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Successful extensions of protein-folding energy landscape theory to intrinsically disordered pro-
teins’ (IDPs’) binding-coupled-folding transition can enormously simplify this biomolecular process
into diffusion along a limited number of reaction coordinates, and the dynamics subsequently is
described by Kramers’ rate theory. As the critical pre-factor, the diffusion coefficient D has direct
implications on binding kinetics. Here, we employ a structure-based model (SBM) to calculate
D in the binding–folding of an IDP prototype. We identify a strong position-dependent D during
binding by applying a reaction coordinate that directly measures the fluctuations in a Cartesian
configuration space. Using the malleability of the SBM, we modulate the degree of conforma-
tional disorder in an isolated IDP and determine complex effects of intrinsic disorder on D varying
for different binding stages. Here, D tends to increase with disorder during initial binding but
shows a non-monotonic relationship with disorder in terms of a decrease-followed-by-increase in
D during the late binding stage. Salt concentration, which correlates with electrostatic interactions
via Debye–Hückel theory in our SBM, also modulates D in a stepwise way. The speeding up of
diffusion by electrostatic interactions is observed during the formation of the encounter complex
at the beginning of binding, while the last diffusive binding dynamics is hindered by non-native
salt bridges. Because D describes the diffusive speed locally, which implicitly reflects the rough-
ness of the energy landscape, we are eventually able to portray the binding energy landscape,
including that from IDPs’ binding, then to binding with partial folding, and finally to rigid docking,
as well as that under different environmental salt concentrations. Our theoretical results provide
key mechanistic insights into IDPs’ binding–folding that is internally conformation- and externally
salt-controlled with respect to diffusion.

1 Introduction
The energy landscape theory has become a standard framework
for our mechanistic understanding of protein folding over the
last three decades1,2. One remarkable postulate derived from
the energy landscape theory is that despite the extreme com-
plexity of the high-dimensional protein-folding process, which in-
volves the intricate self-organization of hundreds or thousands
of atoms, folding can be effectively described by a few (usually
one or two) important collective reaction coordinates3. By means
of such enormous simplifications, protein folding can be signifi-
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cantly simplified as a diffusive process along a limited number
of coordinates. The low-dimensional free energy projection ap-
proach has been widely demonstrated to be effective in theory4,
simulations5–7, and experiments8,9. The kinetics from this low-
dimensional diffusive protein-folding model can be described by
the Kramers’ rate theory10,11, where the stochastic kinetics is de-
termined exponentially by the thermodynamic free energy profile
and a diffusion coefficient D as the pre-exponential factor in a
diffusive dynamics formalism2.

Quantifying the thermodynamic protein-folding free energy
landscape experimentally has always been a challenging prob-
lem. Nevertheless, it can be plausibly achieved by carefully fit-
ting the thermodynamic differential scanning calorimetry (DSC)
thermogram to one-dimensional representations of folding free
energy landscapes12 or by analyzing the single-molecule (SM)
spectroscopy trajectories along particular relevant reaction coor-
dinates13,14. However, measuring D is more elusive in exper-
iments. The recently developed SM Förster resonance energy
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transfer (FRET) experiment technique seems to be a promising
approach, by which D at the free energy barrier top can be
inferred by directly comparing the folding and transition path
times, as these two critical kinetic quantities depend differently
on the thermodynamic barrier height15. In addition, D at the
unfolded states can be estimated by probing the reconfiguration
time based on the autocorrelation function of the end-to-end dis-
tance measurements16. Increasing experimental evidence im-
plies that D is position-dependent during protein folding17, but
it is still technically challenging in experiments to acquire reli-
able measurements of D along the folding process. Recent SM
force spectroscopy experiments have underlined the difficulties
in measuring D, because the inherent artifacts led by the handle
linkers and probes in force spectroscopy experimental apparatus
can signficiantly affect the results of D18,19. As an informative
complement, molecular dynamics simulations clearly show that D
is highly configuration-, coordinate- and temperature-dependent
and may have remarkable impacts on the protein-folding pro-
cess15,20–22.

D has been established to be critically influential to the folding
kinetics in terms of rate or flux23. One pronounced demonstra-
tion is to possibly shift the position of the kinetic transition state
and barrier height22,24–29. Such implications in kinetics may have
significant impacts for fast-folding proteins that often inherently
possess marginal thermodynamic barriers. In this case, the fold-
ing rate is close to the "speed-limit“30, which is primarily con-
trolled by the diffusion. In addition, the pre-factor of the diffusive
chain dynamics from Kramers’ theory can be interpreted as an in-
corporation of the solvent external viscosity and protein internal
friction31,32. The latter is directly related to the protein intrin-
sic diffusion coefficient, which is embedded in the roughness of
the folding energy landscape4,33. It therefore provides a practi-
cal strategy to infer the topography of the energy landscape by
measuring the protein internal diffusion coefficient16.

