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Environmental Significance Statement 

Followed by the success of our proposed periodic table based descriptors (PTDs) in the modeling 

study, we have reported a pool of second generation PTDs for better understanding the 

mechanism of toxicity of metal oxide nanoparticles (MNPs) towards three species namely E. 

coli, human keratinocyte cell line (HaCaT) and Zebrafish embryos employing QSTR models. 

The QSTR models can be efficiently employed for environmental risk screening tools for the 

mentioned species for any new/untested MNPs. The developed i-QSTTR models will allow in 

extrapolation of data from one species to another. Further a dataset of 42 MNPs was used as the 

true external dataset for prediction using the developed single line models for the very first time 

which will help in environmental risk assessment and data gap filling as these metal oxides are 

never tested for these mentioned species. 
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Abstract 

The application of in silico methods in the risk assessment of metal oxide nanoparticles (MNPs) 
and data gap filling has found profound usability. Followed by the success of periodic table-
based descriptors in the modeling study, we have reported here a pool of second generation 
periodic table descriptors for better understanding the mechanism of toxicity of MNPs towards 
three species namely E. coli, human keratinocyte cell line (HaCaT) and Zebrafish embryos. 
These descriptors are easily derived from the molecular formula and periodic table in no time 
and can be used in models with prediction ability similar to or even better than those involving 
quantum chemical descriptors and physicochemical indices. Employing the developed 1st and 2nd 
generation periodic table-based descriptors, we have developed single species quantitative 
structure-toxicity relationship (QSTR) models and interspecies quantitative structure-toxicity-
toxicity relationship (i-QSTTR) models to understand the relationship among the toxicities of 
metal oxide nanoparticles to different species along with the identification of the major 
mechanism(s) for such toxicities. These models further helped in extrapolating toxicity when the 
data for one species is available and the data for other species are unavailable. Further, we have 
made predictions for a set of 42 true external MNPs, employing all three QSTR models 
individually, the toxicity data for all three species using a two-stage prediction confidence check 
through applicability domain and “prediction reliability indicator”. The developed models 
interpreted that the oxidation state of the metal, the electronegativity of the metal oxide and core 
count of the metal play substantial roles in the toxicity mediation of the MNPs irrespective of the 
species and response. Along with the first generation, the newly developed second generation 
periodic table-based descriptors can encode the toxicity features of MNPs efficiently as 
compared to classical quantum chemical descriptors involving time consuming computations and 
physicochemical descriptors involving experimental tests. 
 

Keywords: E. coli, HaCaT, Metal Oxide, Nanoparticles, Periodic Table, QSTR, Zebrafish 

 

1. Introduction 

In the present days, nanotechnology has evolved in the frontline of modern science and 
technology with a vast range of applications of nanoparticles (NPs) in personal, commercial, 
medical, military, pharmacy, textiles, cosmetics, electronics, catalysts and self-cleaning coatings, 
to list a few.1,2 Metal oxide nanoparticles (MNPs) have found immense use due to their novel 
optical, magnetic, and electronic properties.3 In spite of the extensive beneficial aspects, 
nanomaterials pose a serious threat to the ecosystem due to their continuous release during their 
production process as well as from the nanomaterials containing products during use, recycling 
and disposal.4 Nanomaterials possess unique characteristics having a diverse range of size, 
shape, chemical compositions and surface modifications which all directly and indirectly 
influence the toxicity profile.5 Thus, the toxicity of nanomaterials to diverse organisms in 
different environmental compartments has become a noteworthy concern.  
 
The MNPs have been shown to induce inflammation and oxidative stress, and changes in cell 
signaling and gene expression in mammalian cells. As the nanotechnology industry increases 
day-by-day, nanoscale products and by-products are penetrating the aquatic environment posing 
a serious threat to aquatic organisms.6 Predictive toxicity models could form an integral 
component of an approach which can predict the types of nanomaterials responsible for creating 
environmental toxicity as a result of their physico-chemical characteristics. Different 
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computational approaches have been developed over the years, but Quantitative Structure-
Activity/Property/Toxicity Relationship (QSAR/QSPR/QSTR) modeling is the most convenient, 
time effective and inexpensive one.7-10 Additionally, predictive QSAR modeling circumvents the 
need to utilize animal models and has been proven to be an efficient tool for predicting the 
potentially adverse effects of chemical entities in terms of risk assessment, chemical screening, 
and priority setting.11,12 
 
The QSPR/QSTR methodologies have been used to correlate diverse properties/toxicities of 
nanomaterials over the years.13-20 A combination of basic physics with toxicity mechanism was 
utilized, where the “liquid drop” approach was applied to develop predictive classification 
models for toxicity of MNPs.20 Nano-read-across methodology was proposed by Gajewicz et 
al.

21 which in the absence of adequate and relevant data has been used in predicting toxicities 
and properties. Boukhvalov and Yoon proposed first-principle calculations based theoretical 
descriptors to model cytotoxicity of metallic NPs.22 Shin et al.23 suggested spherical cluster and 
hydroxyl metal coordination complex to compute descriptors for the generation of classification 
models for NP cytotoxicity. A good number of articles deal with QSTR perturbation model to 
predict ecotoxicity and cytotoxicity of diverse NPs under changed experimental conditions as 
well as changing the chemical composition of nanoparticles size, shapes and conditions against 
several endpoints. These QSTR models employed moving average approach to compute 
descriptors to encode the toxicity responses.24-26 Researchers have demonstrated the relationship 
between zeta potential and a series of intrinsic physico-chemical features of 15 MNPs revealed 
by a computational study.27 Xia et al.28 have mapped the surface adsorption forces of 16 MNPs 
for quantitative classification in biological systems. 
 
Interspecies quantitative structure–toxicity–toxicity (i-QSTTR) modeling allows the prediction 
of toxicity of a species using experimental toxicity values of another species as a descriptor 
along with chemical structure derived/physicochemical descriptors. This type of modeling might 
reduce the use of higher level organisms and also helps in understanding the mechanism of 
action to some degree as it is derived by a standard experimental bioassay.29 Many groups of 
researchers across the globe have carried out interspecies modeling on different endpoints.30-33 
Since the toxicity end point, which acts a predictor variable, is obtained through some standard 
experimental bioassay, it can to some extent describe the mechanism of action of a particular 
compound while the other predictor variables are solely obtained from the compounds’ chemical 
structures and physicochemical behavior. Also it is not possible to carry out toxicity experiments 
on all species for every compounds, so interspecies toxicity correlations provide a tool for 
estimating sensitivity towards toxic chemical exposure with known levels of uncertainty for a 
diversity of different species and for bridging data gaps.34 Periodic table-based descriptors were 
utilized by Kar et al. to find interspecies relationship between E.coli and HaCaT cell line towards 
MNPs toxicity for the very first time.35 Basant and Gupta developed robust and reliable 
interspecies models to predict the cellular affinity of MNPs for multiple human cell types 
(PaCa2, HUVEC, RestMph, GMCSF_Mph, and U937).36 
 
Scientists have developed several models towards toxicity of MNPs on various cell lines using 
quantum chemical descriptors14 which provided considerable and reliable results. However, the 
use of quantum descriptors requires high computational time and efficient personnel. The 
introduction of periodic table based descriptors35 helped in reducing time required for 
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computation because they were directly obtained from the periodic table or derived from it and 
also these descriptors were effective enough to produce similar or even better results as 
compared to quantum-based descriptors. In the present work, we have developed QSTR models 
on cytotoxicity profile of MNPs to bacteria Escherichia coli (prokaryotic system) and human 
keratinocyte cell line (HaCaT) (eukaryotic system) and also on enzyme inhibition of Zebrafish 
Hatching Enzyme (ZHE1) employing a new set of second generation of periodic table 
descriptors. Further we have demonstrated in the present work the use of periodic table-based 
descriptors for an external set of MNPs for which toxicity and enzyme inhibition data are not 
available (data gap filling) for the mentioned species. We have also developed i-QSTTR models 
that allow the prediction of a specific toxicity (for an endpoint) using the experimental toxicity 
values (for another endpoint) as a descriptor along with chemical descriptors. These models will 
be helpful to predict the cytotoxicity of the individual metal oxide nanoparticles for any one of 
species when the toxicity data for the other species are available. The outline of the study is 
demonstrated in Figure 1. 
 

 
 

Figure 1 The complete scheme of the study. 
 

2. Materials and methods 

 

2.1. Dataset 

The cytotoxicity data of 19 MNPs14 to bacteria E. coli, 18 MNPs37 to human keratinocyte cell 
line (HaCaT) and percentage decrease in enzymatic activity (enzyme inhibition to Zebrafish in % 
(%EI_Zebrafish)) of Zebrafish hatching enzyme (ZHE1) of 24 MNPs38 were employed in the 
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present modeling studies. The data points are expressed in terms of pEC50 (negative logarithm of 
EC50 expressed in a molar unit) in case of toxicity against E. coli and HaCaT cell line while in 
form of percentage enzyme inhibition in case of Zebrafish embryo toxicity. In case of the E. coli 
cytotoxicity models, all the MNPs were utilized for model development. But for HaCaT 
cytotoxicity models, three MNPs (NiO, Mn2O3, SiO2) and for ZHE1 enzyme inhibition models, 
one MNP (CoO) was removed for their outlier behavior based on preliminary modeling analysis 
and similarity measures. In case of interspecies QSTTR models, cytotoxicity data against E. coli 
and HaCaT cell lines had 19 MNPs in common and all these were used in the modeling analysis. 
For interspecies modeling considering E. coli cytotoxicity and ZHE1 enzyme inhibition in 
Zebrafish, 17 MNPs were in common and all of these data were used for interspecies toxicity 
modeling. For HaCaT cytotoxicity and Zebrafish embryo toxicity, 16 MNPs were common but 
out of these 3 compounds (CoO, Cr2O3, WO3) had to be removed for i-QSTTR modeling based 
on the initial analysis.  
 

