 
prior to analysis and may allow for distinguishing between particles on the cell surface versus 
those that are internalized. On the other hand, many techniques that provide quantitative 
information on bioaccumulation such as the total elemental analysis methods described above 
require separation of the cells from suspended ENMs prior to analysis. This is critical because 
insufficient separation of cells and suspended ENMs can lead to biased bioaccumulation 
measurements since suspended ENMs will be mistakenly interpreted as being associated with the 
cells. 

When separating ENMs from suspended cells using filtration or centrifugation, the primary 
focus is separation, while a secondary purpose can be to dislodge surface-attached but not 
internalized ENMs.121, 169, 172, 175 Repetitive rinsing and differential centrifugation steps have often 
been applied to algae and bacteria before quantification of the cell-associated ENMs.39, 150, 176  In 
studies with protists and algae, repetitive centrifugation, washing with clean medium and filtration 
though a > 1-µm pore size filter have been applied with similar aims. Some authors have shown 
that the filtering and rinsing approach is efficient in removing the loosely bound ENMs from cells 
by confirming that additional washes do not reduce cell-associated ENM concentrations,177 
especially when the ENMs are well dispersed.178 However, these simple rinsing procedures may 
not be sufficient to remove suspended particles or their agglomerates from single-celled organisms 
that could be in the same size range as ENM agglomerates. To further assess ENM removal using 
these approaches, it may be helpful to perform experiments where the cells and ENMs are mixed, 
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and then the separation step immediately performed to assess the extent to which ENMs are fully 
removed. This control experiment revealed a lack of full ENM removal with several rinsing steps 
of multicellular nematode Caenorhabditis elegans,121 although it is unclear if a similar result 
would be obtained for suspended cells. For larger or agglomerated ENMs, alternative approaches 
may be required. For example, the mobility of ciliated protozoa can be utilized in separating 
unicellular organisms from the pellets of CNTs: after pelleting the samples by centrifugation, 
Tetrahymena thermophila were allowed to swim out of the pellet into the supernatant prior to 
collection.179 If it is critical to determine if surface-attached ENMs have been removed, it is 
possible to evaluate the outer surface of a statistically sufficient number of exposed organisms 
using SEM or TEM to assess the presence of ENMs. 

Recently, alternative separation strategies such as the use of density gradient 
centrifugation, a technique commonly used to achieve size separation and selectivity of ENMs in 
the post-synthesis and purification steps,180-184 have been implemented to separate unassociated 
ENMs from organisms in cases where water or media rinses and differential centrifugation were 
found to be insufficient.82, 164, 185 Media of particular densities can be selected to enable separation 
of the ENMs and organisms based on either their size and mass (rate-zonal centrifugation) or solely 
on density (isopycnic centrifugation).164 Rate-zonal centrifugation is similar to differential 
centrifugation in the sense that the sedimentation speed of the particles depends on their size and 
mass. The advantage of this approach is that it allows for complete separation of smaller from 
larger particles121 unlike in differential centrifugation where cross-contamination of particles of 
different sedimentation rates may occur.186 In rate-zonal centrifugation, the cells and ENMs form 
distinct zones when moving down the density medium as the faster sedimenting larger and heavier 
particles move ahead of the slower ones.121 Since the density of the gradient medium is lower than 
the density of the cells and ENMs, the sample components will pellet if centrifuged for a 
sufficiently long period. Thus, selecting the centrifugation time and force is crucial for optimal 
separation.164 In isopycnic separation, the density of the medium must be in the range of equal to 
or greater than the density of the sample components so that the cells and ENMs remain in the 
media layer equal to their buoyant density.187 Important factors to consider in choosing a suitable 
density gradient medium include the following: (i) biocompatibility to avoid adverse impacts on 
cell physiology, behaviors, and viability; (ii) sufficient solubility to produce the range of desired 
densities; and (iii) easy removability from the purified cells. To optimize this procedure, certain 
organisms may require gentle centrifugations speeds, while others do not. The density ranges for 
the most prevalently used gradient media, species that are suitable for use with this separation 
technique, and the density ranges reported for ENMs are highlighted in Figure 2. If purified 
organisms are intended to be used in further experiments, such as trophic transfer tests, 
optimization of the centrifugation time is especially important to ensure complete separation while 
keeping the centrifugation time short enough not to compromise the viability of the organism. 
Theoretical approaches based on Stokes’ Law have proved useful in optimizing centrifugal times 
and assessing the likelihood of effective separations in density gradient centrifugations.164 
Calculating the theoretical minimum diameters of the particles that would sediment can guide the 
optimization of both differential and density gradient centrifugation procedures. However, it must 
be noted that possible discrepancies between the theoretical and experimental results should be 
considered in cases where the density gradient medium is expected to interact with cell surfaces 
or permeate the cell membrane, such as with sucrose,164 or when coating with biomolecules may 
change the buoyant density of ENMs.161 Depending on the size, mass and buoyant density of the 
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particles to be separated, a sequential separation approach that combines differential, size- and 
buoyant density-based centrifugation may be needed. 

Considerations regarding bioaccumulation measurements of individual cells and cell 
populations

The bioaccumulation assessment of ENMs in microorganisms usually involves planktonic 
cultures composed of hundreds of thousands to millions of single cells. Unlike tests with larger 
organisms, such assays enable population-level measurements. Microbial studies offer a unique 
opportunity of evaluating ENM bioaccumulation across thousands of individuals as well as 
multiple generations.188, 189 ENM bioaccumulation measurements using growth assays, sampled at 
different time points, can provide valuable information on the ENM content associated with the 
cells at different population growth stages. It has been reported that uptake of ENMs by eukaryotic 
cells can be influenced by their cell cycle phase.190 ENMs that are internalized by cells or 
associated with the cell membrane are split between daughter cells when the parent cell divides. 
Consequently, in a cell population, the concentration of ENM in each cell varies depending on the 
cell cycle phase. Similarly, association of ENMs with prokaryotic cells in a growing culture varies 
depending on the growth phase: in the phase of fast division the bioaccumulation rate of ENMs 
could be overpowered by the rate of cell division such that the concentration of ENMs in or on 
individual cells could be diluted in a manner similar to the growth dilution that can occur in plants. 
Therefore, it is important to consider cell cycle phase (eukaryotic microbes), growth phase 
(prokaryotic microbes), and thus growth rate, when interpreting the bioaccumulation of ENMs in 
single-celled organisms.

Often, the addition of ENMs to single-celled organism cultures results in 
heteroagglomeration. For example, cell agglomeration has been noted when co-incubating 
CNTs164 or positively charged ENMs191 with bacteria, or CNTs192 or alumina-coated SiO2 
ENMs193 with algae. Such heteroagglomeration complicates bioaccumulation measurements 
because (i) determination of cell numbers by direct counting is typically not possible and other 
approaches, such as ATP concentration of the cells194 or photosynthetic activity of the algae193 
instead need to be employed, although the potential for artifacts in cell viability assays is well 
known and appropriate controls should be used;28, 195, 196 (ii) separation of cells and ENMs not 
tightly associated with the cells is challenging as described above; and (iii) heteroagglomeration 
becomes an issue in single-cell analysis methods such as flow cytometry and single cell analysis 
by ICP-MS. Application of the latter methods for quantification of ENMs associated with cells is 
discussed in more detail below.

Conventional analytical methods used for quantification of ENMs associated with cells 
(e.g., ICP-MS, ICP-OES, liquid chromatography/mass spectrometry, fluorimetry, ultraviolet-
visible (UV-Vis) spectroscopy) require harvesting at least several hundred micrograms of 
biological material to provide a sufficient mass for analysis. These analyses yield an average ENM 
concentration in the cell population. While some of these methods (ICP-MS and ICP-OES) enable 
detection of trace metal concentrations, they typically do not provide information on ENM 
distribution among the cells in the population. However, flow cytometry and single cell cytometry 
by time of flight (TOF) ICP-MS can provide information on the distribution of ENMs in hundreds 
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or thousands of individual cells.197, 198 Techniques used for ENM quantification at the single-cell 
level, including flow cytometry, have been recently reviewed from a nanomedicine viewpoint, 
focusing on ENM bioaccumulation in mammalian cell lines.199

In flow cytometry, ENM bioaccumulation is quantified either based on fluorescence (in the 
case of fluorescent or fluorescently-labeled ENMs) or other optical properties of ENMs. 
Measurement of non-fluorescent ENMs is achieved based on side scattering (SSC) intensity that 
correlates with changes in cellular granularity due to the uptake of ENMs. Flow cytometry as a 
semi-quantitative technique has been successfully used for measuring uptake kinetics of quantum 
dots (QDs) in protozoa T. thermophila200 and algae Ochromonas danica167 and of TiO2 ENMs in 
Paramecium caudatum.201 One of the challenges in using flow cytometry for measurements of 
single-celled species exposed to ENMs is avoiding misinterpreting signals from ENM 
agglomerates as those from ENM-coated cells. The latter is especially important with bacteria or 
small protists. It may be possible to minimize this impact if separations are performed first as 
described above. Aggregated cells, heteroagglomerates of cells and ENMs, and ENM association 
with cell debris can also complicate analysis and signal interpretation. It is also important to note 
that some ENMs have been shown to cause false-positive or false-negative results in a viability 
assay to test for apoptosis or necrosis using flow cytometry and thus careful control experiments 
also need to be included for bioaccumulation measurements to avoid artifacts.202 