Intrinsically disordered proteins (IDPs), which lack a stable
three-dimensional structure isolated in solution, often (not al-
ways) undergo a "binding-coupled-folding“ transition during their
functioning process34–39. Recent experimental developments on
measuring the internal friction of unfolded chains16,40–42 have
significantly improved our understanding of IDPs’ intra-chain con-
formational dynamics. However, it is still a challenge to extend
it to the binding process because of the anticipative difficulties
that seemingly come along with the complex coupled binding–
folding transition. From kinetic aspects, the most prominent
functional advantage of IDP may be adequately seizing the "fly-
casting" mechanism, which can accelerate the binding process by
increasing the capture radius through flexibility43. However, it
is unclear how the conformational disorder impacts the diffusion
at the late binding stage, where the coupled-folding often occurs
concomitantly.

By quantifying the binding energy landscapes through molec-
ular simulations44,45, we found that introducing conformational
disorders into the dissociative proteins increases the degree of
funnelness of the binding energy landscape, intriguingly through
decreasing the roughness of the binding energy landscape. The
results uncovered an unprecedented effect of conformational dis-

order on IDPs’ binding, wherein flexibility can accelerate the dif-
fusive binding dynamics by smoothing the binding energy land-
scape surface. It is worth noting that previous approaches calcu-
lated the average of the roughness based on the overall topogra-
phy of the energy landscape, taking no account of the heterogene-
ity at different hierarchical layers of the energy landscapes44–46;
thus, they lack a description of the local diffusive dynamics at
specific stages during binding. Because D encodes information
about the energy landscape roughness, stepwise measuring D
along IDPs’ binding–folding process can complement the quan-
tification of the energy landscape and finally solidify our under-
standing of IDPs’ binding–folding from an energy landscape point
of view.

Here, we implemented coarse-grained structure-based models
(SBMs) to investigate the diffusive binding dynamics of an IDP
prototype47,48. Given their validity and computational efficiency
for investigating protein folding, SBMs have been successfully ex-
tended to study IDPs’ binding-coupled-folding49–52, relying on
the hypothesis that binding occurs on a funneled binding energy
landscape48. We found that the binding D is strongly position-
dependent along the binding process by applying a reaction coor-
dinate that directly measures the fluctuations in Cartesian config-
uration space. D in general decreases when approaching bound
states, similar to the protein-folding case16,27,28,40,53. The bind-
ing D is correlated to the folding or collapsed degree in IDP, while
the conformational disorder smooths the initial diffusive binding
but impedes the diffusive formation of the binary complex in the
last stage to a moderate degree. Electrostatic interactions are
found to play a dual role with positive and negative effects on
diffusion at the transition and post-transition stage. Finally, with
quantitative knowledge of D as the binding process progresses,
we are able to gain profound insights into the topography of the
energy landscape for IDP binding.

2 Materials and methods

2.1 Structure-based models

We use SBMs to explore the binding-coupled-folding of a well-
studied IDP system that includes the phosphorylated kinase in-
ducible domain (pKID) of the cAMP response element-binding
(CREB) protein, which is an IDP when isolated in solution54, and
the KIX domain of the coactivator CREB-binding protein (CBP),
which is a natively structured three-helix bundle protein55,56

(Figure S1, ESI†). Here, we utilize the SBM at the one-bead Cα

level, initially taking only into account interactions in the native
structure; thus, the folding–binding process is significantly accel-
erated in the SBM simulation at the cost of completely removing
the non-native interactions. A typical potential of the plain SBM
can be expressed as follows47:

V (KIX ,pKID,pKID−KIX)
SBM =VBond +VAngle+VDihedral +VNative+VNon−native

, where the first three terms describe local interactions, includ-
ing bond stretching, angle bending, and dihedral rotations; the
last two terms are non-local interactions, including native variant
Lennard-Jones (LJ) interactions and non-native purely volume-
repulsive interactions47. The native contact map is built using
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the Contacts of Structural Units (CSU) software57, which gener-
ates the numbers of intra-chain contacts for KIX and pKID (159
and 25), as well as the number of inter-chain contacts between
KIX and pKID (50). The default parameters widely applied in pre-
vious research44,48,50, are used here, unless explicitly specified.