2.2. Descriptor calculation 

The QSTR and interspecies QSTTR models were developed by using fundamental information 
of the metal oxides obtained from the periodic table to encode their toxicity against E. coli, 
HaCaT and Zebrafish. A set of 23 descriptors were used among which 10 descriptors were 
directly collected from the periodic table and the rest were derived from the primary descriptors. 
The list of all collected and derived descriptors are given in the Table 1. The advantage of 
periodic table-based descriptors is that they are obtained quickly without any significant 
calculations and software usage unlike quantum chemical descriptors. First seven descriptors 
were used by us previously which are marked as first generation periodic table descriptors.35 
Newly introduced sixteen descriptors used in the present study are denoted as second generation 
periodic table descriptors. Computed descriptors for all MNPs are reported in the Supplementary 
Information excel file.  
 
Table 1 List of descriptors used for model development. 
 

No. 
Generation of PT 

Descriptors 

Mathematical 

Expression 
Description 

1 1
st
 Generation MW Molecular weight of metal oxide 

2 Nmetal Number of metal 
3 Noxy Number of oxygen 
4 χ Metal electronegativity 

5 ∑χ 
Total metal electronegativity in 

specific metal oxide 

6 ∑χ/nO 
Total metal electronegativity in 
specific metal oxide relative to 

number of oxygen 
7 χox Oxidation number of metal 
8 2

nd
 Generation Zmetal Atomic number of metal 

9 Zv
metal Valence electron of metal 

10 PNmetal Period number of metal 

11 λ=(Zmetal– Zv
metal)/ Z

v
metal 

Core environment of metal 
defined by the ratio of the 
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number of core electrons to the 
number of valence electrons 

12 µ = 1/(PNmetal) - 
13 Vmetal Valence of metal 
14 αmetal = λ*µ - 
15 ∑αmetal = αmetal *Nmetal - 
16 ∑αoxy = Noxy*0.33 - 

17 ∑α =∑αmetal + ∑αoxy 
The core count, gives a measure 

of the molecular bulk 

18 
εmetal= -αmetal 

+(0.3*Zv
metal) 

Electronegativity count of metal 

19 εoxy= -αoxy + (0.3*Zv
oxy) 

Electronegativity count of 
oxygen 

20 
∑ε = εmetal* Nmetal + εoxy* 

Noxy 
Electronegativity count of total 

metal oxide 

21 ∑ε/N 
Sum epsilon relative to number 

of atoms in the molecule 

22 (∑α)2 Square of summation of alpha, 
gives measure of molecular bulk 

23 (∑ε/N)2 Squared sum epsilon by number 
of atoms 

 

2.3. Splitting of the dataset 

Selection of training and test sets plays a vital role in the development of QSTR models. The 
total number of data points as well as their combination of metal oxides are different for each 
cell lines. Not only that, the modeled responses are also different from each other. In the present 
work, the dataset for each response was divided into a training set and a test set based on the 
principle component analysis (PCA) score plot ensuring distribution and similarity measures of 
properties and response uniformly in both sets. This is why the composition of the training and 
test sets changes from model to model in this study. The PCA plots for single endpoint QSTR 
models as well as for interspecies models are placed in the Supplementary Information excel file 
as Figures S1 and S2, respectively.  
 
2.4. Chemometric tools 

The QSTR models and interspecies QSTTR models were developed using Multiple Linear 
Regression (MLR)7 method by Genetic Algorithm39 technique of descriptor selection. In some 
cases, partial least squares (PLS)40 regression was used from the descriptors selected in the 
stepwise approach due to lower number of data points. In case of PLS regression, to avoid 
overfitting, a strict test for the significance of each consecutive PLS component is necessary and 
then stopping when the new components are non-significant. For all the developed models, we 
have maintained the acceptable ration of number of data points and number of adjustable 
parameters.7 
 

2.5. Validation metrics 

The validation of the models was done by both internal and external validation metrics.7 The 
determination (R2) measures the fitting potential of the model whereas internal validation (which 
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deals with the predictive ability of the model based on training set compounds) is usually 
determined by a cross-validated squared correlation coefficient, QLOO

2 (leave-one-out or LOO). 

Although Q2
LOO measures the model robustness, is not sufficient to determine the performance of 

the model when new sets of compounds are employed. The external validation deals with 
measuring the predictive ability of a model for the test set compounds. The external validation of 
the model was estimated using the QF1

1 and QF1
2 parameter.41 The accepted threshold value for 

both internal (Q2
LOO) and external predictive parameters (Q2

F1, Q
2

F2) is 0.5.41 Additionally, rm
2 

metric values were checked as these metrics were found more stringent than conventional 
metrics.42 Additional parameters like Q2F3, RMSE, MAE values are also computed. 41 
 

2.6. Applicability domain 

Applicability domain (AD) is a theoretical region in chemical space defined by the respective 
model descriptors and responses in which the predictions are reliable. In the present study, the 
AD is calculated by two different approaches: a) Leverage approach43 and b) the 
standardization44 approach to find out the influential observation for training set compounds and 
outliers for test set compounds whose predictions are not reliable. 
 

2.7. True External Set Prediction  

To verify the predictive power of the developed QSTR models, a set of MNPs were used as true 

external set.21 The experimental data of these compounds were not available for these MNPs and 

hence used for predicting their toxicities on the three diverse species modeled (viz. E.coli, 

HaCaT and Zebrafish). Additionally, the domain of applicability and their prediction reliability 

were also checked by the standardization approach and with the ‘prediction reliability indicator’ 

tool45 respectively. 

 

3. Result and discussion 

Depending on the cytotoxicity and enzyme inhibition data and calculated periodic table-based 
descriptors, we have developed statistically significant QSTR models using GA-MLR and PLS 
methods. 
 

3.1 Modeling of MNPs cytotoxicity to E. coli 

The best equation is developed employing GA-MLR approach for the E. coli which is described 
as equation 1 mentioned below: 
 
���������	 = 4.998�±0.349� − 0.757�±0.106���� − 0.020�±0.015��∑�/ �

! 

 "#$%&	 = 12, )
! = 0.88, )$*+	

! = 0.85	, ,�-..�
! = 0.78, /0�1���

!222222222 = 0.69, 3/0�1���
! = 0.14 

 "45" = 7, ,67
! �/	)8#4*

! = 0.83, ,6!
! = 0.70, /0�"45"�

!222222222 = 0.67, 3/0�"45"�
! = 0.16																							(1) 

 
The values within parentheses indicate standard error of respective regression coefficients. 
Although the second term �∑�/ �! is significant only at 78% confidence level, we have retained 
it in the equation as it shows its importance while predicting the test set data.  From equation 1, 
we can infer that the model could explain 85% of the variance (Ra

2) while it could predict 78% 
of the cross-validated leave-one-out predicted variance (Q2). The metrics	,67

!  or )8#4*
!  and ,6!

!  
are used for external validation purposes and their values are much higher than the acceptable 
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threshold value of 0.5. Since the number of modeled compounds is low, we have calculated 

/0�1���
!222222222  and3/0�1���

!  employing the observed and LOO-predicted values of the training set 

followed by /0�"45"�
!  and 3/0�"45"�

!  for test set molecules. The statistical quality of the developed 
model is illustrated in Table 2. Additional validation metrics like Q2F3, RMSE, MAE values are 
placed in Table S1 in Supplementary information file. The experimental and predicted toxicity 
values of MNPs against E. coli obtained from developed equation 1 are presented in Table 3. 
The scatter plot (Figure 2, Top left) showed that the points were limitedly scattered around the 
line of fit for both training and test sets. We have performed descriptor-descriptor 
intercorrelation study. Based on the results of the analysis, there is no significant intercorrelation 
among the descriptors for any single endpoint and/or interspecies models.  The obtained result is 
reported in Table S2 in Supplementary Information excel file. Similarly, the correlation among 
modeled descriptors and responses are computed to show the importance of specific descriptor to 
a particular model and illustrated in Table S3 in Supplementary Information excel file. 
 
The descriptors contributing to the toxicity of MNPs towards E. coli are ��� and�∑�/ �!. The 
descriptor χox is the oxidation number of the metal atom and has a negative coefficient towards 
the toxicity. If we closely study the variation of the cytotoxicity data with the numerical value of 
χox, we can easily infer that with an increasing value for the descriptor the cytotoxicity decreases. 
This is well observed in case of copper oxide (CuO) where the oxidation state of Cu is 2 and it 
has a high cytotoxicity. In case of ZrO2, the oxidation state is high (χox = 4) and its cytotoxicity is 
low (pEC50 = 2.15) which proves the reliability of the model. The values of χox for the four most 
(CoO, NiO, CuO and ZnO) and least cytotoxic (SiO2, ZrO2, SnO2 and TiO2) compounds are two 
and four, respectively. All the metal oxides having χox value of three showed moderate 
cytotoxicity which is no doubt a noteworthy observation. 
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Table 2 Statistical parameters showing the quality of the developed models. 
 

Dependent 

variable 

Statistical 

methods 

Descriptors NTrain R
2 

Radj
2 

Q(LOO)
2
 9:�;<<�

=222222222 >9:�;<<�
=  NTest  QF1

2 
QF2

2 
/0�"45"�
!2222222222 >9:�?@A?�

=  

Single line QSTR models 

pEC50E.coli GA-MLR χox, (∑ε/N)2 12 0.88 0.85 0.78 0.69 0.14 7 0.83 0.70 0.67 0.16 

pEC50HaCaT 
PLS  

(1 LV) 
∑χ/nO, λ, 

Vmetal 
13 0.78 0.70 0.61 0.51 0.16 3 0.83 0.83 0.67 0.12 

%EI_Zebrafish GA-MLR 
Noxy, ∑χ/nO, 

∑αmetal 
16 0.83 0.79 0.68 0.61 0.6 7 0.74 0.70 0.54 0.22 

Interspecies-QSTTR models 

pEC50E.coli PLS  
χox, 

pEC50HaCaT 
(1 LV) 

12 0.78 0.73 0.67 0.58 0.11 5 0.91 0.82 0.70 0.10 

pEC50E.coli GA-MLR 
χox, 

%EI_Zebrafish 
11 0.83 0.79 0.74 0.65 0.12 6 0.91 0.90 0.84 0.08 

%EI_Zebrafish GA-MLR 
(Σε/N)2, 

pEC50HaCaT 
10 0.91 0.88 0.84 0.76 0.10 4 0.79 0.68 0.51 0.22 
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Table 3 Observed and predicted response values for individual single line models. 