More recently, ICP-MS has been developed and commercialized for the analysis of single 
cells.203-205 Similar to spICP-MS, in single-cell ICP-MS (SC-ICP-MS) the cell suspension is 
nebulized through an ICP-MS sample introduction system, each cell is ionized, and the metal ions 
originating from a single cell are detected. Considering that SC-ICP-MS is a new technique, it is 
not surprising that the applications for ENM quantification are still in the development phase and 
relevant literature is limited. SC-ICP-MS has been successfully applied for the detection of QDs 
in mouse cells206 and Au ENMs in algae,204 and laser ablation ICP-MS (LA-ICP-MS) has been 
used for measurement of Au and Ag ENM bioaccumulation by and within mouse cell lines.207, 208 
Considering that concentrations of trace elements in various other environmental single-celled 
species have been studied using SC-ICP-MS,209-211 there is substantial promise for the use of this 
technique to assess cellular ENM bioaccumulation. Important considerations when using this 
method include a careful separation of non-associated ENMs from the cells prior to analysis so as 
to ensure that the measured signal originates from within the cells, and adjusting the cell 
concentration in the sample and instrument dwell time so that only one cell is detected at a time. 
Similar to flow cytometry, one of the limitations of SC-ICP-MS is that no distinction can be made 
between internalized and cell surface-attached ENMs. Coupling ICP-MS with laser ablation 
provides information about the spatial distribution of ENMs in cells, although resolution at the 
nanometer scale remains a limiting factor.205 

Microscopic methods that can resolve ENMs associated with the cells are often used for 
confirming ENM localization within cells.23, 167, 200, 212 Intracellular ENM quantification methods 
that are particularly suitable for protist model organisms that are relatively large (e.g., 
Tetrahymena sp., Euglena sp., and Ochromonas sp.) include optical microscopy (i.e., bright field, 
phase contrast, and darkfield microscopy with hyperspectral analysis)82, 200 and EM.132 Such 
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techniques can also be used semi-quantitatively or quantitatively for ENM bioaccumulation 
measurements. Semi-quantitative approaches include measurements of ENM area or fluorescence 
per cell. In quantitative microscopy, ENMs are counted in cells or the measured ENM area per cell 
is converted to mass or number concentration based on the size, shape and density of the ENM. In 
ENM research, high-resolution techniques are desired for the visualization of single ENMs in cells. 
In addition to being a valuable tool for characterizing ENM-cell interactions, EM can be used 
quantitatively. For instance, TiO2 ENM accumulation in the food vacuoles of T. thermophila was 
quantified from the scanning transmission electron microscopy (STEM) images of T. thermophila 
thin-sections.132 Based on the geometries of T. thermophila food vacuoles with accumulated TiO2, 
the ENM concentration per cell volume was calculated using the volume and number of food 
vacuoles per cell and the density of TiO2. Similar to making quantitative microscopic 
measurements of cells for other purposes, there are a number of sources of uncertainty in 
microscopic imaging relevant to understanding the precision of these measurements for ENM 
bioaccumulation: (i) the impact of microscopic imaging parameters (e.g., focus),213 (ii) image 
quality such as the signal to noise ratio for the ENM area compared to the background, (iii) 
determining the adequate number of cells to analyze to sufficiently reflect the behavior in the larger 
population; and (iv) the precision and reproducibility of image processing algorithms to calculate 
the ENM area;214-217 assessing the image processing algorithms could be performed by comparing 
manual measurements of the ENM area for a certain number of images to those calculated by the 
computer program to assess the accuracy of the algorithm.

Although light microscopy cannot resolve single ENMs, it is suitable for visualizing ENM 
agglomerates when these are larger than the resolution limit of light microscopes with a 
conventional lens, i.e., approximately 200 nm. This may occur if ENMs are packed into 
agglomerates in the food vacuoles of particle feeding (phagocytosing) single-celled species.82 This 
phenomenon provides a good opportunity for using quantitative optical microscopy for ENM 
uptake and elimination kinetics measurements. Dark field microscopy coupled with hyperspectral 
analysis also enables identification of ENMs in cells, confirming that only the intracellular 
agglomerates composed of ENMs are measured.171 Since single-celled species vary in physiology 
and ENM uptake mechanisms, it is advisable to validate microscopic image-based quantification 
with another analytical method. For example, uptake of carbonaceous nanomaterials in the 
protozoan T. thermophila was quantified in parallel by image analysis and measuring 14C labelled 
MWCNTs, and the two methods were found to correlate well.82 

Single-Celled Species Case Study #1: Species without a cell wall (protozoa)

The lack of a cell wall makes the membrane of single-celled species such as protists and some 
mixotrophic algae directly accessible to ENMs. ENMs can adsorb onto and associate with the cell 
membrane and subsequently be internalized by endocytosis.167, 177 In addition to endocytosis, some 
protists and mixotrophic algae acquire nutrients by phagocytosis, a mechanism by which 
particulate materials (organic particles, bacterial, yeast and small algal cells) are internalized by 
the formation of food vacuoles. Thus, in contrast to microorganisms with cell walls that cannot 
internalize particulate matter, protists and some algae are expected to take up ENMs and their 
agglomerates at sizes larger than 50 nm218 by natural feeding mechanisms, as reported for various 
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species and different types of ENMs.82, 132, 167, 171, 200, 219 Food vacuoles containing ENMs are 
trafficked through the cell similarly to those containing nutrients. For inert ENMs or non-toxic 
ENM exposure concentrations, the contents may be subsequently expelled through the cell 
membrane. Therefore, from the perspective of bioaccumulation assessment, food vacuoles in 
protists function similarly to the digestive system of multicellular organisms and thus, the 
experimental design warrants the inclusion of an elimination phase before quantification of 
bioaccumulated ENMs (Figure 1). So far, only a few studies have measured elimination of ENMs 
in single-celled species, including those without a cell wall.167, 171, 200 

Single-Celled Species Case Study #2: Biofilms

Biofilms (Figure 3) comprise surface associations of microbial cells embedded in hydrated 
extracellular polymeric substances (EPS).220 Biofilms are prevalent forms of microbial growth in 
all compartments of natural and built environments.221 Yet they are less studied in the realm of 
microbial-ENM interactions, including assessments of ENM bioaccumulation, than free living 
microorganisms.222 EPS appears to trap ENMs, as demonstrated for ZnO ENMs in activated sludge 
flocs,223 and Ag ENMs in bacterial monocultures under laboratory conditions.224 Because EPS is 
a physical structure surrounding the cells, the association of ENMs with EPS influences exposure 
of biofilm cells to ENMs, and may affect direct ENM bioaccumulation. For example, Au ENMs 
in estuarine mesocosms16 and TiO2 in paddy microcosms225 were shown to accumulate in biofilms 
with subsequent transfer to higher, predating organisms such as grazing snails. The quantification 
of such ENM bioaccumulation within biofilms is currently largely unresolved; this may be 
significant if ENMs are compartmentalized in biofilms with preferential association either on cells 
or in the EPS. As shown in Figure 3, ENMs associated with EPS or cells would be quantified in a 
total biofilm mass-based accounting of prey in a grazing experiment. However, trophic transfer 
and biomagnification may hinge on ENMs being firmly associated with cells, especially in cases 
where a predator’s digestion of EPS and prey differ. In environmental microbiology, it is an 
established convention to separate biofilm cells from EPS and to quantify toxicant association with 
each of these two broad biofilm components separately, such that increased EPS production—a 
common stress response in biofilm bacteria—can be assessed along with toxicant accumulation.226 
A future recommendation in the assessment of ENM bioaccumulation for biofilms would be to 
adopt a similar approach. This would allow the normalization of ENM accumulation in the biofilm 
to total cell count and also to EPS dry mass, rather than wet-mass which can be system- and 
condition-dependent. This approach, coupled with ENM quantification for each biofilm 
component (EPS and cells), would allow determining overall biofilm bioaccumulation 
assessments in terms of ENM distribution. Furthermore, it would allow trophic transfer or 
biomagnification factors to be better expressed according to either the whole biofilm (in the event 
that ENMs are evenly distributed across EPS and cell components), EPS (if ENMs are mainly 
concentrated there), or cells (if ENMs are preferentially adsorbed to their external surfaces).

Multicellular organisms (excluding plants)

For multicellular organisms, it may be important to distinguish between the total body 
burden in the absence of voiding the gut (as the ENM concentration in the gut tract can readily be 
voided), the ENM concentration adhering to an epithelial surface (e.g., gut microvilli), and the 
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ENM concentration that has been truly adsorbed through an epithelial surface, for example in 
daphnids (Figure 4). Which of these fractions is relevant for an individual assessment may be 
context dependent (Figure 1). For example, trophic transfer studies may consider all fractions, 
while toxicokinetic and mechanistic toxicology studies may focus only on the absorbed fraction. 
However, even in the latter case it is important to bear in mind that it is entirely possible that the 
ENMs may cause adverse effects during simple passage through the gut tract (or while in contact 
with gills), and thus concentrations in the gut tract and in other tissues may be important to 
measure, depending upon the other endpoints that are measured and the ultimate purpose of the 
experiment. The importance of such considerations is illustrated through a set of relevant case 
studies provided for fish, soil invertebrates, Daphnia, and marine bivalves.