To describe the binding process, we use the fraction of native
contacts (Q) as a reaction coordinate. Q has been found to be an
ideal reaction coordinate in SBM simulations to capture the tran-
sition states and distinguish native and non-native states58. To
make Q continuous, we instead used a switching function that is
included in the PLUMED software59: for ri j ≤ 1.2ri j0, Q= 1, while
for ri j > 1.2ri j0, Q decays smoothly with the following expression:

Q = 1− tanh(
ri j−1.2ri j0

rs
)

, where rs controls the steepness of the decaying function and is
usually set to 0.01 nm. We have further normalized Q by dividing
the number of contacts in the native structure to make Q be in
the range from 0 (completely non-native) to 1 (fully native). To
describe different dynamics, different parts of Q are used; for ex-
ample, QF is used for pKID’s folding and QB is used for pKID-KIX
binding.

As an alternative coordinate, we also introduce dRMS
60, which

is defined as the difference in the distance ri j between Npairs na-
tive pairs

dRMS =

√
1

Npairs
∑

i< j−3
(ri j− ri j0)

2

, to measure the native similarity of folding. dRMS is equal to 0 for
the native structure and increases with unfolding. dRMS preserves
the magnitude of Cartesian space and is in units of length (nm
here).

Upon binding, pKID undergoes a large-scale folding transition
to form two perpendicularly placed helical structures (αA and
αB), connected by a post-translational phosphorylated Serine-
13355. To achieve different folding degrees for pKID in isolated
states, a pre-factor (α) is applied to the dihedral and native LJ po-
tentials in the SBM potential of pKID (V pKID

SBM ) (Figure S9, ESI†),
as was previously used to control the conformational flexibility of
IDP in SBM simulations51,61,62.

To investigate the effects of salt concentration, an additional
electrostatic potential, modeled by Debye-Hückel theory, is added
to the aforementioned plain SBM with the following expression:

VEle = KCoulombB(κ)∑
qiq jexp(−κri j)

εrri j

, where KCoulomb is a constant, B(κ)≈1 in dilute solutions, qi is
the point charge of the residue i, εr is the dielectric constant, and
κ is the reciprocal of the Debye radius, which is directly related
to the environmental salt concentration. To simplify, only Lysine
and Arginine are modeled to take one positive charge, and Glu-
tamic and Aspartic acids, as well as the phosphorylated serine,
are modeled to take one negative charge. The typical parame-
ters used in the Debye-Hückel model in SBM simulations can be
found elsewhere63–66. We have re-scaled the strength of LJ and
electrostatic interactions for the oppositely charged residues that

already form the native contacts to have a reasonable energetic
balance63 (Figure S11, ESI†).

All simulations are performed using Gromacs (Version 4.5.7)67

following the standard protocol proposed by SMOG web tools68.
Reduced units are used, so the time, mass, and energy scales are
set to 1, except that the length scale is in units of nm68. The
temperature is converted to energy units by multiplying by the
Boltzmann constant. A Langevin dynamics with time step 0.0005
is applied. The friction coefficient is set to 1.0. All non-local in-
teractions are cut-off at 3.0 nm. A periodic cubic box with dimen-
sions of 10 nm × 10 nm × 10 nm is used to generate an effective
concentration of molecules of 1.66 mM (only one pKID and KIX
are placed in each box). For each replica-exchange molecular dy-
namics (REMD) simulation69, 24 replicas are used, with a tem-
perature range basically covering the binding–folding transition
temperature, and the neighbor replica attempts to exchange every
2000 steps. The Weighted Histogram Analysis Method (WHAM)
is then used to collect the data for all temperatures and generate
the free energy landscapes70.

The transition state ensembles are characterized by calculating
the conditional probability p(T P|x) for the system on a transi-
tion path along the reaction coordinate x with Bayesian expres-
sion71,72:

p(T P|x) = p(x|T P)p(T P)/peq(x)

, where p(x|T P) and peq(x) are the probabilities of the system with
x being at the transition path and equilibrium ensemble, respec-
tively; p(T P) is the probability of the system being on a transition
path. In principle, the highest probability for the transition state
lay along the transition path. If p(x|T P) is able to reach the the-
oretical maximum (0.5), x can be regarded as a good reaction
coordinate to describe the system diffusion process. To calculate
p(T P|x), six independent long constant-temperature simulations
(1×109 steps) starting from different dissociative conformations
are performed. All trajectories are then collected and a total of
∼ 1100 transitions are observed by monitoring the (un)binding
along either dRMS−B or Q reaction coordinates. This good sam-
pling, especially on the transition path, provides reliable estima-
tion of p(T P|x).