 

ID 
Metal 
oxide 

E. coli (pEC50Ecoli) 
HaCaT Cell line 
(pEC50HaCaT) 

Zebrafish 
(%EI_Zebrafish) 

Observed Predicted Observed Predicted Observed Predicted 
1 AL2O3 2.49 2.73 1.85 1.80 3.44 3.01 
2 CeO2

$ - - - - 10.8 8.83 
3 Co3O4

$ 3.00 2.98 - - -1.04 14.34 
4 CoO* 3.51 3.46 2.83 7.82 4.00 X 
5 Cr2O3

$ 2.51 2.70 2.3 13.93 44.72 24.55 
6 CuO$ 3.20 3.20 - - 50.00 47.23 
7 Fe2O3

* 2.29 2.73 2.05 6.52 11.04 13.55 
8 Fe3O4 - - - - 13.04 12.86 
9 Gd2O3 - - - - 11.36 14.45 

10 HfO2 - - - - 11.04 12.73 
11 In2O3 2.81 2.73 2.92 10.08 7.12 12.43 
12 La2O3

# 2.87 2.72 2.87 18.02 13.28 10.92 
13 Mn2O3

* 3.08 2.72 2.64 X 17.20 9.94 
14 NiO* 3.45 3.46 2.49 X 34.56 38.64 
15 Ni2O3

$ - - - - 18.32 15.58 
16 Sb2O3

$ 2.64 2.73 2.31 5.16 9.04 9.98 
17 SiO2

* 2.20 1.97 2.12 X 10.48 7.53 
18 SnO2 2.01 1.97 2.67 6.86 2.56 10.86 
19 TiO2 1.74 1.97 1.76 5.68 9.92 8.26 
20 WO3 - - 2.64 22.55 9.04 5.13 
21 Y2O3 2.87 2.72 2.21 11.95 9.36 9.15 
22 Yb2O3

$ - - - - 11.84 15.47 
23 ZnO* 3.45 3.45 3.32 9.97 42.72 35.01 
24 ZrO2

# 2.15 1.95 2.02 11.73 7.36 9.04 
25 Bi2O3

# 2.82 2.73 2.5 9.51 - - 
26 V2O3

* 3.14 2.73 2.24 5.83 - - 
*, #, $ are the compounds used in test set for E. coli, HaCaT cell line and Zebrafish respectively. 
X: Not used in the modeling 

 

The descriptor �∑�/ �! is a measure of sum of electronegativity of the atoms of the metal oxide 

scaled by the number of atoms present. It can be calculated from the electronegativity count of 

the metal oxide (∑ε) which is expressed as following equation: 

∑� = 	 �04"$1 ∗ 	 04"$1 + ���D ∗ 	 ��D           (2) 

Here, �04"$1 and ���D are the electronegativity count of metal and oxygen atoms, respectively 

and  04"$1 and  ��D are the number of metal and oxygen atoms. The expressions for �04"$1 and 

���D can be obtained from Table 1. The descriptor shows a negative contribution to the cytotoxic 

behavior of the nanoparticles. Compounds ZnO and CuO (both having same oxidation number) 

can be used for demonstration of the contribution of this descriptor where we can clearly identify 

that with a low �∑�/ �! value as in ZnO (�∑�/ �!= 1.686) the toxicity is higher (pEC50 = 3.45) 
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and the opposite is observed in case of CuO having a higher value for �∑�/ �! (14.301) with a 

lower toxicity value (pEC50 = 3.2). 

 
 

Figure 2 Scatter plot for the best QSTR model of E. coli (Top left), HaCaT (Top right) and 
Zebrafish (Bottom). 
 

3.1.1 Mechanism for MNPs cytotoxicity to E. coli 

The MNPs cause the modification and damage of cellular proteins, lipids, and DNA thus leading 
to disruption of membrane integrity, disturbance in cellular transport chains or induction of an 
oxidative stress which can subsequently lead to cell death.47,48 The mechanism of cytotoxicity is 
thought to involve lipid peroxidation by reactive oxygen species (ROS) such as superoxide (E!

•G) 
and hydroxyl radicals (• EH)49,50 which is initiated by electron detachment from metal oxide 
nanoparticle and this energy is provided by solar radiation.49,51 Studies suggest that mechanism 
of MNP toxicity depends on the release of metal ions from the surface of the nanoparticles.20,52 
Nanoparticles produce oxidative stress by generation of E!

•Gand• EH radicals as per following 
process.37 
 
E!											E!

•G 
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E!
•G + H!E! 												 • EH + E! 

An example has been shown with TiO2 nanoparticle that how in presence of sunlight and O2, 

electrons are detached and free radicals generated. 

 

I	E!														I	E!
J + KG 

KG + E!															E!
•G 

E!
•G +	2HJ + KG																						H!E! 

E!
•G + H!E! 																 • EH + EH

G + E! 

HJ + H!E												 • EH + H
J 

 

Addition of two enzymes, viz., superoxide dismutase (catalyzing the dismutation of O2
- into O2 

and H2O2) and catalase (catalyzing decomposition of H2O2 to H2O and O2) to Al2O3suspension 

significantly reduce the damage caused to E.coli membranes53,54 and confirmed that 

nanoparticles of TiO2 presented as a coating on cellulose fibers still showed toxicity (but reduced 

one) in the absence of light and supports the above mechanism. Thus, the latter survey supports 

and explains the importance of the χox descriptor as described by Kar et al.35 Nanoparticles are 

available in the size range below or equal to 100nm, but NPs of size less than 15nm are toxic 

towards bacteria/micro-organism/human. This toxicity arises due to the reductive potential, i.e., 

the detachment of the electron from the metal oxides which can be explained by the descriptor 

�∑�/ �!. The generated strong reductive fragments instigate the formation of reactive oxygen 

species (ROS) and the response in the bacteria, the so-called the oxidative stress, which leads to 

cytotoxicity. The toxicity on MNPs decreases in the following order of the oxidation number of 

the metal cations:55 Me2+> Me3+> Me4+ which is well explained by the χox descriptor. Probable 

mechanism for cytotoxicity for MNPs against E. coli is illustrated in Figure 3. 

hv 
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Figure 3 Proposed mechanism of E. coli cytotoxicity due to MNPs. 
 

3.2. Modeling of toxicity of MNPs against HaCaT cell line 

The PLS equation with one latent variable (LV) evolved as the best model for HaCaT cell line is 
described as follows: 
 
�����	HL�LI = 1.26948 + 1.06163�∑��/ME + 0.03763N − 0.14632O04"$1 

 "#$%& = 12, )
! = 0.78, ,�-..�

! = 0.61, /0�1���
!222222222 = 0.509, 3/0�1���

! = 0.160 

 "45" = 3, ,67
! = 0.83, ,6!

! = 0.83, /0�"45"�
!222222222 = 0.67, 3/0�"45"�

! = 0.12																																													(3) 

 

The model showed acceptable values of the determination coefficient (R2=0.78) and cross-

validated correlation coefficient (Q2
LOO=0.61), signifying the statistical reliability of the model. 

The predictivity of the model was judged by means of predictive R2 (Rpred
2) or QF1

2 (0.83) and 

QF2
2 (0.83) which show good predictive ability of the model. We have also calculated /0�1���

!222222222 and 
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3/0�1���
!  employing the observed and LOO-predicted values of the developed model. The 

statistical quality of the developed model is illustrated in Table 2. The experimental and 

predicted toxicity values of MNPs against HaCaT obtained from developed equation 3 are 

presented in Table 3. The scatter plot (Figure 2, top right) showed that the points were limitedly 

scattered around the line of fit for both training and test sets accounting for the robustness of the 

model. 

 

The regression coefficient plot40 (Figure 4, top left) provides the knowledge about the positive 

or negative contribution of descriptors towards the toxicity of the MNPs. Descriptors like 

�∑��/ME and	N with positivecoefficients imply that as the descriptor values increase, the toxicity 

of MNPs also increases whereas the descriptor with a negative coefficient (O04"$1) decreases the 

toxicity of MNPs with their increasing numerical values. From the variable importance plot 

(VIP) (Figure 4, top right), the order of contribution of each descriptor is obtained. The most and 

the least important descriptors contributing to the toxicity can be identified with the help of this 

plot. A variable with a VIP score >1 shows higher statistical significance as compared with one 

with a low VIP value.56 The descriptors are arranged in the plot according to their importance 

(maximum contribution to minimum contribution) and their significance level is found to be in 

the following order:	�∑��/ME, N and O04"$1. 

 

 
Figure 4 Regression coefficient plot (Top right), variable importance plot (Top left), score plot 
(Bottom left) and loading plot (Bottom right) of the best QSTR model for HaCaT cell line 
 

The descriptor contributing most to the response is �∑��/ME , which is the totalmetal 

electronegativity in a specific metal oxide relative to the number of oxygens. The descriptor 

shows a positive coefficient thus indicating that with increase in its value, the toxicity of the 

metal oxide increases. Highly toxic compounds like ZnO (pEC50 = 3.32) and CoO (pEC50 = 

2.83) have higher values of �∑��/ME (1.65 and 1.88 respectively) while in case of low toxic 

compound like TiO2 (pEC50 =1.76), the value of the descriptor is also less (0.77). 
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The next most important descriptor is N which signify the core environment of metal defined by 

the ratio of the number of core electrons to the number of valence electrons and can be expressed 

as follows: 

N = 	
PQRSTUG	PQRSTU

V

PQRSTU
V                             (4) 

Here,	W04"$1 is the atomic number of the metal atom and W04"$1
X  is the valence electron of the 

metal. The positive regression coefficient denotes that an increased value for N will lead to an 

increased toxicity of metal oxide as seen in WO3 (pEC50 = 2.56; λ = 36) and vice versa in case of 

Al2O3 (pEC50 = 1.85; λ = 3.33). The least important descriptor for this model is O04"$1 which is 

the valency of the specific metal i.e., the number of electrons involved or available for chemical 

bond formation. The descriptor has a negative contribution towards metal oxide toxicity which is 

evident in MNPs like Cr2O3 and ZnO. In case of Cr2O3, a high valency (O04"$1 = 6) results in 

lower toxicity (pEC50 = 2.3) whereas in case of ZnO, O04"$1 is 2 and toxicity is high (pEC50 = 

3.32). 