Another key approach that can be used to elucidate the bioaccumulation of ENMs is to 
evaluate the toxicokinetics of uptake and elimination behaviors of whole organisms or specific 
organs or tissues. With regards to the elimination rates, one key difference between ENMs and 
dissolved organic chemicals or metals for multicellular organisms with a digestive tract is that the 
majority of the ENMs can be loosely associated with the digestive tract and, therefore, potentially 
subject to rapid egestion within the early part of an elimination phase. Therefore, taking additional 
time points close to the conclusion of the elimination period may be valuable for discerning if all 
of the ENMs associated with the organism after the uptake period can be eliminated by voiding 
the gut tract. Depending upon the organism’s physiology, feeding during the elimination period 
may be needed for voiding the gut tract. For some species, the time period needed to void the gut 
tract has been measured (e.g., Lumbriculus variegatus227 and earthworms or enchytreaids228) or 
visually inspected in semi-transparent organisms (e.g., Capitella teleta229) and is, hence, relatively 
well understood. However, such information is not always readily available for other species. If 
the gut voiding kinetics are unknown for a species, it is possible to assess this for soil and sediment 
organisms by measuring the rate of soil/sediment elimination by the organism. This can be 
measured during a depuration experiment by determining the ash content after combustion of 
organisms to determine the quantity of soil or sediment remaining,227 or by measuring the amount 
of a non-bioaccumulating rare earth metals such as lanthanides in the test species and comparing 
that concentration to the amount in the soil or sediment to determine the soil or sediment mass 
remaining in the organism.230 For smaller species, such measurements may require population 
cohorts rather than individuals to meet detection limit thresholds. One important consideration is 
the need to balance gut voidance time with the potential for elimination of ENMs from the tissues 
being investigated. Hence, longer elimination periods are not necessarily better, because there can 
be rapid elimination in the time period shortly after the cessation of exposure. The initial kinetics 
of elimination may be overlooked if longer elimination periods to void gut contents are used.231 
Thus, it is recommended to make measurements during the elimination time series to initially 
include smaller steps (hours to days) to assess gut voiding and then longer steps (days or weeks) 
toward the end of the elimination period.

For ENMs that dissolve (e.g., Ag ENMs) or for ENMs composed of an element that is 
present in the exposure matrix (e.g., Zn in a sediment experiment), measuring the elimination rate 
at additional time points may be important to assess if there is a biphasic elimination process such 
as rapid elimination of the ENMs followed by a slower release of the accumulated dissolved ions 
or indeed the reverse case of fast eliminating labile and slower released particulate pools in cells. 
As described above, these measurements can potentially be refined by evaluating the ENMs 
associated with the organism such as by conducting spICP-MS analysis after digestion, or by 
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measuring isotopically labeled ENMs for metal or metal oxide ENMs using isotope specific mass 
spectrometry. For ENMs that dissolve, it can be informative to compare the toxicokinetic rates 
obtained to those for a metal ion exposure using similar conditions. This can allow differences in 
toxicokinetic rates to be identified based on model fits and parameters values for different single 
compartment and multiple compartment kinetic models. These quantitative methods could be 
coupled with imaging techniques to obtain a better estimation of actual particles versus dissolved 
fractions in the organism tissues.

Multicellular Species Case Study #1: Fish

Measurement of the bioaccumulation potential for ENMs in fish requires special attention 
because the principle regulatory bioaccumulation test  is a fish bioaccumulation assay (OECD TG 
30530). Fish are a group of organisms that are large enough to facilitate dissection of the internal 
organs to identify the ‘target organs’ and the ENM biodistribution.49 However, there remains a 
substantial problem: the relationship between the exposure concentration and the internal dose 
leading to adverse effects remains unclear. The absence of routine measurement methods for 
ENMs in tissues has prevented unequivocal demonstration of cause and effect.

The initial step in the case of waterborne exposure after the exposure period is the removal 
of any excess water containing the ENM from the body surface. Experience so far suggests that 
there are no special or additional steps needed to do this for ENMs compared to traditional 
chemicals. For trout, netting the fish into a closed bucket of clean water with dilute anaesthetic to 
calm the animal and facilitate handling is needed. Typically, the fish is rinsed for about a minute 
in one bucket, and then transferred to another bucket of water containing a more sufficient level 
of anaesthetic to enable terminal anaesthesia (i.e. euthanasia in preparation for later dissection). 
Once the fish is euthanized, larger fish can be further triple rinsed in ultrapure water or completely 
immersed in a series of beakers of ultrapure water for smaller fish. This procedure will remove 
loosely bound material and dilute away any residual water from the tank. However, this procedure 
may not fully remove ENMs trapped in the mucus layers on the gill, skin or gut.

Fortunately, there are methods available to quantify the surface-associated ENMs in the 
mucus of the gill microenvironment and for the gut mucosa. These ‘Surface Binding Experiments’ 
have been well established for metals and other solutes232 and are the experimental basis for the 
biotic ligand models (BLM233, 234). The technique involves a separate short experiment with 
previously unexposed fish tissue. The tissue (e.g., gill filaments or piece of intestine) is allowed to 
instantaneously adsorb the ENM onto the surface of the epithelium over a few seconds (i.e., before 
true uptake can occur). Then the total metal concentration in the tissue is determined. This method 
has been used successfully to measure the surface-bound TiO2 ENMs, for example, on the mucosa 
of the mid and hind intestine of rainbow trout.235 This study revealed that surface adsorption can 
be significant and, when exposure concentrations of 1 mg/L or less are used, it is likely that 
approximately 20 % of the apparent total tissue Ti is adhered to the surface of, not within, the 
tissue. Instantaneous adsorption measurements therefore become a vital consideration when 
interpreting data on ENM uptake by the gill, skin, gut or other external barriers of organisms 
(Figure 1).

Multicellular Species Case Study #2: Marine Bivalves
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Marine bivalves (e.g., clams, mussels and oysters) are ideal candidates for the study of 
ENM fate and effects and have been exposed to a wide range of ENMs.236-241 Their physiology is 
well studied, and they are generally tolerant to varying environmental conditions and therefore 
relatively easy to culture and test. These species are commonly used as monitoring organisms 
because of their sessile and widespread nature. In addition, they serve as a food source for many 
higher trophic level aquatic and non-aquatic organisms including humans.  Bivalves are unique in 
that their internal organs are often bathed in external or environmental media. In addition to direct 
exposure of external media, their capacity to filter large volumes of water ensures their exposure 
to large quantities of contaminants present in the water column, and for burrowing bivalves 
exposure at the sediment-water interface and in sediment interstitial water.  

Assessing the biodistribution in these organisms via dissection enables a better 
understanding of what organism tissues are exposed to ENMs and if absorption of ENMs across 
epithelial surfaces has occurred. The gills are often the first organ to be exposed due to their 
filtering role, and studies have shown that bivalve gills have the capacity to differentiate among 
particles as a result of particle sizes and surface characteristics,242-244 although ENMs are 
subsequently translocated into the digestive system. For example, Mytilus edulis had a progressive 
uptake and transport of SiO2 particles from the gills to the digestive gland and then to hemocytes.245 
Similarly, Au ENMs accumulated primarily in the digestive gland (93 %) of M. edulis with smaller 
amounts in the gills (3.9 %) and mantle (1.5 %).246 Similar findings have been observed for TiO2 
ENMs247 and Ag ENMs (although Ag ions were not distinguished from Ag ENMs241), while a 
study on ZnO ENMs showed higher Zn concentrations in the gill compared to the digestive 
gland.248 Once ENMs enter the organism, they have been shown to transfer across cell membranes 
and interact with key internal cell organelles causing cellular damage.49, 249, 250 In addition, while 
pristine ENMs may be smaller than the preferred size for uptake by bivalves, either homo- or 
heteroagglomeration may change the bioavailability of the ENM based upon the filtering capacity 
of the gills or particle capturing apparati. Therefore, a number of researchers point out the 
importance, particularly in high ionic strength marine waters, of characterizing the ENM 
agglomerates to which organisms are exposed.244, 251, 252   

There are some important considerations for both laboratory procedures and data 
interpretation when working with bivalves. Bivalve organs typically dissected include the gills, 
digestive gland as well as the gonad tissue in mature animals. The hemolymph can be collected 
via a syringe from the adductor muscle.234 There is a concern that these invertebrate animals have 
an open circulation system and any ENM will bathe all the internal organs in an undirected manner 
(i.e., not via a blood vessel253). Direct contact with the organs in an open circulatory system may 
change the interpretation of both the internalized dose and the notion of a true target organ. 
Practically, at the bench, it becomes even more important to ensure that all of the internal organs 
are suitably washed, as without this step the hemolymph may contaminate all tissues and lead to 
erroneous estimate of actual tissue burdens. In bivalves, because of this, there is also a concern 
that excretory products may incidentally contaminate the tissue sample. Special attention needs to 
be given to the pseudofeces or biodeposits produced by bivalves. In the animal’s normal biology, 
biodeposits are an efficient way of preventing the accumulation of unwanted naturally occurring 
particulates and insoluble metal deposits. These biodeposits alter the ENM form when it reenters 
the environment, as the ENMs will be packaged in a carbon rich, dense, mucous bundle that most 
likely enters the sediments and will be reprocessed by deposit feeders or organisms that filter larger 
particles. During bivalve bioaccumulation experiments, only a minute contamination of bivalve 
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tissue with such biodeposits can lead to overestimation of the tissue metal concentration. There is 
also concern about particles settling onto the external surfaces of the body organs in the elevated 
ionic strength conditions of the hemolymph or in seawater.254 However, surface-binding 
experiments such as those conducted on trout tissue have not been performed with shellfish. 
Careful dissection and detailed washing procedures are needed to avoid this contamination, and 
such methodological details should be reported for ENM studies with bivalves.