2.2 Diffusion coefficient calculations

We use restraining molecular simulations to calculate the diffu-
sion coefficient along the binding reaction22,24–26,73,74. The bias-
ing potential is implemented with a harmonic potential centered
at a set interested binding point x with strength Kx, where x is
the reaction coordinate. Here, we use binding dRMS−B instead
of Q as the reaction coordinate because Q preserves 0 constantly
at unbound states, leading to difficulty calculating the D there.
By fulfilling a quasi-harmonic diffusive dynamics approximation,
the coordinate-dependent diffusion coefficient (D(dRMS−B)) can
be calculated as:

D(dRMS−B) =
∆d2

RMS−B
τcorr(dRMS−B)

, where ∆d2
RMS−B is the mean-squared fluctuation in dRMS−B,

and τcorr(dRMS−B) is the relaxation time for the autocorrelation
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function of dRMS−B, CdRMS−B(t). In practice, τcorr(dRMS−B) can be
estimated by fitting CdRMS−B(t) to an exponential decay (single or
multiple) to obtain the relaxation time or by integrating CdRMS−B(t)
based on the knowledge that τcorr(dRMS−B) =

∫
∞

0 CdRMS−B(t)dt. We
use the latter to obtain the relaxation time and integrate CdRMS−B(t)
only up to the first zero-crossing73,75. Note that the strength of
the biasing potential KdRMS−B should be high enough to make the
landscape locally harmonic, fulfilling the need for quasi-harmonic
approximation, but should not be too high when the underly-
ing topology of the local energy landscape is completely distorted
(Figure S6, ESI†)22,24–26,74. Practically, the value of KdRMS−B is de-
termined by performing a series of simulations with different val-
ues of KdRMS−B and choosing the one from a range when D(dRMS−B)

is independent of KdRMS−B , so that D(dRMS−B) can probe the un-
derlying landscape, rather than the artificially biasing potential
(Figure S6, ESI†). There is another alternative way to calculate
D using a Bayesian approach20,21,27,28. It has been demonstrated
that for small dipeptide dynamics and SBM folding, the values of
D estimated from these two approaches are similar20,21.

Constant long simulations with biasing potential (2 × 108 MD
steps for each simulation) are performed for each dRMS−B with
different strengths of KdRMS−B . To have sufficient statistics for D
calculations, each long trajectory is then divided into 100 same-
length pieces of segment to ensure the starting points to calculate
the CdRMS−B(t) are random and thus the resulting CdRMS−B(t) from
different pieces of trajectory segments are irrelevant. We note
that such post-segmented trajectory (2 × 106 MD steps for each)
is long enough to ensure a good estimation of τcorr, and then D
(Figure S8, ESI†).

The effective free energy is calculated by taking into account
the diffusion coefficient correction of kinetics with the following
expression22,24:

Fe f f (dRMS−B) = F(dRMS−B)− kT ln(D(dRMS−B)/Du)

, where Du is the diffusion coefficient at unbound state, where
dRMS−B is sufficiently large with no interactions between two pro-
tein chains. Here, we choose dRMS−B having a thermodynamic
free energy minimum equal to 4.00 nm.

The diffusion coefficient D(x) of the system at x is related to the
energy landscape roughness with the following relationship33,76:

D(x) = D0exp[−(∆E(x)/kT )2]

where D0 is the diffusion coefficient in the absence of rough-
ness and ∆E(x) is the energy roughness at x. The above expres-
sion is valid by assuming the energy roughness is random with a
Gaussian distribution76, and it gives a direct connection between
the diffusion coefficient and energy roughness.

The mean D of a certain binding stage can be estimated from
integration of D(x):

< D >=
∫

D(x)dx/
∫

dx

, where D(x) is the position-dependent diffusion coefficient at
reaction coordinate x.