 

The distribution of the compounds in the latent variable space as defined by the scores is 

expressed in a score plot, as given in Figure 4 (Bottom left). Here, we have plotted the scores of 

the first two components t1 and t2. The applicability domain of the model is indicated by the 

ellipse, as defined by Hotelling's t2. Hotelling's t2 is a multivariate generalization of Student's t-

test. It provides a check for compounds adhering to multivariate normality.57 In this plot, 

compounds which are situated near each other have similar characteristics or properties, whereas 

compounds which are far from each other have dissimilar properties with respect to their toxic 

properties towards HaCaT cell line. For example, compounds which are located in the upper left-

hand corner like 4 (Cr2O3) and 14 (Y2O3) have some similarity in their properties whereas 

compounds which are far from each other like 15 (ZnO) and 12 (TiO2) represent heterogeneity 

in the property space. The compounds which are close to the center of the plane have average 

properties. Since there are no compounds present outside the ellipse, we can conclude that there 

are no outliers according to this method. 

 

The relationship between the X-variables and Y-variables can be understood by the loading plot 

(Figure 4, bottom right) where three X-variables and one Y-variable are shown. The loading plot 

was developed using the first two components. The loading plot helps in understanding the 

impact of different variables to the model. For interpretation, we should consider the distance of 

the descriptors from the plot origin. Similar type of descriptors contributing similar meaning will 

be grouped together, whereas the descriptors with different meaning will be far from each other. 

If a descriptor is far from the plot origin, it is considered to give greater impact on the response 

value. For example, the X-variable Σχ/nO influences the Y-variable most because of its closeness 

to Y-variable, i.e., with an increase in this descriptor’s value, the pEC50HaCaT will increase. The 

descriptor Vmetal which is present in the opposite side of the plot origin with respect to 
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pEC50HaCaT, suggests that an increase in Vmetal value will result in a decrease in the cytotoxicity 

value for HaCaT cells. 

3.2.1 Mechanism behind MNPs cytotoxicity to HaCaT 

The generation of intracellular ROS levels could induce oxidative damages to cellular 
components, finally leading to apoptosis.58 Intracellular ROS causes lipid peroxidation due to 
metal oxide induced stress generation as discussed by Lee et al.59 A number of ROS have been 
found to be responsible for toxicity of MNPs, such as OH radicals60, superoxide ions61, hydrogen 
peroxide in cooperation with other ROS62 etc. The descriptor �∑��/ME  is a measure of 
electronegativity and according to Portier et al.63 the value of electronegativity of a given metal 
oxide (χ) is strongly related to the electronegativity of the corresponding cation (χ+). The cation 
electronegativity depends on the ionic radius and formal charge of the cation, i.e., higher values 
of χ+ will characterize those cations that have a relatively large charge distributed along a 
relatively small atomic radius. Since electronegativity is an assessment of the tendency of an 
atom to attract a bonding pair of electrons, it is clear in the context of the Haber–Weiss–Fenton 
cycle64 that the increase of the cation electronegativity should result in the increase of catalytic 
properties of metal cations and consequently, it increases the toxicity of the MNP. 
 
For example, metal cations such as Cu2+can detach from the surface of MNPs and may catalyze 
the formation of hydroxyl radicals (• EH) via the so-called Haber-Weiss-Fenton cycle through 
following steps65 
 
E!
•G + �Y!J												E! + �Y

J 
�YJ + H!E!												�Y

!J + EHG +• EH 

 

The ROS can be produced at any time as byproducts during cellular respiration in all aerobic 
organisms because they use molecular oxygen to obtain energy.66 Problem arises when the cell is 
unable to maintain a balance between the levels of oxidized and reduced species through various 
antioxidants and enzymes that scavenge the free radicals resulting increased ROS production 
followed by toxicity. 
 
Another mechanism through which metal oxides work is related to the ability of transferring 
electrons between the surface of MeOx and intracellular redox couples. This occurs due to the 
detachment of electrons from the valence band to the conduction band and takes place due to the 
impact of intracellular redox processes occurring in the biological media.37 All these studies 
further highlight the aspects such as morphology of the cell, size, and shape of the NP, and the 
NPs’ solubility, which mainly control the mechanism predominantly.67 The complete proposed 
mechanism for the toxicity of MNPs to HaCaT cell line is reported in Figure 5. 
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Figure 5 Proposed mechanism of HaCaT cytotoxicity due to MNPs. 
 

3.3 Modeling of toxicity of MNPs against Zebrafish 

The equation for the GA-MLR based model for inhibition of ZHE1 hatching enzyme activity is 
mentioned as following: 
 

%�[_WK]/L^	_`	

= 10.286�±6.594� − 10.166�±2.217�	 ��D + 16.198�±3.712�	∑�/ME

+ 1.750�±0.512�∑a04"$1 

 "#$%& = 16, )
! = 0.83, )$*+

! = 0.79, ,�1���
! = 0.68, /0�1���

!222222222 = 0.61, 3/0�1���
! = 0.06 

 "45" = 7, ,67
! = 0.74, ,6!

! = 0.70, /0�"45"�
!222222222 = 0.54, 3/0�"45"�

! = 0.22																																						(5) 

 

All regression coefficients in eq. (5) are significant at 95% confidence level. From equation 5, 

we can infer that the model could explain 83% of the variance while it could predict 68% of the 

variance (leave-one-out predicted variance). The metrics,67
!  or )8#4*

!  and ,6!
!  are used for 

external validation purposes, and their values are much higher than the stipulated threshold 

value. The statistical quality of the developed model is illustrated in Table 2. The experimental 

and predicted toxicity values of MNPs against HaCaT cell line obtained from developed 
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equation 5 are presented in Table 3. The scatter plot (Figure 2, bottom) showed that the points 

were limitedly scattered around the line of fit for both training and test sets. 

The descriptor  ��D is the number of oxygen atoms in the metal oxide, which shows a negative 

correlation towards the enzyme inhibition of ZHE1 hatching enzyme. Thus, with an increase in 

the number of oxygen the enzyme inhibition activity of the metal oxide would decrease as seen 

in Al2O3 ( ��D= 3; %�[_bK]/L^	_` = 3.33) and Fe3O4 ( ��D= 4; %�[_bK]/L^	_` = 13.04). The 

opposite occurs in metal oxides having less number of oxygen, i.e., the enzyme inhibition 

activity increases as seen in NiO and ZnO both having one oxygen each and percentage enzyme 

inhibition is 34.56 and 42.72, respectively. 

 

∑�/ME as described earlier is a measure of electronegativity and in case of zebrafish also, it 

shows a positive correlation to the enzyme inhibition activity. For MNPs like NiO and ZnO, 

where ∑�/ME value is higher (1.91 and 1.65, respectively), the enzyme inhibition is also high 

(34.56 and 42.72 respectively). For compounds like ZrO2, the ∑�/ME	value is less (∑�/ME = 

0.665) and hence percentage enzyme inhibition is also less (%�[_bK]/L^	_`	= 7.36). 

 

The ∑a04"$1  descriptor is the total core count of the metal which can be expressed through 

following equation: 

∑a04"$1 =	a04"$1 ∗  04"$1                              (6) 

 

The detailed description for a04"$1  and 04"$1 is given in Table 1. The descriptor has a positive 

influence on the enzyme inhibition of metal oxides which means with an increase in the core 

count of metal, the inhibitory action will also increase and vice versa. This is evident from the 

compound Cr2O3 which has a high ∑a04"$1  value ( ∑a04"$1 = 15.33) and a high enzyme 

inhibition ability (%�[_WK]/L^	_`= 44.72). On the other hand, CoO (∑a04"$1  = 4.17) and 

Al2O3(∑a04"$1 = 3.33) having low descriptor values have low inhibition ability also (4.00 and 

3.44 respectively). 

 

3.3.1 Mechanism towards ZHE1 enzyme inhibition 

The modelled data showed that while ZnO, CuO, Cr2O3 and NiO lead to ZHE1 enzyme 

inactivation and cause interference in hatching, rest of the nanoparticles did not have similar 

effects. This might be due to low solubility or the inability of the shed metal ions to interact with 

the metal-binding histidines in the enzyme center. There is a prominent correlation between the 

ability of CuO, ZnO, Cr2O3 and NiO to inhibit ZHE1 activity and exert hatching interference at 

the organism level. It was understood from ZHE1 activity that dissolution characteristics as well 

as chemistry of the shed metal cations influences histidine ligation at the enzyme center and 

could lead to toxicological consequences.38 However, dissolution property is not only the 

determining factor for toxicity in case of moderate (CoO, Cr2O3, Fe3O4 and Sb2O3) or high (CuO, 

NiO, WO3 and ZnO) dissolution potential MNPs, thus inferring that the chemistry of metal ions 

has an important role. 
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It has been already proved that nanoparticles have different affinities for proteins based on their 

charge, size and surface coating.68 Zebrafish hatching enzyme (ZHE1) is a zinc metalloprotease 

enzyme in which the active Zn2+ binding site includes three histidine residues.69,70 Many divalent 

metal ions can replace the zinc ion at the enzyme binding site. The binding affinity is not same 

for all metals and as demonstrated by Holt et al.71 the binding affinity of metals to 

metallothionein is in the order of Zn2+<Cd2+<Cu2+<Hg2+. This ligand configuration also has the 

ability to bind to Cu2+, Ni2+, and Cr3+thus inferring that the shed metal ions from CuO, NiO and 

Cr2O3 inhibit the hatching enzyme (ZHE1) by substituting Zn2+ ion in the active enzyme center. 