Multicellular Species Case Study #3: Daphnia

Daphnia species have been widely used in bioaccumulation studies, as they represent a key 
level in trophic chains while feeding on unicellular organisms and serving as prey for second 
consumers. Uptake, elimination and bioaccumulation studies with Daphnia magna have been 
described in the literature for a broad range of metal-based ENMs and CNMs.11, 12, 15, 71, 255-258 
Bioaccumulation experiments with D. magna have been conducted using experimental designs 
that include an uptake followed by an elimination phase in clean media, or by independent 
experiments evaluating both processes. Exposure through media only or via contaminated food 
(e.g. algae) are also experimental setups available in the literature.257 Uptake phase durations range 
between 1 h to 48 h, while elimination phases last similar periods or can be extended up to 10 d.259 

The organism age varies substantially among studies of ENM bioaccumulation (<1 d256 to 
14 d260) which impact ENM bioaccumulation results as a result of different body morphometrics; 
similar findings were observed for bivalves as described in the Supporting Information. It has been 
suggested that differences in body burden that result after MWCNT exposure may stem from 
differences in the sizes of the organisms: smaller organisms, for which the gut tract is a larger 
fraction of the total organism, may have higher body burdens than larger organisms if the gut tract 
is not voided.255 Within this variability regarding age, the organism’s growth and reproductive 
status should be considered in ENM bioaccumulation experiments, avoiding as much as possible 
different life-cycle stages within sampling times. Before the uptake phase, some studies also report 
the need to void daphnids’ guts,96, 258 while other studies report a short feeding period prior to 
ENM exposure.261 These practical details can complicate comparing data, as differences in age, 
exposure time and gut status (voided or not) can cause substantial differences in bioaccumulation 
patterns among studies. There is also a relationship between ENM uptake, size of the organism, 
and volume of the ENM test media as described in more depth in the Supporting Information.

Daphnids sampled for analysis are expected to adsorb ENMs to their carapace. Several 
studies have already identified the presence of attached ENMs in moult samples.96, 262 Therefore, 
several procedures have been described for sampling daphnids for chemical analysis. These 
methodologies range from a gentle wash96 to a vigorous agitation by pipetting daphnids in and out 
of the water,261 to collecting daphnids with a small sieve and rinsing them with Milli-Q water 257 
or with the exposure media.12, 258 Although different procedures are described, little evidence is 
provided on method effectiveness. While adsorption onto the carapace can be seen as an external 
accumulation that will typically not directly harm the organisms (unless by impacting molting), 
external accumulation can be important to trophic transfer.

Multicellular Species Case Study #4: Soil invertebrates
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Soil is considered a major sink for chemicals and also for ENMs, which may reach this 
compartment through direct ENM application as an agrochemical (e.g, fertilizer pesticide, or 
biocide), or from solid waste including sewage sludge.106 Soil is an extremely complex matrix, and 
the transformation and fate of ENMs in soils are similarly complex.106, 263, 264

Soil invertebrates can accumulate ENMs or dissolved, or otherwise transformed, materials 
from the soil or soil porewater both through direct dermal contact or orally via ingestion with 
food.114, 265 Key soil properties such as pH, organic matter content, clay mineralogy and cation 
exchange capacity, as well as the specific physiology of the species, can all potentially influence 
ENM bioaccumulation potential. For assessment of bioaccumulation of ENMs in these species, 
ENM characterization and quantification both in soil and organisms can help to understand routes 
of uptake and modes of action and also to gauge the potential for trophic transfer. Similar to fish 
and bivalves, key tissues that are recognized as key sites of ENM accumulation can be readily 
dissected including tissue associated with the posterior gut and surrounding chlorogogenous tissue 
of earthworms and mid-gut gland of snails.265 Many soil-dwelling organisms, similar to bivalves, 
may produce inorganic biominerals in response to ENM exposure either directly for accumulated 
intact particles or, more often secondarily after initial dissolution. The production of the metal rich 
granules has been investigated for species including earthworms, soil arthropods and molluscs.266-

269 Results have shown that the specific routes of metal ion trafficking may vary between metals, 
with some forming inorganic mineral deposits (e.g. phosphates ligands) and others associating into 
metal ion clusters with sulfur rich ligands. The biogenic production of nano-structures has also 
been shown for Ag ENMs and Ag ions in earthworms.20 The potential toxicological availability 
and potential for trophic transfer can vary between these different forms. 

Soil invertebrates can be hard bodied or soft bodied, depending also on their life stage. 
These differences are important with respect to bioaccumulation, as the presence of a hard 
integument can greatly affect the balance between the two major routes of uptake across the dermal 
and oral pathways.270 Soft bodied organisms may accumulate chemicals through skin (dermal 
uptake),271 which is less likely for hard bodied organisms. Furthermore, hard bodied organisms 
that shed their integument during growth have this additional and potentially efficient route of 
excretion that may not be available to soft bodies species.

It has been shown that in (soft bodied) earthworms uptake of Ag ENMs is both dermal as 
well as through the gut, and that the distribution of the Ag within the organisms differed for Ag 
ENMs and Ag ions.265 In contrast, earthworm uptake of stable isotope labelled ZnO ENMs was 
dominated by uptake from the gut, as earthworms precluded from feeding only accumulated 
approximately 5 % of the Zn assimilated by feeding individuals.114 The two metals used differ 
with respect to their physiological requirement, with Zn being an important essential nutrient, and 
thus potentially subject to efficient gut assimilation, while Ag has no known physiological 
function. Hence, earthworms may be particularly efficient at assimilating Zn from their diet to 
meet physiological requirements, which may also contribute to the apparent differences between 
the two studies of these ENMs with different compositions. Another study of the uptake of 
different forms of Ag (ionic, pristine and sulfidized nanomaterials) has shown that uptake was 
primarily related to ionic Ag.20 Uptake of non-dissolving Ag2S-ENMs was minimal, while uptake 
kinetics of Ag-ions and pristine, rapidly dissolving, ENMs were more or less similar. 
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For hard bodied organisms, studies with isopods have indicated that uptake can occur both 
via food, by direct contact of the body integument with the soil, and by soil ingestion.100 
Establishing the dominance of these two exposure routes under environmentally relevant scenarios 
is difficult as it can be influenced by the release form and environmental fate of the tested ENMs. 
Some studies have shown that metals derived from ENMs can be accumulated in the 
hepatopancreas of isopods in the S-cells, along with S and Cu granules.100, 272 Hence physiological 
mechanisms may play an important role in determining ENM partitioning and intracellular fate 
that ultimately govern bioaccumulation potential.

Multicellular plants

The potential bioaccumulation of ENMs in plants is of obvious concern for trophic transfer 
in the food chain and risks to food safety. One important consideration for plant bioaccumulation 
studies is the accumulation metrics (Figure 1). In the literature, BAF values for plants have been 
estimated by calculating the ratios of ENM concentrations in plants to ENM concentrations in the 
exposure media (e.g., hydroponic solution or soil).41 For plants, it is important to provide 
accumulation metrics using both the ENM concentration and the total EMN mass in the tissue of 
concern. By plotting the data using both metrics, one can address the potential for growth dilution, 
as well as physiological changes as the plant moves from vegetative to reproductive growth stages. 
In addition, one should measure the dry mass of the plants given that some ENMs such as 
MWCNTs can alter water accumulation.273 To assess ENM bioaccumulation, either root (through 
hydroponic or soil exposure) or foliar exposures have been studied. The following case studies 
address the major considerations for measuring ENM bioaccumulation in plants under each 
exposure scenario.

Plant case study #1: Hydroponic exposure

Hydroponic (growing plants in liquid culture media274) exposure is often used in 
nanotoxicology research, since its less complex but defined exposure medium composition 
facilitates ENM characterization. Hydroponic exposures ensure a relatively greater bioavailability 
of ENMs to plants, in comparison to exposures via the soil matrix which can sorb or otherwise 
change ENM bioavailability. 