3 Results and discussion

3.1 Diffusion coefficient modulates the binding

Using the SBM, we quantified the free energy landscape along
folding and binding reaction coordinates at the binding tem-
perature (Fig. 1A and 1B). The binding temperature, analo-
gous to the folding temperature, is defined as the temperature
when the bound and unbound states are equally populated, so
it can be practically extracted from the peak of the heat capac-
ity curve. Simulations at the binding temperature can provide
sufficient sampling of (un)binding transition events and are thus
conducted in our work. Our results are valid based on the as-
sumption that changing the temperature does not qualitatively
change the binding mechanism, as a universal phase boundary
between monomers and oligomers appears to exist in different
ranges of conditions77. We have also performed the simulations
at different effective temperatures and salt concentrations and
found that the binding mechanisms remain similar (See section
"Effects of salt concentration on diffusive binding"). The free
energy landscapes clearly show a coupled folding of pKID with
binding to its target KIX (Fig. 1A and 1B). In detail, pKID remains
unfolded over a broad range of conformational fluctuations when
it is far away from KIX. Then, in the free energy barrier region,
pKID initiates binding with anchoring KIX through unfolded con-
formations. Finally, pKID folds with strongly coupled binding af-
ter overcoming the barrier. This "binding prior to folding" mecha-
nism, deduced from our 2D free energy landscape, is in line with
previous simulations49,51 and experiments78, serving as the basis
for the following investigations of the diffusion coefficient.

We then plotted the one-dimensional free energy landscape
along binding dRMS−B (Fig. 1E). It apparently shows a two-state
binding transition, with a barrier located at dRMS−B=1.49 nm,
which appropriately separates the bound (0.01 nm) and unbound
states (≥ 4.0 nm) (Fig. 1C). The barrier heights for binding and
unbinding from The thermodynamic free energy landscapes are
respectively 1.42 kTB and 4.43 kTB. Projection to another well-
known SBM-optimized reaction coordinate QB

58, which is the
fraction of native binding contacts, also leads to a typical two-
state binding process, but the free energy barriers for both bind-
ing and unbinding change drastically (5.00 kTB and 2.65 kTB)
(Fig. 1D and 1F). Despite such differences in the free energy
barrier, the positions of transition states that are obtained from
the thermodynamic free energy landscape and kinetic transition
path analyses71,72 (Fig. 1G and 1H), which are performed by
analyzing hundreds of (un)binding pathways within additional
constant-temperature simulations, are very similar, based on both
of the reaction coordinates. This indicates the validity of these
two reaction coordinates to identify the characteristics of the tran-
sition states. In addition, it is interesting to note that dRMS−B

provides a better description of the binding kinetics because the
conditional probability of the transition state being on the tran-
sition path identified by dRMS−B is greater than that found along
QB (0.45±0.03 versus 0.35±0.01), and is very close to the theo-
retical maximum 0.5. This implies that for IDP binding, dRMS−B,
which preserves the fluctuations in Cartesian space, seems to be a
better binding reaction coordinate than QB, in contrast to protein-
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folding cases27.

Fig. 1 Trajectories, transition path analyses, and free energy land-
scapes of binding-coupled-folding of pKID to KIX. 2D binding–folding
free energy landscapes are calculated from REMD simulations and pro-
jected along (A) dRMS−B, QF and (B) QB, QF . dRMS−B is the root-mean-
square deviation of the distances of binding native contact pairs to those
in the native structure, while QB and QF are the fractions of binding and
folding native contacts for pKID, respectively. The typical structures of
pKID-KIX are shown corresponding to the indicated binding stages. A
sample binding trajectory (C, D), 1D free energy landscape (E, F), and
transition path analyses (G, H) are shown along dRMS−B and QB, respec-
tively. p(T P|x) is the conditional probability of being on a transition path,
where x is the reaction coordinate. The dashed vertical lines in free en-
ergy landscapes and p(T P|x) are plotted according to the maximum val-
ues as an identification of the transition state. The values at the peak
of p(T P|x) for dRMS−B and QB are 0.45± 0.03 and 0.35± 0.01, respec-
tively. The transition state locations are very similar, according to differ-
ent identifications of the barrier of free energy landscapes and the peak
of p(T P|x). In detail, for dRMS−B, the transition states’ dRMS−B are 1.49
and 1.52 from the free energy landscape and p(T P|x), respectively, while
for QB, the transition states’ QB are 0.22 and 0.20 from the free energy
landscape and p(T P|x), respectively. We denote the transition state en-
sembles that have p(T P|x) higher than 0.30 by gray shadow regions. The
errors of p(T P|x) are calculated by analyzing different trajectories. A total
of 1108 and 1099 (un)binding transition paths are observed along dRMS−B
and Q, respectively. Time is in reduced units, dRMS−B is in units of nm, and
free energy is in units of kTB, where TB is the binding temperature.