The enzymatic activity was increased when Zn2+ ion was replaced with Cu2+ or Co2+ in the 

catalytic center of astacin and inclusion of Ni2+ or Hg2+ inactivated the enzyme.72 It was found 

that thermolysin activity increased when cobalt was present.73 Interactions between the hatching 

enzyme and the nanoparticles could cause deformation and potential inactivation of the 

protein.74,75 Any structural changes in the enzyme caused by interaction with MNPs can lead to 

inactivation or decreased selectivity for substrates thus leading to potential inactivation of the 

enzyme. Another probable mechanism might be photocatalytic degradation of ZHE1 enzyme due 

to ROS production which occurred in presence of nano-ZnO and nano-TiO2.
76,77 In case of 

Fe2O3, it aggregates and adhere to the surface of embryo indirectly causing interference with the 

digestive function of the hatching enzyme.78,79 The complete mechanism for the enzyme 

inhibition of MNPs to Zebrafish is reported in Figure 6. 
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Figure 6 Proposed mechanism of Zebrafish hatching enzyme inhibition due to MNPs. 
 

 

3.4. Interspecies quantitative structure toxicity-toxicity relationships (i-QSTTR) 

Interspecies quantitative correlation is a mathematical relationship between two different 

biological endpoints measured different species. The i-QSTTR study deals with extrapolating 

response data for one species to another species for an explicit endpoint when the experimental 

data for the second species are not present for some data points. This advanced method can 

overcome the extra cost of manifold toxicity tests along with the competent understanding of the 

mechanism of toxic action (MOA) of MNPs for different species and endpoints.29  

 

3.4.1. E. coli – HaCaT cell line interspecies toxicity correlation 

On the basis of a good correlation coefficient found between the available experimental values 

for E. coli and HaCaT cell line (r =0.655), we have decided to develop a quantitative linear 

relationship between the two biological endpoints employing i-QSSTR approach. The toxicity 

endpoint of E. coli is taken as the response variable and the HaCaT response as an independent 

variable along with other computed descriptors for the study. The interspecies PLS model with 2 

descriptors and 1 latent variable (LV) for E. coli and HaCaT is given as follows: 

 

������. ���	 = 2.886 − 0.449��c + 0.510�����HL�LI		
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 "#$%& = 12, )
! = 0.78, ,! = 0.67, d)�ee = 1.06, /0�1���

!222222222 = 0.58, 3/0�1���
! = 0.11,	

											 "45" = 5, ,67
! = 0.91, ,6!

! = 0.82, /0�"45"�
!222222222 = 0.70, 3/0�"45"�

! = 0.10																		�7�	

 
Equation 7 could explain 78% of the variance and predict 67% of the variance of the response. 

The external predicted variance for Eq. (7) is 91% which is fairly high. The calculated (training 

set compounds) and predicted (test set compounds) toxicity values obtained from Eq. (7) are 

given in the Supplementary Information excel file. The statistical quality of the interspecies 

model is reported in Table 2. The closeness of experimental and predicted values for MNPs has 

been also ascertained from scatter plot shown in Figure 7 (Top left). 
 

 
 

Figure 7 Scatter plot for the best i-QSTTR model of E. coli-HaCaT toxicity (Top left), E. coli-
Zebrafish toxicity (Top right) and HaCaT-Zebrafish toxicity (Bottom). 
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The coefficient and VIP plots of the modeled descriptors are presented as histograms in Figure 8 

(Top and bottom, respectively). According to the descending VIP values, χox has more 

contribution towards pEC50E.coli than pEC50HaCaT. According to the coefficient plot, χox has a 

negative contribution towards E. coli toxicity of MNPs whereas the descriptor pEC50HaCaT 

gives a positive contribution towards MNP toxicity to E. coli. 

 
Figure 8 Regression coefficient plot (Top) and variable importance plot (Bottom) for E. coli – 
HaCaT cell line toxicity interspecies QSTTR model. 
 

It’s already discussed in the single line model for E. coli that χox or the oxidation number of the 

metal atoms evolved as the most important descriptor with a negative correlation coefficient. The 

mechanism of toxic action of the MNPs related to this descriptor is already discussed previously. 

HaCaT toxicity (pEC50HaCaT) evolved as a less important descriptor for E. coli toxicity as 

observed from equation 7 and the descriptor gives a positive correlation towards E. coli toxicity. 

MNPs having high values for HaCaT toxicity like CoO (2.83) and ZnO (3.32) have also high E. 

coli toxicity values (pEC50E.coli), i.e., 3.51 and 3.45, respectively. On the other hand, MNPs 

with low HaCaT toxicity value like Fe2O3 (2.05) and SiO2 (2.12) have lower toxicity values (2.29 

and 2.2, respectively) for E. coli. 

 

3.4.2. E. coli - Zebrafish interspecies toxicity correlation 

Interspecies relationship between E. coli toxicity and ZHE1 enzyme inhibition has been found 

out to understand the correlation between the two endpoints. Considering E. coli cytotoxicity as 

the response variable and Zebrafish hatching enzyme inhibition along with calculated/selected 

descriptors as predictor variables, we have constructed the following best equation employing 

GA-MLR statistical approach. 
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������. ���	 = 4.875�±0.420� − 0.709�±0.125���c − 0.001�±0.005�	%�[_bK]/L^	_` 
 

 "#$%& = 11, )
! = 0.83, )$*+

! = 0.79, ,! = 0.74, d)�ee = 0.48, /0�1���
!222222222 = 0.65,

3/0�1���
! = 0.12 

 "45" = 6, ,67
! = 0.91, ,6!

! = 0.90, /0�"45"�
!222222222 = 0.84, 3/0�"45"�

! = 0.08																																	(8) 

Equation 8 could explain of the 83% variance and predict 74% of the variance of the response. 
External predicted variance for Eq. (8) is 91% which is fairly high. The calculated (training set 
compounds) and predicted (test set compounds) toxicity values obtained from Eq. (8) have been 
provided in the Supplementary Information excel file. The statistical quality of the interspecies 
model is reported in Table 2. The closeness of experimental and predicted values for MNPs has 
been also ascertained from scatter plot shown in Figure 7 (Top right). 
 
The developed equation with two independent variables consists of χox and %EI_Zebrafish 
response as descriptors. The occurrence of χox in all the developed single species and interspecies 
models for E. coli cytotoxicity proved that it is one of the important features for the cytotoxicity 
mechanism of E. coli. The descriptor %EI_Zebrafish imparts a negative contribution towards E. 
coli cytotoxicity. This probably indicates about the difference in the mechanism of toxicity for 
these two endpoints. For MNPs like CoO, %EI_Zebrafish value is low (4.0) and thus, according 
to the descriptor contribution, the response value (pEC50E.coli = 3.51) is high, whereas when the 
%EI_Zebrafish is high (as in case of Cr2O3), the pEC50E.coli is low (2.51). 
 

3.4.3. HaCaT cell line - Zebrafish interspecies toxicity correlation 

The interspecies correlation between HaCaT cell line cytotoxicity and Zebrafish hatching 
enzyme inhibition has been found out through i-QSSTR model and the resultant best equation 
derived using GA-MLR method is given below: 
 
%�[_WK]/L^	_`

= 4.276�±7.438� + 21.338�±3.376��	∑�/ �! + 0.657�±3.256������HL�LI 
 

 "#$%& = 10, )
! = 0.91, )$*+

! = 0.88, ,! = 0.83, d)�ee = 110.431, /0�1���
!222222222 = 0.76,

3/0�1���
! = 0.11 

 "45" = 4, ,67
! = 0.79, ,6!

! = 0.68, /0�"45"�
!222222222 = 0.51, 3/0�"45"�

! = 0.22																																			(9) 

 
Equation 9 could explain of the 91% of the variance and predict 83% of the variance of the 
response. External predicted variance for Eq. (9) is 79% which is more than the acceptable 
threshold value. The calculated (training set compounds) and predicted (test set compounds) 
toxicity values obtained from Eq. (9) are reported in the Supplementary Information excel file. 
The statistical quality of the interspecies model is reported in Table 2. The closeness of 
experimental and predicted values for MNPs has been also ascertained from scatter plot shown in 
Figure 7 (Bottom). 
 
The descriptor �∑�/ �! is a measure of electronegativity of the metal oxide as already discussed 
earlier. It gives a positive coefficient for the response (percentage ZHE1 hatching enzyme 
inhibition). MNPs like ZnO (%EI_Zebrafish = 42.72) and Cr2O3 (%EI_Zebrafish = 44.72) 
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having high values for �∑�/ �!(1.69 and 1.39 respectively) property also have high percentage 
enzyme inhibition values. On the contrary, MNPs like SnO2 (%EI_Zebrafish = 2.56) and Al2O3 

(%EI_Zebrafish = 3.44) having lower �∑�/ �!(0.004 and 0.02 respectively) values also showed 
low percentage ZHE1 enzyme inhibition values. 
 