To conduct a hydroponic exposure, the test medium can either be reagent water123 or a 
defined nutrient medium for plant growth such as Hoagland’s solution of different strengths.275 
Water has been commonly used in short-term exposure (e.g. < 7 d), although nutrient media is 
more often used for longer experiments.151 The medium selected should be fully characterized, as 
its properties (e.g. pH and ionic strength) can affect ENMs behavior and bioavailability. For 
example, TiO2 ENMs may undergo significant agglomeration (measured as hydrodynamic 
diameter increase with time) in plant growth media.276 This may result in ENM settling and 
heterogeneous ENM exposure concentration within the test medium. Although TiO2 
agglomeration has been found to decrease linearly with the dilution of the plant growth medium,276 
solutions with low ionic strength may physiologically stress the test plant species.277 Therefore, 
the choice of the specific test medium may depend on the purpose of study and the requirements 
of the plant species. In some cases, assessing ENM bioaccumulation using a series of test media 
with different composition and characteristics may allow investigating the effects of environmental 
conditions on ENM behavior, bioavailability, and bioaccumulation.108 
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The quantification and characterization of ENMs during exposure may raise another issue: 
how to maintain a constant ENM exposure for plant bioaccumulation measurements. The U.S. 
EPA guideline OCSPP 850.4800 for testing plant uptake and translocation specifies that during 
exposure, the chemical concentration in the test medium should not change by over 20 % as 
compared to the initial (or nominal) dose.278 This is in accordance with the OECD guidelines for 
aquatic toxicity testing.279 However, this may be challenging to implement and perhaps not even 
environmentally relevant for ENM testing, given the dynamic transformations that may occur for 
many ENMs (e.g. dissolution and agglomeration) in aqueous exposure media.279 In addition, plants 
continue to take up water from the medium and evapotranspire during exposure,277 which may 
gradually concentrate the ENMs within the test medium. In some hydroponic studies, water or 
nutrient solution was added to the system to compensate for water loss due to 
evapotranspiration.280 In other studies, the test medium was periodically renewed during a 
relatively long period of exposure (e.g., 15 d275 and 4 weeks281). In any case, the specific procedure 
used during exposure should be appropriate for the questions being asked and should be clearly 
described. It is worth noting that ENM behavior and bioavailability may be significantly modified 
in the presence of plants, due to the influence of root exudates (including amino acids, organic 
acids, and sugars) and a microbial community that develops in the solution.282, 283 Therefore, one 
should quantify and characterize ENMs in the medium during and after plant exposure,123, 277 
which may enable a better understanding of the actual exposure conditions and may assist in the 
possible interpretation of bioaccumulation results relative to ENM concentrations and speciation.   

During hydroponic exposure, ENMs are in immediate contact with plant roots, and may 
attach extensively to the root surfaces prior to accumulation.151 Therefore, one major consideration 
in assessing ENM bioaccumulation in plants is to distinguish absorbed ENMs from that adsorbed 
on the surfaces of root tissue. If the purpose of the study is to visualize the interactions between 
ENMs and root surfaces, then no washing may be needed.284 If, however, the ENM concentration 
within the roots is of interest, then proper washing to remove surface associated ENMs before 
analysis is necessary to avoid overestimating bioaccumulation. Washing has been conducted using 
distilled or deionized water,123, 275, 281, 285 phosphate buffer,286 dilute acid (e.g. 0.01 M HNO3),287 
and complexing agents,288; notably, few studies actually investigated the removal efficiency of the 
washing steps. For example, nearly 80 % and 10 % of ceria initially measured in unwashed 
cucumber roots was removed in the first and second round of washing by deionized water, 
respectively, with negligible removal in the subsequent three rinses.285 Metal complexing agents 
(NaOAc and Na4EDTA) have been found to be more effective than water, as they compete for 
metal ions. Similarly, a surfactant desorbed CuO ENMs from wheat root surfaces, with the mode 
of action being acceleration of CuO ENM dissolution and subsequent efficient complexation with 
dissolved Cu ions.288 Even after washing, it is possible that there may be some ENMs fraction that 
is strongly adsorbed on the external root surface.123, 151, 288 When measuring ENM bioaccumulation 
in aboveground tissues, washing may not be necessary, given that these tissues were not in direct 
contact with ENMs during exposure.151

 Plant case study #2: Soil exposure

Although hydroponic studies have advantages such as simple and defined exposure media 
which allow for increased bioavailability, this design does lack a certain degree of environmental 
relevance.151 Soil matrices can affect ENM fate and bioavailability57 due to the interactions with 
complex soil components including microorganisms.107 In addition, some plant species may 
develop different root morphologies (e.g. a lack of root hairs) when grown under hydroponic 
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conditions,289 and may have different ENM accumulation patterns in soil than for experiments 
using hydroponic exposures. Therefore, it is necessary to assess ENM accumulation in plants 
grown to maturity in soil to full characterize potential risk to food safety. Some of the 
considerations in hydroponic exposure are also applicable to soil; therefore, those specific to soil 
will be emphasized here. The choice of a particular soil type needs to be fit for the purpose of the 
experiment. Both the OECD Test No. 208290 and the U.S. EPA guideline OCSPP 850.4100291 
describe that either natural or artificial soil (with a high sand content and up to 1.5% organic 
carbon) may be used in the terrestrial plant seedling emergence and growth tests. Additionally, the 
OECD standard artificial soil (10% sphagnum peat, 20% kaolin clay, 69.5% sand, 0.5% CaCO3) 
specified for earthworm acute toxicity testing292 has also been used in assessing ENM uptake in 
soil-grown plants.293 Since standard artificial soil is of known and less complex composition than 
natural soils, its use may better allow interpretation and reproducibility of the bioaccumulation 
tests, as well as benchmarking across different studies.108 However, artificial soil not only lacks 
the physicochemical composition and complex structure of natural soil, but it is also biologically 
limited with regard to natural soil microbial communities that are known to interact with plants 
and to affect ENM behavior.57, 107 Thus, natural soil would be a more environmentally relevant 
exposure matrix for assessing ENM bioaccumulation. In either case, the soil used should be 
sufficiently characterized for parameters including texture, pH, organic matter, major nutrients, 
cation exchange capacity, moisture content, and redox potential.108, 294 This is necessary because 
soil characteristics affect both plant growth and ENM behavior,295 including uptake by plants.296 
Standard natural soils such as the LUFA soils (http://www.lufa-speyer.de/) are available and have 
been used in ecotoxicity tests.101, 297, 298

In natural soils, there are a large number of plant-root symbioses, such as mycorrhizae. 
Rhizosphere microbial communities, including populations that form symbioses with plants, can 
affect local geochemical characteristics relevant to ENM dissolution or similar physicochemical 
processes that in turn affect exposure at the plant root and therefore plant uptake of ENMs. 
Notably, this applies to the leaf surface as well, where a phyllosphere community exists. Plants 
may respond to rhizosphere plant-microbe interactions by changing their exudate chemistry, which 
can in turn further alter ENM bioavailability and uptake.299 Conditions of the rhizosphere or 
phyllosphere microbial communities—including changes from sampling and storing (e.g. 
refrigeration) of field soil, or including growing plants under variable conditions that would change 
phyllosphere physiochemistry—could alter ENM fate and distribution to plants, which in turn 
affects bioaccumulation. Given these complex interactions, investigations should ideally 
acknowledge such complexities in study designs by carefully designing exposures and sampling 
practices. It is also important to archive samples (e.g. of soil) that can be analyzed to reflect the 
realistic conditions of the plant and matrix (and therefore associated microbial communities) in 
situ so that changes leading up to the actual exposure can be considered when interpreting results.  
For example, Chen et al.300 showed that a significant reduction of microbial biomass and a shift in 
microbial community composition occurred during storage of soil plus biosolids mixtures for six 
months at 4 ºC.

During long term soil exposure, irrigation using either water57 or nutrient solution (e.g. 
Hoagland’s solution)295 will be necessary. When quantifying uptake of metal or metal oxide 
ENMs, it is important to quantify the background concentration of elements of the same 
composition as the ENMs in both the irrigation water or other irrigating solution and soil;301 it 

Page 26 of 62Environmental Science: Nano

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



27

should be noted that there is a potential for loss of sensitive tissues during washing which may 
decrease the biomass. It is also useful to place a tray under the pot to collect any leachate from 
irrigation, so that any potential leaching of ENMs can be monitored quantitatively.302   

The overall sample preparation procedures and analytical techniques for ENM 
quantification and visualization in soil-grown plants are similar to those used in hydroponic 
studies. One specific consideration for soil exposure is that additional care is needed to fully 
recover the root system from the soil with minimal root system disturbance; this can be particularly 
difficult with species that have fibrous root systems.57, 281, 301 If a significant amount of 
belowground biomass is lost, ENM bioaccumulation (based on total mass) might be 
underestimated. Washing belowground harvested biomass using tap or deionized water is 
commonly used to remove the surface associated soil particles and ENMs.57, 281, 301, 302 After 
exposure, it is important to dissect the plants to obtain the different tissue types so as to fully 
characterize in planta translocation processes (e.g., stem, leaves, pods, roots, seeds, and nodules). 

Plant case study #3: Foliar exposure

While most work conducted thus far on plant-ENM interactions has focused on root 
exposure through soil or hydroponic media, foliar exposure is another significant pathway by 
which terrestrial plant species may interact with ENMs. This pathway encompasses a wide range 
of exposure routes, including aerial deposition of industrially derived materials such as nanoceria 
from vehicle combustion, airborne particles from tire or paint weathering, resuspension of 
contaminated soils, and direct application of nano-enabled agrichemicals such as nanopesticides 
to suppress pathogens and pests and nanofertilizers to enhance growth yield. In the foliar exposure 
literature, a limited number of studies have a toxicity focus but a larger body of work has addressed 
issues of intentional application, largely through nano-enabled agrichemicals. Importantly, within 
a given experimental design, the precise nature of the exposure (dose, concentration, application 
regime, etc.) will vary with the questions being investigated and the overall goal of the study. 