Because dRMS−B offers a better description of the kinetics than
QB does based on the transition path conditional probability cal-
culation, D is calculated along dRMS−B within restraining simu-
lations. We extracted the values of D(dRMS−B) at KdRMS−B = 500,
when D(dRMS−B) roughly remains constant in a range of bias-
ing potential strengths for each dRMS−B, and the distributions of
dRMS−B are quasi-harmonic (Figure S6, ESI†). With quantified
D(dRMS−B) (Fig. 2), several interesting insights can be gained: (1)
D(dRMS−B) almost monotonically decreases as binding proceeds,

Fig. 2 Position-dependent diffusion coefficient and free energy land-
scapes. 1D binding thermodynamic (solid line), effective (circles) free en-
ergy landscapes, and the diffusion coefficient D are plotted along dRMS−B.
The insert plot indicates the slight height and position shift of the transi-
tion state between the thermodynamic and effective free energy land-
scapes. The free energy landscape is obtained from thermodynamic
REMD simulations, and D is calculated from restraining simulations, at
constant binding temperature. dRMS−B is in units of nm, and free energy
is in units of kTB, where TB is the binding temperature. D is in units of
nm2/time

in line with intuition and experiments on protein collapse16. The
difference between unbound and bound states is 30-fold, show-
ing a strong position-dependent D. (2) The initial slightly in-
creasing D(dRMS−B) from unbound states proceeding to transi-
tion states (dRMS−B ∼ 2 nm) implies that interfacial interactions
may drive the binding using the "fly-casting" mechanism43. (3)
The sharply decrease of D(dRMS−B) that occurs immediately after
passing the transition states is similar to that observed in protein
folding, where the formation of a native compact structure may
increase the local barrier, hindering the diffusive dynamics16,24.
(4) The decrease in D(dRMS−B) starts synchronously with binding
after the transition states, giving a hint that the binding transi-
tion states are quite loose and the binding collapse may occur
after the transition states, consistent with the structural analyses
of the transition state ensemble (Figure S5, ESI†), previous sim-
ulations49, and recent experiments79. Furthermore, our findings
imply that the considerable amount of interfacial disorders, which
are retained after binding in terms of "fuzziness"80, are capable
of facilitating the diffusive dynamics existing in the binding com-
plex, as theoretically proposed43 and also observed in protein-
protein/DNA recognition processes experimentally and computa-
tionally81–83.

We are then able to have an effective kinetic free energy land-
scape by incorporating the position-dependent D into the thermo-
dynamic free energy landscape (Fig. 2). The positions of transi-
tion states obtained from the thermodynamic and kinetic free en-
ergy landscapes are quite similar, consistent with the results from
the transition path analysis (Fig. 1). Furthermore, as expected,
the effective kinetic free energy remains quite similar to the ther-
modynamic one before the transition state, but changes dramat-
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ically after the transition state, finally resulting in a rising height
shift of 1.85 kTB and right barrier position shift at bound states.
Therefore, the effective free energy barrier height for binding is
almost the same as that obtained in the thermodynamic case, but
differs by ∼2 kTB in the post-transition-state regions. This im-
plies that for IDPs with such a binding mechanism, i.e., collapsed
complex forms after crossing the barrier, the position-dependent
D plays a major role at the last stage, which falls into the fast
inactivated "downhill" regime, where the binding kinetics is fully
determined by the diffusive dynamics. It would be very inter-
esting to see how D influences the binding kinetics and effective
free energy landscape when a compact transition state ensemble
is formed during IDPs’ binding–folding.

3.2 Effects of conformational disorder on diffusive binding

The different degrees of conformational disorder in pKID are re-
alized by changing the pre-factor α of intra-chain interaction
strength in SBMs (Figure S9, ESI†). With α=5.0, pKID is almost
fully folded, with negligible conformational disorder, while with
α=0.1, pKID is quite flexible and extended with very few folded
conformations. The monotonic relationship between the SBM pa-
rameter α and structured degree serves as the basis for the fol-
lowing investigations of the effects of conformational disorder on
D. The two helical segments (αA and αB) of pKID were experi-
mentally found to have different propensities for forming helical
structures at unbound states54. Further calibrating the strengths
of intra-chain interactions at the corresponding segments in the
SBM potential for experimental measurements could improve the
precision of the current SBM49,51; nevertheless, it was not per-
formed in the current work. The uniform and gradual introduc-
tion of conformational disorder into pKID could help focus on
characterizing the general effects of disorder on IDPs’ binding62.