HaCaT cytotoxicity (�����HL�LI� also showed a positive correlation with percentage ZHE1 
enzyme inhibition. For ZnO, the �����HL�LI value is high (3.32) and the percentage ZHE1 
enzyme inhibition is also high (42.72) whereas for Al2O3,	�����HL�LI is low (1.85) and the 
percentage ZHE1 hatching enzyme inhibition is also low (3.44). Thus, metal oxides with high 
cytotoxicity features for HaCaT cell lines tend to show high percentage ZHE1 hatching enzyme 
inhibition 
  
3.5 AD study for Single species QSTR and interspecies-QSTTR models 

The AD study was performed using the standardization approach and leverage method to detect 
the reliability of predictions of the models within a defined chemical space. Based on consensus 
of both approaches, it was found that there were no compounds staying outside the AD for 
training and test sets for HaCaT single endpoint model as well as all three interspecies models. In 
case of E. coli single cell line model, one compound (CuO) in the training set was an influential 
observation, but no compound in the test set was outside the AD. For the Zebrafish model, both 
approaches suggested that no compounds are outliers from the training and test set. However, 
according to the Williams plot, Cr2O3 is a response outlier (Y outlier) and it is wrongly predicted 
because the standardized residual value of this chemical is more than 3σ. All Williams plots are 
placed in the Supplementary Information excel file as Figures S3 and S4 for single endpoint and 
interspecies models, respectively.  
 
3.6 Comparison with previously published models 

A critical comparison of the statistical quality with previously reported models is not always 
possible due to differences in the composition of training and test sets; however, we have tried to 
discuss here advantages of our models over the previously reported models. In case of the E.coli 
single line model, we have used a higher number of compounds while modeling than that of the 
previously developed models.35,80 The descriptor χox appeared in our model also corroborates the 
previous findings by Kar et al.35 Apart from this, the use of simple periodic table descriptors has 
also provided with comparable results with that of the previously developed model80 where 
quantum chemical descriptors were used. In case of HaCaT model, the results were comparable 
to that of previously developed model.37 For zebrafish enzyme inhibition modeling, the previous 
authors81 have employed enzyme activity as the endpoint which appears not be justified as an 
endpoint to reflect the toxicity of MNPs properly. We have utilized the percentage enzyme 
inhibition parameter as the endpoint which provides a better understanding of metal oxide 
toxicity. The linear model obtained in the present study for zebrafish is however comparable 
with that of the non-linear model as described in the previous paper.81 
 

3.7 External dataset prediction 

A dataset of 42 MNPs was used as the true external dataset for prediction using the developed 
single line models. The computed descriptors for all external set MNPs are illustrated in 
Supplementary Information excel file. The predicted values for the external dataset compounds 
are given in Table 4. The reliability of the prediction values employing the three single species 
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models was determined by ‘Prediction Reliability Indicator’ tool 
[http://dtclab.webs.com/software-tools] which indicates or categorizes the quality of predictions 
of the external set with confidence into three groups: good (composite score 3), moderate 
(composite score 2) and bad (with composite score 1). Also, the tool is designed to predict the 
AD of the external dataset through the standardization approach (details about AD can be found 
in Table 4). Therefore, we have checked the prediction of each MNP through two layered 
confidence checking (i.e., Prediction Reliability Score and AD criteria). MNPs like Ag2O, Au2O, 
Au2O3, PtO, PtO2, Tl2O and WO3 having “bad quality” predictions should be relooked into for 
further studies. The prediction quality can be checked with color coding representation in Figure 
9. 
 

 
 
Figure 9 Prediction quality of external test set. Green: Composite Reliability Score 3 (Good 
prediction), Yellow:  Composite Reliability Score 2 (Moderate prediction), Red:  Composite 
Reliability Score 1 (Bad prediction), Gray: MNPs experimental data already present for the 
specific species. 
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Table 4 Predicted values for external dataset compounds for the individual single line models. 
 

ID 
Metal 

oxide 

E. coli HaCaT  Zebrafish 

Predicted 

value in 

pEC50(MLR 

model) 

Prediction  

Reliability 

Score 

AD Predicted 

value in 

pEC50 

(PLS 

model) 

Prediction  

Reliability 

Score 

AD 
Predicted value 

in 

%EI_Zebrafish 

(MLR model) 

Prediction  

Reliability 

Score 

AD 

1 Ag2O 4.03 2 Out 6.51 1 Out 102.90 1 Out 
2 Au2O 3.82 1 Out 8.87 1 Out 137.01 1 Out 
3 Au2O3 2.57 3 In 5.27 1 Out 61.82 1 Out 
4 BaO 3.43 3 In 2.94 3 In 23.99 3 In 
5 BeO 3.48 3 In 2.68 3 In 27.30 3 In 
6 Bi2O3 EA - - EA - - 12.52 3 In 
7 CaO 3.48 3 In 2.38 3 In 21.57 3 In 
8 CdO 3.45 3 In 3.64 3 In 37.56 3 In 
9 CeO2 1.94 3 In 2.33 3 In EA - - 
10 Co2O3 2.72 3 In 2.19 3 In 14.67 3 In 
11 Co3O4 EA - - 2.51 3 In EA - - 
12 CuO EA - - 3.75 3 In EA - - 
13 Fe3O4 2.98 3 In 2.30 3 In EA - - 
14 Ga2O3 2.75 3 In 2.46 3 In 10.22 3 In 
15 Gd2O3 2.71 3 In 2.85 3 In EA - - 
16 GeO2 1.97 3 In 2.01 3 In 10.32 3 In 
17 HfO2 1.92 3 In 2.69 3 In 12.73 3 In 
18 HgO 3.32 3 In 4.27 3 In 46.17 3 In 
19 IrO2 1.90 3 In 2.68 3 In 20.90 3 In 
20 MgO 3.48 3 In 2.56 3 In 25.71 3 In 
21 MnO2 1.96 3 In 1.50 3 In 9.22 3 In 
22 Mo2O3 2.67 3 In 3.46 1 Out 38.99 2 Out 
23 Nb2O3 2.67 3 In 3.18 1 Out 32.07 2 Out 
24 Ni2O3 2.72 3 In 2.53 3 In EA - - 
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25 OsO2 1.91 3 In 2.66 3 In 20.72 3 In 
26 PbO 3.48 3 In 3.89 1 Out 44.69 2 Out 
27 PbO2 1.97 3 In 2.65 3 In 15.65 3 In 
28 PdO 3.27 3 In 3.08 1 Out 36.44 2 Out 
29 PtO 2.55 1 Out 5.71 1 Out 64.01 2 Out 
30 PtO2 1.56 1 Out 4.50 1 Out 35.37 3 In 
31 ReO2 1.91 3 In 2.63 3 In 18.12 3 In 
32 Rh2O3 2.66 3 In 3.66 1 Out 42.91 2 Out 
33 RuO2 1.79 3 In 2.88 1 Out 26.59 3 In 
34 Sc2O3 2.73 3 In 2.15 3 In 5.56 3 In 
35 SrO 3.46 3 In 2.66 3 In 23.38 3 In 
36 Ta2O3 2.71 3 In 2.94 3 In 20.84 3 In 
37 TcO2 1.95 3 In 2.03 3 In 14.31 3 In 
38 Tl2O 4.22 2 Out 5.25 1 Out 70.80 1 Out 
39 Tl2O3 2.72 3 In 2.96 3 In 15.48 3 In 
40 WO2 1.91 3 In 3.00 3 In 21.67 3 In 
41 WO3 0.42 1 Out EA -  EA - - 
42 Yb2O3 2.71 3 In 2.89 3 In EA - - 

EA: Experimental value available that’s why not used for prediction.  
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4. Overview and conclusion 

The present work is divided in three major parts:  

i) Development of single line QSTR models for three individual endpoints (pEC50E.coli, 

pEC50HaCaT and %EI_Zebrafish),  

ii) Development of i-QSTTR models (E.coli-HaCaT, E.coli-Zebrafish and HaCaT-

Zebrafish), 

iii) External dataset prediction using single line models followed by two layered screening 

for confident and reliable predictions of a huge number of the true external dataset. The 

major obtained outcomes are discussed below: 

 

1. Based on single endpoint QSTR models, we can infer that  

a. the oxidation state of the metal,  

b. the measure electronegativity of the metal oxide, and  

c. core count of the metal play significant roles on the toxicity of the MNPs 

irrespective of species and response.  

2. Interspecies models helped in extrapolating data from one species to another species as 

well as in better understanding of the intercorrelation between two species.  

3. Other than the response (toxicity) descriptors for the i-QSTTR models, we can also notice 

the predominance of same properties evolved from the single species QSTR models, i.e., 

metal oxidation state and electronegativity. Thus, it can be concluded that these two 

properties of MNPs are vital for contributing to the toxicity.   

4. The confident prediction of an external set of 42 MNPs can be used as data gap filling for 

respective endpoints for which no experimental data are available. The obtained toxicity 

as well as the predicted property of such a large number of MNPs will be a good source 

of data gap filling for regulatory agencies along with industries. 

5. Finally, we can conclude that the second-generation periodic table-based descriptors 

along with the first-generation ones, which are derived quickly from the periodic table 

information, have the ability to encode the toxicity features of MNPs efficiently as 

compared to quantum chemical descriptors involving time consuming computations and 

physicochemical descriptors involving experiments. The developed descriptors also 

capable of developing statistically robust and acceptable as well as mechanistically 

interpretable QSTR models. 

 

Conflicts of interest 

The authors declare no conflict of interest. 
 

 

Acknowledgement 

KR thanks Council for Scientific and Industrial Research (CSIR), New Delhi for a major 
research project [01(2895)/17/EMR-II]. KR also thanks the UGC, New Delhi for funding under 
the UPE II scheme. Financial assistance from the AICTE, New Delhi in the form of a fellowship 

Page 29 of 35 Environmental Science: Nano

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



29 

 

to PD is thankfully acknowledged. SK and JL thank the National Science Foundation 
(NSF/CREST HRD-1547754, and NSF RISE HRD-1547836) for financial support. 
References 
 

1. A. Abdelhalim, A. Abdellah, G. Scarpa and P. Lugli, Metallic nanoparticles functionalizing 

carbon nanotube networks for gas sensing applications, Nanotechnology, 2014, 25, 055208. 

2. T. Kim and T. Hyeon, Applications of inorganic nanoparticles as therapeutic agents, 

Nanotechnology, 2013, 25, 012001. 

3. H. L. Karlsson, P. Cronholm, J. Gustafsson and L. Moller, Copper oxide nanoparticles are 

highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes, Chem. Res. 