In studies seeking to evaluate toxic response, isolating the exposure route is recommended. 
For example, one study compared the in planta accumulation and distribution of TiO2 ENMs in 
rapeseed and wheat after both separate foliar and root exposures.303 The authors noted that particles 
accumulated in the plants through both pathways, although toxicity was negligible by both routes. 
Studying both routes of uptake simultaneously is possible but would require ENM exposure in one 
pathway using an isotopically enriched or labeled material. Care may also be needed to prevent, 
or at least be aware of, stem exposure; many species have stomata on stem tissue and 
contamination there could confound attempts to mechanistically describe in planta movement of 
particles from exposed leaves to other tissues. Although some work has been done on ENM 
transformation in soils and within plants (see above), reactions on the plant leaf surface remain 
almost completely unexplored. In certain studies, it may be important to differentiate between 
surface adsorbed materials (on or within the cuticle, attached to the outer epidermis) and that 
fraction which has been truly absorbed into the tissue by diffusion through the cuticle and 
epidermis or through the stomata. In such cases, a number of techniques for the removal of the 
surface adsorbed particles could be used, including mild acid rinsing or washing with specific 
organic solvents (given the hydrophobic nature of the cuticle). Importantly, the use of any such 
removal technique would first require validation of the method through the appropriate quality 
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assurance and quality control checks. This could include injecting materials into the tissue to 
ensure that the rinsing procedures do not impact the absorbed particles or using labeled particles 
on the surface only to ensure complete or near complete recovery.  Separately, in an experiment 
involving foliar exposure of TiO2 ENMs to lettuce in pristine form or from a weathered paint 
product, both particles were found in exposed plants.304 Alternatively, lettuce exposed to foliar 
treatment of Ag ENMs exhibited ENM entrapment within the cuticle, followed by entry through 
the stomata.305 Importantly, either ex planta or in planta oxidation resulted in significant 
complexation of Ag ENMs to thiol-containing biomolecules by a potentially significant series of 
biotransformation reactions. Additional important considerations for this type of work include 
possible physical or oxidative damage to leaf structures or morphology, as well as the role of the 
phyllosphere in potential ENM transformations and the impact of ENM exposure on the associated 
microbial community. It should also be noted that species-specific properties such as cuticle 
thickness and stomatal distribution on shoot tissues will significantly impact the uptake and 
accumulation of ENMs. In studies where determining the mechanism of uptake is of interest, being 
able to determine the distribution of ENM across the leaf surface could be important. EM with 
EDS can be used for this purpose, although labelled or fluorescently-tagged ENMs facilitate use 
of other analytical and visualization methods. Laser ablation ICP-MS may also be a useful 
technique in these studies.

For foliar exposure studies designed to exploit nanoscale size properties, environmental 
conditions such as moisture status, water potential, or UV light impacts may be important as they 
will influence leaf physiology. Importantly, these factors are dynamic during growth and exposure. 
For example, in an early study, leaf stomata were shown to readily permit entry of materials as 
large as 50 nm, although not all stomata were functionally equivalent, with only some structures 
allowing particle entry.306 The authors speculated that the wettability of the guard cell cuticle was 
the key factor controlling activity. Alternatively, ENM exposure may alter stomatal function. 
Foliar Fe2O3 ENM application increased stomatal opening, with subsequent increases in soybean 
photosynthesis and growth.307  Both particle size and particle number were key factors impacting 
uptake and translocation of ENMs upon delivery to watermelon leaves with an optimized aerosol 
platform.308 Again, understanding species-specific properties of the plant such as stomatal 
distribution on the leaves, stems, and other tissues plus cuticle thickness, will be important. 

One other area of interest is the use of foliar applications of nano-enabled agrichemicals in 
response to infection or disease. It is also important to note that the majority of commercial 
agrichemicals intended for foliar application have additional materials in the formulation, 
including surfactants or “stickers” to promote retention on the leaf surface.309 The activity of these 
potentially complex formulation materials will also influence the nature of the exposure under 
realistic conditions, and their activity must be taken into consideration. A final consideration is the 
role of pathogens in affecting uptake as these may affect leaf or stem tissue leading to necrotic 
damage. These changes can result in the loss of the cuticle barrier, and ENM entry through those 
tissues may change the amount of ENM bioaccumulation in comparison to plants not impacted by 
pathogens.

Trophic transfer

Laboratory trophic transfer studies
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Many of the considerations in trophic transfer studies are similar to those which have been 
described in feeding studies, yet there are also a number of specific considerations.  Trophic 
transfer studies involve exposing one population of organisms to an ENM and then feeding the 
prey with bioaccumulated ENMs to a predator type of organism, for example in a simulated 
laboratory food chain.  Because synchronization of the exposures of the populations of two or 
more species is challenging, researchers may be tempted to simply “spike” the organisms from the 
lower tropic level with ENMs.  An example of this could be spraying an ENM onto a leaf and then 
feeding it to an insect, or growing algae and then simply spiking a suspension of the algae with an 
ENM.  Two studies have demonstrated that this approach can underestimate the bioavailable 
fraction of ENMs for the predator species.  For example, the assimilation of Au ENMs by tobacco 
horn worms from tobacco plants which had taken up the ENMs hydroponically was significantly 
higher than assimilation from leaves onto which Au ENMs had been sprayed.18 Similarly, bullfrogs 
accumulate Au ENMs more efficiently from consuming earthworms raised in Au ENM 
contaminated soil than when they were exposed to pristine Au ENMs via oral gavage.40 There are 
many possible explanations for this behavior including biological modifications of the particles, 
such as acquisition of a protein corona, that favor their cellular uptake. In a third study with 
SWCNTs, ambiguous results were reported when algae were amended with a SWCNT suspension 
and then fed to bivalves which were then fed to polychaetes.310 No evidence of trophic transfer 
was detected. As noted in the previous studies with Au ENMs, there are several possible 
explanations for these results such as analytical interferences and poor uptake of SWCNTs by the 
algae.310

Numerous challenges exist in preparing ENMs for inclusion in trophic transfer studies via 
food consumption.  Researchers must balance loading prey items with ENM concentrations high 
enough to observe an effect at the next level and keeping ENM concentrations low enough to avoid 
unwanted toxicity to the prey organisms and to stay environmentally relevant. Exposure time of 
prey to the ENMs must also be balanced to maximize the uptake concentration before elimination 
occurs and decreases the concentration. It should be noted that, in the case of food web 
accumulation, ENMs that are attached to organisms or in their gut but not fully assimilated in the 
tissues are still of importance. Hence, decision about the preparation of plant and animal food 
items for the consumers species should be sensitive to such considerations depending on the aims 
of the study.

Algae or bacteria are often starting points in trophic transfer studies as they are relatively 
easily cultured and are common food items for many invertebrates. Sorption to or uptake by 
unicellular organisms is affected by surface charge of both the ENM and the organism, as well as 
by the presence or absence of cell walls and membranes which may serve as a barrier to ENMs.311  
Coatings on ENMs such as citrate or other organic compounds increase the stability of the ENMs 
in aquatic environments and play a critical role in the interaction of ENMs with an algal or bacterial 
cell.191 Sorption to the outside of single-celled organisms is another mechanism to move ENMs 
through the food chain; however, care should be taken through multiple washing steps and analysis 
of the prey media to ensure that the ENM is thoroughly bound to the prey organism and not easily 
dislodged to prevent exposure to the next trophic level through direct contact with ENMs rather 
than by food uptake. Collection of ENM-exposed prey can be performed using procedures that 
include various methods of filtration, centrifugation and rinsing steps. Density gradient separation 
is described in detail in the single cell species section and is a robust method for separating single-
celled organisms from suspended ENMs.
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For uptake at the next trophic level(s), the same concerns exist with respect to determining 
the length of exposure to reach maximal uptake with a minimum of elimination and toxicity to the 
prey organism. Using an elimination period for prey organisms is not generally recommended, 
because many consumers will usually eat prey whole and as such exposure will be both to prey 
tissue and also via the gut load. However, consumption of the gut content does not occur for some 
organisms such as the European mole (Talpa europaea), which will often squeeze the gut contents 
from earthworm prey before consuming them.312 The timing of introducing ENMs to prey and 
subsequent transfer of the ENM through a food web must also be considered. Researchers have 
generally exposed protozoans and crustaceans used as secondary trophic level prey for periods of 
1 d to 7 d. While most researchers rinsed the prey, the decision could be based upon the objective 
of the exposure. It can be argued that rinsing the organisms may represent the ENM that is truly 
incorporated within the prey while, conversely, not rinsing the organisms may be more 
representative of the body burden that the organisms may experience in the field. Generally, some 
rinsing is necessary to ensure that ENMs are transferred via the food and not via exposure media. 
Additionally, when composite ENMs, such as QDs, are being transferred, it is important to assess 
if the composite ENM has decomposed inside the prey organism or between transfers.