We observed a similar tendency for D along dRMS−B compared
with that of the default SBM parameter (α=1.0) for different de-
grees of conformational disorder (Fig. 3A). Then, we divided
the binding process into three stages: the binding state ensem-
ble (BSE), transition state ensemble (TSE), and unbinding state
ensemble (USE), based on the transition path analysis at α=1.0
(Fig. 1). From Fig. 3A, we can see that while approaching the
bound state (decreasing dRMS−B), D slightly increases at USE,
then starts to decrease at TSE, and finally decreases sharply at
BSE for all degrees of conformational disorder. We applied SBMs
with a wide range of flexibility-control parameter α, which basi-
cally covers binding from completely unfolded to partially folded,
and finally fully folded, monomers. Therefore, our results here
imply that such dRMS−B-dependent D behavior, which is also sim-
ilar to that observed in protein folding27,28, may be applicable
to general protein-protein binding cases. In addition, D(dRMS−B)

appears to increase with additional conformational disorder, in
line with intuition and experimental findings that loosely unstruc-
tured conformation favors fast diffusion16.

Interestingly, careful examination of the last binding stage
within the BSE at low α (high degree of folding) shows an in-
crease in D turnover as dRMS−B decreases. This leads to an op-
posite result with respect to the relationship between conforma-

Fig. 3 Diffusion coefficient at different degrees of conformational
disorder. (A) The position-dependent D along dRMS−B. Free energy land-
scape with default disorder parameter α = 1.0 at binding temperature is
shown with dashed line as a guidance of the binding process, which can
be further divided into three stages: the binding state ensemble (BSE),
transition state ensemble (TSE), and unbinding state ensemble (USE),
based on the transition path analysis shown in Fig. 1E. (B) The ratio
between the mean D(dRMS−B) of different degrees and default (α = 1.0)
parameter of conformational disorder for different binding stages. "WSE"
is an acronym for the "whole state ensemble".

tional disorder and D(dRMS−B), where a rigid protein chain can
diffuse quickly. To quantitatively identify such an effect, we cal-
culated the mean D(dRMS−B) for the three typical aforementioned
stages and also the entire process (WSE) (Fig. 3B). The mean Ds
of USE, TSE, and WSE increase monotonically with decreasing
α. This indicates that as the conformational disorder increases,
the diffusion at the unbinding stage, transition stage, and for the
whole binding process that the protein chain can achieve is faster.
However, at the last binding stage (BSE), increasing conforma-
tional disorder initially decreases the diffusion rate, probably be-
cause of the boost in local barriers for the energy landscape, led
by non-native conformational topology. Finally, the conforma-
tional disorder increases the diffusion rate because of the loose
binding, the same result that occurred in other binding stages.
Such dual effects of conformational disorder on D at different
stages point to a complex binding diffusive process that the IDP
inherently possesses.

To explain the non-monotonic relation between conformational
disorder and D, in particular at high values of α, we calculated the
free energy landscapes and evolution of the two helices αA and
αB along the binding (Fig. 4). It is interesting to see that the bind-
ing transition pathways are different at different degrees of con-
formational disorder. At low α (0.1 and 1.0), the two helices in-
tend to bind primarily through two rectangular edges, along with
an additional intermediate pathway from QBαA ∼ 0.2,QBαB ∼ 0.0
to QBαA ∼ 0.2,QBαB ∼ 0.8. These distinct pathways are separated
from each other without apparent connections. These two paral-
lel binding pathways were also observed in previous work, when
a similar SBM approach was applied49. At high α (3.0 and 5.0),
many binding pathways emerge that can potentially connect the
states reciprocally on the free energy landscapes. Such binding
scenarios, along with different conformational disorders, can also
be observed from the binding evolution of the two helices to KIX
(Fig. 4B). Binding of the two helices starts to be distinct after
passing the TSE, and at α = 1.0, the differences are the most
prominent, with binding of αB accomplished prior to that of αA.
This is probably due to the fact that αB has more binding con-
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tacts formed in the native structure than αA does. Decreasing or
increasing α can modulate the two helices to bind synchronically;
however, they have different mechanistic factors. At low α, en-
tropy dominates the binding, so the energetic stabilization term
has less effect on managing the pathway than that in α = 1.0.
At high α, the stabilization of the binding complex largely comes
from the intra-chain energetic term of pKID, so the inter-chain
interactions become less dominant with respect to control of the
binding pathway. The binding coupling between the two helices
at high α with low conformational disorder can lead to multiple
binding pathways, which increases the possible connections of
states on the free energy landscape, facilitating the escape from
local energetic or topological traps, which directly corresponds to
the diffusion coefficient. The other factor that increases the diffu-
sion coefficient at a high degree of conformational disorder may
be contributed by the loose binding complex formed, according
to previous experiments40–42.