Toxicol., 2008, 21, 1726-1732. 

4. F. Gottschalk and B. Nowack, The release of engineered nanomaterials to the environment, J. 

Environ. Monitor., 2011, 13, 1145-1155. 

5. K. A. Clark, R. H. White and E. K. Silbergeld, Predictive models for nanotoxicology: current 

challenges and future opportunities, Regul. Toxicol. Pharmacol., 2011, 59, 361-363. 

6. L. Canesi, C. Ciacci, M. Betti, R. Fabbri, B. Canonico, A. Fantinati, A. Marcomini and G. 

Pojana, Immunotoxicity of carbon black nanoparticles to blue mussel hemocytes, Environ. Int., 

2008, 34, 1114-1119. 

7. K. Roy, S. Kar and R. N. Das, Understanding the basics of QSAR for applications in 

pharmaceutical sciences and risk assessment, Academic press, 2015. 

8. J. C. Dearden, The history and development of quantitative structure-activity relationships 

(QSARs), IJQSPR, 2016, 1, 1-44. 

9. W. M. Berhanu, G. G. Pillai, A. A. Oliferenko and A. R. Katritzky, Quantitative structure–

activity/property relationships: the ubiquitous links between cause and effect, ChemPlusChem, 

2012, 77, 507-517. 

10. A. Tropsha, Best practices for QSAR model development, validation, and exploitation, Mol. 

Inform., 2010, 29, 476-488. 

11. K. Roy and R. N. Das, QSTR with extended topochemical atom (ETA) indices. 16. 

Development of predictive classification and regression models for toxicity of ionic liquids 

towards Daphnia magna, J. Hazard. Mater., 2013, 254, 166-178. 

12. R. Gozalbes and J. V. de Julián-Ortiz, Applications of Chemoinformatics in Predictive 

Toxicology for Regulatory Purposes, Especially in the Context of the EU REACH Legislation, 

IJQSPR, 2018, 3, 1-24. 

13. K. P. Singh and S. Gupta, Nano-QSAR modeling for predicting biological activity of diverse 

nanomaterials, RSC Advances, 2014, 4, 13215-13230 

14. T. Puzyn, B. Rasulev, A. Gajewicz, X. Hu, T. P. Dasari, A. Michalkova, H.-M. Hwang, A. 

Toropov, D. Leszczynska and J. Leszczynski, Using nano-QSAR to predict the cytotoxicity of 

metal oxide nanoparticles, Nat. Nanotechnol., 2011, 6, 175. 

15. D. Fourches, D. Pu, C. Tassa, R. Weissleder, S. Y. Shaw, R. J. Mumper and A. Tropsha, 

Quantitative nanostructure− activity relationship modeling., ACS Nano, 2010, 4, 5703-5712. 

Page 30 of 35Environmental Science: Nano

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



30 

 

16. V. C. Epa, F. R. Burden, C. Tassa, R. Weissleder, S. Shaw and D. A. Winkler, Modeling 

biological activities of nanoparticles, Nano Lett., 2012, 12, 5808-5812. 

17. Y. T. Chau and C. W. Yap, Quantitative nanostructure–activity relationship modelling of 

nanoparticles, RSC Adv., 2012, 2, 8489-8496. 

18. C.-Y. Shao, S.-Z. Chen, B.-H. Su, Y. J. Tseng, E. X. Esposito and A. J. Hopfinger, 

Dependence of QSAR models on the selection of trial descriptor sets: a demonstration using 

nanotoxicity endpoints of decorated nanotubes, J. Chem. Inf. Model., 2013, 53, 142-158. 

19. D. Martin, U. Maran, S. Sild and M. Karelson, QSPR modeling of solubility of polyaromatic 

hydrocarbons and fullerene in 1-octanol and n-heptane, J. Phys. Chem. B 2007, 111, 9853-9857. 

20. N. Sizochenko, B. Rasulev, A. Gajewicz, V. Kuz'min, T. Puzyn and J. Leszczynski, From 

basic physics to mechanisms of toxicity:  The “liquid drop” approach applied to develop 

predictive classification models for toxicity of metal oxide nanoparticles., Nanoscale, 2014, 6, 

13986-13993. 

21. A. Gajewicz, M. T. D. Cronin, B. Rasulev, J. Leszczynski and T. Puzyn, Novel approach for 

efficient predictions properties of large pool of nanomaterials based on limited set of species: 

nano-read-across, Nanotechnology, 2014, 26, 015701. 

22. D.W. Boukhvalov and T. H. Yoon, Development of Theoretical Descriptors for Cytotoxicity 

Evaluation of Metallic Nanoparticles, Chem. Res. Toxicol. 2017, 30, 1549-1555. 

23. H. K. Shin, K. Y. Kim, J. W. Park and K. T. No, Use of metal/metal oxide spherical cluster 

and hydroxyl metal coordination complex for descriptor calculation in development of 

nanoparticle cytotoxicity classification model, SAR QSAR Environ. Res. 2017, 28, 875-888. 

24. F. Luan, V.V. Kleandrova, H. González-Díaz, J.M. Ruso, A. Melo, A. Speck-Planche and 

M.N.D.S. Cordeiro. Computer-aided nanotoxicology: assessing cytotoxicity of nanoparticles 

under diverse experimental conditions by using a novel QSTR perturbation approach. Nanoscale 

2014, 6, 10623-10630. 

25. V.V. Kleandrova, F. Luan, H. González-Díaz, J.M. Ruso, A. Speck-Planche and M.N.D.S. 

Cordeiro, Computational Tool for Risk Assessment of Nanomaterials: Novel QSTR-Perturbation 

Model for Simultaneous Prediction of Ecotoxicity and Cytotoxicity of Uncoated and Coated 

Nanoparticles under Multiple Experimental Conditions, Environ. Sci. Technol. 2014, 48, 14686-

14694 

26. R. Concua, V.V. Kleandrova, A. Speck-Planche and M.N.D.S. Cordeiro. Probing the toxicity 

of nanoparticles: a unified in silico machine learning model based on perturbation theory, 

Nanotoxicology 2017, 11, 891-906. 

27. A. Mikolajczyk, A. Gajewicz, B. Rasulev, N. Schaeublin, E. Maurer-Gardner, S. 

Hussain, J. Leszczynski and T. Puzyn, Zeta potential for metal oxide nanoparticles: a predictive 

model developed by a nano-quantitative structure–property relationship approach., Chem. 

Mater., 2015, 27, 2400-2407. 

28. X. R. Xia, N. A. Monteiro-Riviere, S. Mathur, X. Song, L. Xiao, S. J. Oldenberg, B. 

Fadeel and J. E. Riviere, Mapping the surface adsorption forces of nanomaterials in biological 

systems., ACS Nano, 2011, 5, 9074-9081. 

Page 31 of 35 Environmental Science: Nano

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



31 

 

29. S. Kar, R. N. Das, K. Roy and J. Leszczynski, Can Toxicity for Different Species be 

Correlated?: The Concept and Emerging Applications of Interspecies Quantitative Structure-

Toxicity Relationship (i-QSTR) Modeling, IJQSPR, 2016, 1, 23-51. 

30. S. Cassani, S. Kovarich, E. Papa, P. P. Roy, L. van der Wal and P. Gramatica, Daphnia and 

fish toxicity of (benzo) triazoles: Validated QSAR models, and interspecies quantitative activity–

activity modelling., J. Hazard. Mater., 2013, 258, 50-60. 

31. J. Devillers and H. Devillers, Prediction of acute mammalian toxicity from QSARs and 

interspecies correlations, SAR QSAR Environ. Res., 2009, 20, 467-500. 

32. S. Önlü and M. T. Saçan, Toxicity of contaminants of emerging concern to Dugesia japonica: 

QSTR modeling and toxicity relationship with Daphnia magna, J. Hazard. Mater., 2018, 351, 20-

28. 

33. S. Kar and K. Roy, First report on development of quantitative interspecies structure–

carcinogenicity relationship models and exploring discriminatory features for rodent 

carcinogenicity of diverse organic chemicals using OECD guidelines, Chemosphere, 2012, 87, 

339-355. 

34. S. Raimondo, P. Mineau and M. G. Barron, Estimation of chemical toxicity to wildlife 

species using interspecies correlation models, Environ. Sci. Technol., 2007, 41, 5888-5894. 

35. S. Kar, A. Gajewicz, T. Puzyn, K. Roy and J. Leszczynski, Periodic table-based descriptors 

to encode cytotoxicity profile of metal oxide nanoparticles: A mechanistic QSTR approach, 

Ecotox. Environ. Safe., 2014, 107, 162-169. 

36. N. Basant and S. Gupta, Modeling uptake of nanoparticles in multiple human cells using 

structure-activity relationships and intercellular uptake correlations, Nanotoxicology, 2017, 11, 

20-30.  

37. A. Gajewicz, N. Schaeublin, B. Rasulev, S. Hussain, D. Leszczynska, T. Puzyn and J. 

Leszczynski, Towards understanding mechanisms governing cytotoxicity of metal oxides 

nanoparticles: Hints from nano-QSAR studies, Nanotoxicology, 2015, 9, 313-325. 

38. S. Lin, Y. Zhao, Z. Ji, J. Ear, C. H. Chang, H. Zhang, C. Low-Kam, K. Yamada, H. Meng 

and X. Wang, Zebrafish high-throughput screening to study the impact of dissolvable metal 

oxide nanoparticles on the hatching enzyme, ZHE1., Small, 2013, 9, 1776-1785. 

39. R. Leardi, Genetic algorithms in chemometrics and chemistry: a review, J. Chemometr., 

2001, 15, 559-569. 

40. S. Wold, M. Sjöström and L. Eriksson, PLS-regression: a basic tool of chemometrics, 

Chemometr. Intell. Lab., 2001, 58, 109-130. 