Mesocosm and Field Studies

Inherently, quantifying bioaccumulation is a step towards understanding the potential for 
ENM trophic transfer and biomagnification, both of which are important concerns in 
ecotoxicology. Although many controlled, multiple-population based, trophic transfer studies 
regarding ENM biomagnification have been performed for food chains of microbial23, 82, 132 and 
higher17, 40, 313 organisms, the assessment of ENM distribution in complex food webs consisting of 
many biotic trophic levels with multidirectional nutrient flows is more rare. In some studies, ENMs 
are isotopically labeled to allow for specific quantification of low ENM bioaccumulation 
abundances, as would occur with initially low exposure concentrations,82, 314 although the use of 
stable isotopes does not necessarily indicate that the bioaccumulated material is still nano-sized. 
However, use of isotopically-labeled ENMs in large scale mesocosm studies is unrealistic as the 
synthesis of labeled ENMs is specialized and typically expensive, and radioactive isotope use is 
more safely conducted at small scales under highly controlled conditions. 

Determination of trophic status in mesocosm or field studies can be challenging, a 
challenge not restricted to studies on ENMs.270  Furthermore, many organisms feed from multiple 
food chains and trophic levels during their lifespans or even simultaneously in the case of 
omnivory. Stable isotope (e.g.  13C and 15N) and ENM bioaccumulation measurements of 
organisms at various trophic levels in a food web may be used to infer predator-prey interactions 
that may influence final ENM distributions, such as has been utilized in a study of TiO2 in a paddy 
mesocosm.315  However, stable isotope methods need to be used with caution as they can only be 
used to determine trophic structure of relatively simple food webs.   For example, only two sources 
of coupled nitrogen and carbon administered into a food chain can be traced with conventional 15N 
and 13C studies.316  If more sources exist at the base of food chain or if nitrogen and carbon cycling 
are decoupled, then erroneous determinations of trophic status result.317  In such cases, traditional 
methods, such as the examination of stomach contents, may provide more reliable information.

Study designs would ideally be well-informed by an existing understanding of the system 
ecology. For example, CeO2 ENMs were traced through an aquatic food web by using temporally 
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and spatially dense sampling, since ENMs quickly compartmentalized by settling into sediments, 
then redistributed within food webs starting from the benthos.318 In this case, understanding the 
dynamics of physicochemical processes affecting ENM compartmentalization, relative to feeding 
and organismal reproductive rates, allowed for judiciously designing a biotic sampling program 
that revealed ENM distribution across multiple trophic levels.318

Future work and next steps

The recommendations discussed here are intended to inform the design (Figure 1) and 
interpretation of studies examining ENM bioaccumulation. While the best practices for conducting 
nanomaterial bioaccumulation assays have been described for a broad range of ecological 
receptors, additional research described throughout this manuscript can further refine these 
methods. One key factor is the further development of analytical methods to quantify ENMs in the 
test species. Different methods can be refined to quantify ENMs in individual single-celled 
organisms, populations of these organisms, or multicellular species. These include a range of 
different analytical and microscopy methods that can be used for assessment ranging from 
determination of overall concentrations to assessments of localization and chemical form.81 This 
is especially important for ENMs that may be transformed in which case it is valuable to quantify 
the different forms. One promising approach that is increasingly being utilized for the detection 
and quantification of ENMs in biological samples is spICP-MS. The value of this method is that 
it can distinguish between dissolved ions and ENMs and for directly measuring particle number 
concentrations. In addition to continued refinement of this technique to improve its robustness, 
research is needed to develop effective extraction techniques, which minimally change the ENMs 
for different types of organisms. One challenge with these measurements though is that there 
typically are not readily available orthogonal techniques to evaluate the size distribution of ENMs 
in the organisms for comparison.

Separation of ENMs from suspended particles is another critical consideration for research 
on ENM bioaccumulation by single-celled organisms, small multicellular organisms, and in 
subcellular fractionation studies using cells or tissue samples from larger species. The need for 
more effective and complex separation procedures such as density gradient centrifugation is 
among the main differences in the analytical methods for bioaccumulation of ENMs by these 
species as compared to studies with dissolved chemicals. Additional research is needed to evaluate 
the conditions under which sequential differential centrifugation is sufficient for separating ENMs 
from the test species or different cellular fractions and when density gradient centrifugation is 
needed. In addition, the application of density gradient centrifugation to separate freely dispersed 
ENMs from ENMs associated with different cellular fractions as compared to sequential 
differential centrifugation procedures need thorough evaluation. This will require the development 
and testing of density gradient centrifugation procedures to separate organelles for different types 
of tissues or cells and determining how interactions with ENMs affect the buoyant density of 
organelles and cells. This can result in a set of clear recommendations on the application of this 
approach in ENM bioaccumulation studies.

One of the challenges with providing guidance on bioaccumulation studies with ENMs is 
that the recommended protocol depends to a large degree on the purpose of the measurements. In 
some instances, a fit for purpose method would include voiding of the gut tract while for other 
situations, it would be helpful to measure the body burden without voiding the gut tract. Even 
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when the aim is to assess the exposure of consumer in trophic transfer studies it may be necessary 
to treat samples in a different way depending on, for example, whether the predator consumes or 
avoids eating the prey gut content. Quantifying the kinetics of the uptake and elimination processes 
can provide key insights into the bioaccumulation processes and is recommended as opposed to 
measuring a bioaccumulation-related factor (e.g., BAF) at a single time point. For comparison to 
results with dissolved species, voiding the gut tract of multicellular organisms is an appropriate 
step. Results from plant ENM bioaccumulation studies should be reported both in terms of ENM 
concentration and the total mass of ENM in the plant tissue. When testing ENM bioaccumulation 
in soils and sediments, it is important to assess how bioaccumulation factors and bioaccumulation 
kinetics relate to the soil or sediment porewater concentrations as compared to the total soil or 
sediment concentration, because the porewater concentrations may be more bioavailable.

The robustness of ENM bioaccumulation methods in general can be improved. Given that 
the methods among studies vary regarding how to conduct these experiments, it would be helpful 
to know the sensitivity of bioaccumulation methods to changes in the protocol. For example, it has 
been shown that organism size can impact ENM bioaccumulation studies with bivalves, and it has 
been proposed that the daphnid size can impact bioaccumulation measurements in the absence of 
gut voiding. However, to date there have not been systematic studies to specifically evaluate how 
the age of the daphnid used in bioaccumulation studies impacts on the results. Hence, it remains 
unclear whether the use of standard age and size organisms is needed and the extent to which 
studies conducted with different age cohorts can be directly compared. In plant bioaccumulation 
studies, a step of the assay protocol that often varies is the washing procedure used to separate 
weakly-attached ENMs from the roots. However, the impact of these different washes procedures 
on ENM bioaccumulation results and their comparability across studies is unclear. It is likely that 
no one method can be the requirement to fully remove all loosely attached ENMs, while fully 
retaining root fine tissue structure integrity. The reproducibility of results (e.g., to what degree 
would a similar result be obtained if the experiment was repeated) is unclear and often not reported. 
If a bioaccumulation experiment is repeated within a single laboratory, it would be helpful if these 
results were reported, such as in the Supporting Information which typically do not have length 
limits. Another important topic within each study is to ensure that there is an adequate number of 
replicates to make robust statistical comparisons among conditions tested. It is also important that 
sufficient detail is provided about if each replicate within a measurement is from a single organism 
or the average of multiple organisms. 

The practices and discussion described here will enable researchers to make more accurate 
ENM bioaccumulation measurements using a broad range of species. This will help advance the 
field of environmental nanotoxicology through supporting regulatory decision making and 
elucidating interactions of ENMs with organisms. Careful attention to the key topics discussed 
throughout this paper will facilitate researchers making results that are comparable across studies 
and reproducible, a key issue in science in general319, 320 and also especially in nanotoxicology.321-

323 Overall, these measurements will support the sustainable commercialization of 
nanotechnology. 

Author contributions

All coauthors contributed to discussions, writing and revisions of this manuscript.

Page 32 of 62Environmental Science: Nano

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



33

Conflict of interest

There are no conflicts to declare.

Acknowledgements

This research was funded by the National Science Foundation (NSF) and the Environmental 
Protection Agency (EPA) under Cooperative Agreement DBI-0830117. Any opinions, findings, 
and conclusions expressed in this material are those of the author(s) and do not necessarily reflect 
those of either the NSF or EPA. This work has not been subjected to EPA review, and no official 
endorsement should be inferred. This work was also supported by NSF CBET 1437451, 
UKRI/NERC Research Grant NE/N006224/1, USDA grant 2016-67021-24985, USDA Hatch 
CONH00147, project NanoFASE through the European Union’s Horizon 2020 research and 
innovation programme under grant agreement number 646002, and financial support to CESAM 
(UID/AMB/50017/2019), by FCT/MCTES through national funds. This research was initiated at 
the 2016 U.S-EU: Bridging NanoEHS Research Efforts workshop in the Ecotoxicology 
Community of Research. We thank Rhema Bjorkland of the National Nanotechnology 
Coordination Office for assistance with this project.

NIST disclaimer

Certain commercial products or equipment are described in this paper in order to specify 
adequately the experimental procedure. In no case does such identification imply recommendation 
or endorsement by the National Institute of Standards and Technology, nor does it imply that it is 
necessarily the best available for the purpose.

FDA Disclaimer

Although an author is currently an FDA/CTP employee, this work was not done as part of his 
official duties. This publication reflects the views of the authors and should not be construed to 
reflect the FDA/CTP’s views or policies.