41. R. Todeschini, D. Ballabio and F. Grisoni, Beware of Unreliable Q2! A Comparative Study 

of Regression Metrics for Predictivity Assessment of QSAR Models, J. Chem. Inf. Model. 2016, 

56, 1905-1913. 

42. K. Roy, I. Mitra, S. Kar, P. K. Ojha, R. N. Das and H. Kabir, Comparative studies on some 

metrics for external validation of QSPR models, J. Chem. Inf. Model., 2012, 52, 396-408. 

43. P. Gramatica, Principles of QSAR models validation: internal and external, QSAR Comb. 

Sci. 2007, 26, 694-701. 

Page 32 of 35Environmental Science: Nano

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



32 

 

44. K. Roy, S. Kar and P. Ambure, On a simple approach for determining applicability domain 

of QSAR models, Chemometr. Intell. Lab., 2015, 145, 22-29. 

45. K. Roy, P. Ambure and S. Kar, How Precise Are Our Quantitative Structure-Activity 

Relationship Derived Predictions for New Query Chemicals?, ACS Omega, 2018, 3, 11392–

11406, DOI: 10.1021/acsomega.8b01647 

46. P. Khanna, C. Ong, B. H. Bay and G. H. Baeg, Nanotoxicity: an interplay of oxidative stress, 

inflammation and cell death, Nanomaterials, 2015, 5, 1163-1180. 

47. M. Auffan, W. Achouak, J. Rose, M.-A. Roncato, C. Chanéac, D. T. Waite, A. Masion, J. C. 

Woicik, M. R. Wiesner and J.-Y. Bottero, Relation between the redox state of iron-based 

nanoparticles and their cytotoxicity toward Escherichia coli, Environ. Sci. Technol., 2008, 42, 

6730-6735. 

48. W. Lin, I. Stayton, Y.-w. Huang, X.-D. Zhou and Y. Ma, Cytotoxicity and cell membrane 

depolarization induced by aluminum oxide nanoparticles in human lung epithelial cells A549, 

Toxicol. Environ. Chem., 2008, 90, 983-996. 

49. A. L. Neal, What can be inferred from bacterium–nanoparticle interactions about the 

potential consequences of environmental exposure to nanoparticles?, Ecotoxicology, 2008, 17, 

362. 

50. J. Lovrić, S. J. Cho, F. M. Winnik and D. Maysinger, Unmodified cadmium telluride 

quantum dots induce reactive oxygen species formation leading to multiple organelle damage 

and cell death, Chem. Biol., 2005, 12, 1227-1234. 

51. E. Burello and A. P. Worth, A theoretical framework for predicting the oxidative stress 

potential of oxide nanoparticles, Nanotoxicology, 2011, 5, 228-235. 

52. P. Somasundaran, X. Fang, S. Ponnurangam and B. Li, Nanoparticles: characteristics, 

mechanisms and modulation of biotoxicity, KONA Powder Part. J., 2010, 28, 38-49. 

53. Q. Chang, L. Yan, M. Chen, H. He and J. Qu, Bactericidal mechanism of Ag/Al2O3 against 

Escherichia coli, Langmuir, 2007, 23, 11197-11199. 

54. W. A. Daoud, J. H. Xin and Y.-H. Zhang, Surface functionalization of cellulose fibers with 

titanium dioxide nanoparticles and their combined bactericidal activities, Surf. Sci., 2005, 599, 

69-75. 

55. N. Sizochenko, A. Gajewicz, J. Leszczynski and T. Puzyn, Causation or only correlation? 

Application of causal inference graphs for evaluating causality in nano-QSAR models, 

Nanoscale, 2016, 8, 7203-7208. 

56. N. Akarachantachote, S. Chadcham and K. Saithanu, Cutoff threshold of variable importance 

in projection for variable selection, Int. J. Pure Appl. Math., 2014, 94, 307-322. 

57. J. E. Jackson, A user's guide to principal components.Journal, 2005, 587. 

58. T. Ozben, Oxidative stress and apoptosis: impact on cancer therapy, J. Pharm. Sci., 2007, 96, 

2181-2196. 

59. S. H. Lee, H. R. Lee, Y.-R. Kim and M.-K. Kim, Toxic response of zinc oxide nanoparticles 

in human epidermal keratinocyte HaCaT cells, Toxicol. Environ. Health Sci., 2012, 4, 14-18. 

Page 33 of 35 Environmental Science: Nano

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



33 

 

60. M. Cho, H. Chung, W. Choi and J. Yoon, Linear correlation between inactivation of E. coli 

and OH radical concentration in TiO2 photocatalytic disinfection, Water Res., 2004, 38, 1069-

1077. 

61. J. Sawai, H. Kojima, H. Igarashi, A. Hashimoto, S. Shoji, T. Sawaki, A. Hakoda, E. Kawada, 

T. Kokugan and M. Shimizu, Antibacterial characteristics of magnesium oxide powder, World J. 

Microbiol. Biotechnol., 2000, 16, 187-194. 

62. Y. Kikuchi, K. Sunada, T. Iyoda, K. Hashimoto and A. Fujishima, Photocatalytic bactericidal 

effect of TiO2 thin films: dynamic view of the active oxygen species responsible for the effect, J. 

Photochem. Photobiol., 1997, 106, 51-56. 

63. J. Portier, G. Campet, A. Poquet, C. Marcel and M. A. Subramanian, Degenerate 

semiconductors in the light of electronegativity and chemical hardness, Int. J. Inorg. Mater., 

2001, 3, 1039-1043. 

64. W. H. Koppenol, The Haber-Weiss cycle–70 years later, Redox Rep., 2001, 6, 229-234. 

65. S. J. Stohs and D. Bagghi, Oxidative Mechanisms in the Toxicity of Metal Ions, Free Radical 

Bio. Med., 2005, 39, 1267-1268. 

66. B. Halliwell and J. M. C. Gutteridge, Free radicals in biology and medicine, Oxford 

University Press, USA, 2015. 

67. N. Basant and S. Gupta, Multi-target QSTR modeling for simultaneous prediction of multiple 

toxicity endpoints of nano-metal oxides, Nanotoxicology, 2017, 11, 339-350. 

68. M. Lundqvist, J. Stigler, G. Elia, I. Lynch, T. Cedervall and K. A. Dawson, Nanoparticle size 

and surface properties determine the protein corona with possible implications for biological 

impacts, P. Natl. A. of Sci., 2008. 

69. K. Sano, K. Inohaya, M. Kawaguchi, N. Yoshizaki, I. Iuchi and S. Yasumasu, Purification 

and characterization of zebrafish hatching enzyme–an evolutionary aspect of the mechanism of 

egg envelope digestion, FEBS J., 2008, 275, 5934-5946. 

70. A. Okada, K. Sano, K. Nagata, S. Yasumasu, J. Ohtsuka, A. Yamamura, K. Kubota, I. Iuchi 

and M. Tanokura, Crystal structure of zebrafish hatching enzyme 1 from the zebrafish Danio 

rerio, J. Mol. Biol., 2010, 402, 865-878. 

71. D. Holt, L. Magos and M. Webb, The interaction of cadium-induced rat renal metallothionein 

with bivalent mercury in vitro, Chem-biol. Interact., 1980, 32, 125-135. 

72. F. X. Gomis-Rüth, F. Grams, I. Yiallouros, H. Nar, U. Küsthardt, R. Zwilling, W. Bode and 

W. Stöcker, Crystal structures, spectroscopic features, and catalytic properties of cobalt (II), 

copper (II), nickel (II), and mercury (II) derivatives of the zinc endopeptidase astacin. A 

correlation of structure and proteolytic activity, J. Biol.Chem., 1994, 269, 17111-17117. 

73. D. R. Holland, A. C. Hausrath, D. Juers and B. W. Matthews, Structural analysis of zinc 

substitutions in the active site of thermolysin, Protein Sci., 1995, 4, 1955-1965. 

74. E. Casals, T. Pfaller, A. Duschl, G. J. Oostingh and V. Puntes, Time evolution of the 

nanoparticle protein corona, ACS Nano, 2010, 4, 3623-3632. 

75. L. Fei and S. Perrett, Effect of nanoparticles on protein folding and fibrillogenesis, Int. J. 

Mol. Sci., 2009, 10, 646-655. 

Page 34 of 35Environmental Science: Nano

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



34 

 

76. X. Zhu, L. Zhu, Z. Duan, R. Qi, Y. Li and Y. Lang, Comparative toxicity of several metal 

oxide nanoparticle aqueous suspensions to Zebrafish (Danio rerio) early developmental stage, J. 

Environ. Sci. Health A, 2008, 43, 278-284. 

77. W. Bai, Z. Zhang, W. Tian, X. He, Y. Ma, Y. Zhao and Z. Chai, Toxicity of zinc oxide 

nanoparticles to zebrafish embryo: a physicochemical study of toxicity mechanism, J. Nanopart. 

Res., 2010, 12, 1645-1654. 

78. X. Zhu, S. Tian and Z. Cai, Toxicity assessment of iron oxide nanoparticles in zebrafish 

(Danio rerio) early life stages, PLoS One, 20102, 7, e46286. 

79. J. Cheng, E. Flahaut and S. H. Cheng, Effect of carbon nanotubes on developing zebrafish 

(Danio rerio) embryos, Environ. Toxicol. Chem., 2007, 26, 708-716. 

80. Y. Mu, F. Wu, Q. Zhao, R. Ji, Y. Qie, Y. Zhou, Y. Hu, C. Pang, D. Hristozov and J. P. Giesy, 

Predicting toxic potencies of metal oxide nanoparticles by means of nano-QSARs, 

Nanotoxicology, 2016, 10, 1207-1214. 

81. N. Sizochenko, D. Leszczynska and J. Leszczynski, Modeling of Interactions between the 

Zebrafish Hatching Enzyme ZHE1 and A Series of Metal Oxide Nanoparticles: Nano-QSAR and 

Causal Analysis of Inactivation Mechanisms, Nanomaterials, 2017, 7, 330. 

Page 35 of 35 Environmental Science: Nano

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