Page 33 of 62 Environmental Science: Nano

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



34

Figure 1. Scheme of decision steps, processes and factors important to consider in designing engineered nanomaterial (ENM) bioaccumulation 
tests and calculating bioaccumulation factors. The scheme depicts how the physicochemical properties of ENMs (purple boxes and violet 
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diamonds) and the physiology of the test organism (orange diamonds) influence ENM internalization or adsorption to organisms or cell membranes 
(blue boxes) and the consequent steps for calculation of single metrics of ENM bioaccumulation (yellow boxes). 

ENM interactions with cells and organisms (blue boxes) have been grouped based on the potential of ENMs to adsorb or become internalized into 
cells or tissues. Accumulation into the digestive system has been presented as a special case because ingestion is a significant uptake pathway of 
ENMs for certain types of organisms (e.g., filter feeders, phagotrophs, and fish). Whether or not ENMs are assimilated into the tissues or cells, or 
merely adsorbed on the epithelial membrane of the digestive system depends on the ENM physico-chemical properties and biotransformations 
in the digestive system. Regardless of their fate in the digestive system, ingested ENMs contribute to the total body burden of ENMs that can be 
transferred to subsequent trophic levels, and should be taken into account in bioaccumulation measurements. Based on the potential of ENMs to 
either dissolve or form stable aqueous dispersions (purple diamonds), ENMs can be divided into (1) water-soluble ENMs, such as ZnO, Cu, CuO, 
and Ag, with particulate and dissolved fractions interacting with organisms, (2) insoluble ENMs, such as carbon nanotubes (CNTs), graphene, boron 
nitride nanotubes or flakes, and TiO2, which are not water-dispersible and tend to agglomerate in environmental matrices and thus are less likely 
to be internalized into cells and tissues but may be adsorbed to organisms or cell membranes, and (3) insoluble ENMs that form stable aqueous 
dispersions, such as functionalized carbon or boron nitride nanotubes, graphene oxide, and TiO2 with hydrophilic coatings, and may interact in 
nanoparticulate forms (violet boxes) with organisms. In addition to intrinsic ENM properties, environmental factors affecting ENM bioavailability 
and ENM biotransformations need to be considered in the test design (light green boxes). Conversely, the ENM interaction with organisms depends 
on the structure and physiology of the latter (orange diamonds). For example, ENMs can accumulate in multicellular animals by entering the 
digestive system, adsorption to the organism, and internalization in the tissues (blue boxes). The pathway of ENM accumulation in the digestive 
system is excluded for multicellular plants (non-unicellular organisms which are not animals), unicellular organisms with cell walls (bacteria, fungi 
and green algae) and non-phagotrophic unicellular organisms without cell walls (some protists and mixotrophic algae). If no internalization of 
ENMs in organisms is assumed (e.g., in the case of insoluble poorly dispersed ENMs interacting with bacteria) or in case of plants and unicellular 
organisms with cell wall, an elimination step may not be necessary before quantifying bioaccumulated ENMs (yellow boxes). In this case, a 
bioaccumulation factor (BAF) can be calculated. If accumulation in the digestive system or internalization of ENMs is assumed, it is advisable to 
perform an elimination step for calculating a kinetic BAF.
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Figure 2:  Comparison of densities among (A) biological organisms in density media, (B) media used for 
density gradient centrifugation separations, and (C) ENMs (bulk). Densities for gradient density media are 
represented in percentages of weight by volume (w/v; 10 % iodixanol, 20 % iodixanol, 30 % iodixanol, 
Percoll (23 % coated silica spheres in water), 20 % sucrose, 30 % sucrose, 50 % sucrose, and 60 %sucrose).  
T. thermophila: Tetrahymena thermophila; B. braunii:  Botryococcus braunii var. Showa; C. elegans: 
Caenorhabditis elegans; P. aeruginosa:  Pseudomonas aeruginosa; D. salina:  Dunaliella salina; E. coli:  
Escherichia coli; C. reinhardtii (cw15):  Chlamydomonas reinhardtii (cw15); R. palustris: Rhodobacter 
palustris (CGA009); S. obliquus:  Scenedemus obliquus 128, 324-328
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Figure 3: Conceptual representation of microbial biofilms (left) subject to predation by grazing (right) 
without (top) or with (bottom) ENMs accumulated in the biofilms. Note that the extracellular polymeric 
substances (EPSs) are depicted as macromolecules (lipids, nucleic acids, carbohydrates, and proteins) 
that are hydrated, surrounding biofilm cells. In the presence of ENMs that impose cellular stress, EPS 
accumulations may increase (bottom) which could increase the overall abundance of retained ENMs in 
the vicinity of prey (biofilm cells) and predator (grazer or similar).
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Figure 4: Fractions of engineered nanomaterials (ENMs) that can be detected in organisms with a 
digestive tract: 1) ENMs absorbed across epithelial surfaces; this figure (upper left) shows carbon 
nanotubes (CNTs) that had been absorbed by microvilli (see squares) although additional analysis using 
high resolution transmission electron microscopy (HRTEM) revealed that these particles were 
amorphous carbon and not CNTs.11 2) ENMs adhered to microvilli; this figure (bottom left) shows 
apparent fullerene particles adhered to the microvilli.12 3) ENMs in gut tract that are readily excreted; 
this figure (far right) shows that the gut tract of the Daphnia magna turned from black (as a result of 
uptake of few layer graphene for 24 h) to transparent or green after an elimination period of 40 min 
with algae feeding;256 adapted with permission from 256 2013 American Chemical Society.

Box 1. Definitions of key terms used in the current review. 30, 35, 329 (The term “ENM” 
includes ENMs and its transformation products.)

Assimilation efficiency – a measure of the proportion of ingested ENMs assimilated into 
(initially) the alimentary epithelium of the feeding animal; the amount absorbed per amount 
ingested from the diet.

Bioaccumulation – the process and phenomenon of ENM accumulation in or on an organism, 
regardless of exposure regime (i.e. whether ingesting or otherwise taking up ENMs via water, 
food, sediment, soil, or air).
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Bioaccumulation factor (BAF) – (1) the ratio of the ENM concentration associated with the 
organism exposed through all possible routes (CB, g ENM/kg dry mass) and the concentration in 
the exposure medium (air, water, soil or sediment) or food (CS, g ENM/kg wet mass or volume), 
or (2) the ratio between the uptake rate coefficient (k1) and elimination rate coefficient (k2), 
termed “kinetic BAF” or BAFk. Note that steady state is not assumed here, unlike in 

conventional BAF definitions, because steady state is likely not reached in ENM 

exposures, particularly in field studies.

Bioavailability – the ability of ENMs to interact with organism biosystems.

Bioconcentration – the process and phenomenon of ENM accumulation in an organism from the 
ambient environment via uptake through all routes excluding diet.330 

Bioconcentration factor (BCF) – for aqueous ENM exposures in the absence of food, (1) the 
ratio of the ENM concentration associated with the exposed organism (CB, g ENM/kg dry mass) 
and the concentration in water or (2) the ratio between the uptake rate coefficient (k1) and 
elimination rate coefficient (k2), termed “kinetic BCF” or BCFk.

Biomagnification – the increase in whole-body ENM concentration from one trophic level to the 
next resulting from ENM accumulation in food.

Biomagnification factor (BMF) – the ratio of ENM concentration in an organism (trophic level 
n, CB, g ENM/kg dry mass) to that of the diet (trophic level n-1, CD, g ENM/kg dry mass), using 
organisms of known or assumed trophic status.

Biodistribution – ENM distribution within an organism.331, 332 

Body burden – the ENM concentration in, or on, an organism at a given time.

Elimination rate coefficient (k2) – the numerical value defining the rate of decrease in the ENM 
concentration in the test organism, or specified tissues thereof, following the test organism 
transfer from a medium containing the ENM to an ENM-free medium.

Elimination – the combined process of metabolism, excretion, and degradation which results in 
ENM removal from an organism.

Growth dilution – the decrease in ENM concentration in a growing organism because the 
amount of tissue in which the ENM is distributed is increasing at a faster rate than the increase in 
ENM amount in the organism.

Gut voidance – ENM loss from the gut lumen when an organism is removed from ENM-
contaminated media and placed into clean media free of ENMs or is fed an ENM-free diet.

Toxicokinetics – the study of organismal rates of ENM uptake, transfer between biological 
compartments, biotransformation and elimination.

Trophic level – a conceptual level in a food web such as primary producer, primary consumer or 
secondary consumer, recognizing that omnivorous organisms do not have discrete trophic levels.
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Uptake – that part of the bioaccumulation or bioconcentration process(es) involving ENM 
movement from the external environment into an organism, either through direct exposure to an 
ENM-contaminated medium or by consumption of food (including prey) containing the ENM. 
This can be defined as an uptake rate (e.g., mass of ENM per day), an uptake rate coefficient or, 
particularly for plants, as the total uptake over the course of an exposure.

Uptake rate coefficient (k1) – the numerical value defining the rate of increase in ENM 
concentration in or on the organisms, or specified tissues thereof, when the organisms are 
exposed to ENMs.
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Table of contents artwork

Strategies, discussion, and case studies are provided for making robust and accurate measurements 
of engineered nanomaterial bioaccumulation by single-cell organisms, multicellular organisms, 
and plants.
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