3.3 Effects of salt concentration on diffusive binding

Adding electrostatic interactions into the plain SBM will in-
evitably introduce non-native interactions beyond the repulsive
volume term existing in the SBM. Intuitively, the non-native com-
peting interactions decrease the stability, as also is observed in our
simulations (Figure S13, ESI†), but realistically may have more
complicated impacts on kinetics84. To determine how the elec-
trostatic interactions modulate D, we change the environmental
salt concentration, which controls the length of the Debye radius,
thus leading to different strengths of electrostatic interactions.

Binding with electrostatic interactions also leads to a similar
tendency of D along dRMS−B (Fig. 5A). With different salt concen-
trations, which lead to different strengths of electrostatic interac-
tions, the change in D(dRMS−B) is not significant and the effects
seem to vary at different binding stages. We then calculated the
mean D at different binding stages (Fig. 5B). The results show
that electrostatic interactions have very little influence on the dif-
fusion rate at USE, which corresponds to the completely unbind-
ing stage, but facilitates diffusion at TSE, implying that the "fly-
casting" mechanism may be effective at TSE for diffusive binding
with long-range steering electrostatic interactions, although they
may be non-native50. At the BSE, where pKID has overcome the
barrier accompanying the coupled-folding occurring in a downhill
manner, the electrostatic interactions slow down the binding dif-
fusion, mostly because they are formed along with the increasing
compactness of the binary complex, where the short-ranged non-
native electrostatic interactions will increase the roughness of the
energy landscape. Finally, the mean rate of diffusive dynamics
shows a slight increase with increasing electrostatic interactions,
as a net gain from compensation between TSE and BSE. These
findings are similar to those obtained from different conforma-
tional disorders of pKID and temperatures (Figure S17 and S18,
ESI†), implying that a salt-dependent diffusion coefficient may
persist for general protein-protein binding cases.

To explain such salt-dependent diffusive binding dynamics, we
further calculated the number of non-native salt bridges progres-
sively formed during the binding process (Fig. 6). From both the

Fig. 4 Binding mechanisms at different degrees of conformational
disorder. (A) 2D binding free energy landscapes projecting onto QBαA
and QBαB. QBαA and QBαB are the fractions of native binding contacts of
helices αA and αB of pKID to KIX, respectively. The free energy land-
scapes of α=0.1, 1.0, 3.0, and 5.0 are plotted. The lines in each panel
illustrate pathways, with thick ones indicating large flux and vice versa.
(B) Evolutions of binding contacts of helices αA and αB of pKID along
dRMS−B. Solid and dashed lines are QBαA and QBαB, Respectively, and
different colored lines correspond to different degrees of conformational
disorder. The color of shadows and lines follow the same scheme used
in Fig. 3A.

structural characteristic and free energy landscape (Figure S14,
ESI†), the two helices αA and αB show unsynchronized steps with
binding to KIX. The αA helix contains more charged residues than
the αB helix does. This gives a hint that the electrostatic interac-
tions may play more important roles in binding of the αA than the
αB helix. In Fig. 6, there are more non-native salt bridges formed
between KIX and αA helix than αB throughout the binding pro-
cess. In particular, the number of salt bridges formed by αA with
KIX initially increases in both the USE and TSE stages, then de-
creases slightly at the beginning of the BSE Stage, followed by a
sharp increase at dRMS−B ∼ 0.5nm, and finally decreases to 0 at
the completely bound state. The number of salt bridges formed
by αB simply increases at the USE and TSE stage, and finally de-
creases in the BSE stage to 0 at the bound state. At different salt
concentrations, stronger electrostatic interactions lead to a higher
number of non-native salt bridges (Figure S16, ESI†). The distinct
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Fig. 5 Diffusion coefficient at different strengths of electrostatic in-
teractions. (A) The position-dependent D along dRMS−B. Free energy
landscape with moderate salt concentration CSalt=0.15 M at binding tem-
perature is shown with dashed line as a guidance of the binding process
(B) The ratio between the mean D(dRMS−B) of different salt concentra-
tions and moderate salt concentration (CSalt = 0.15M) for different binding
stages.

dependence of salt bridge formation in the two helices can shed
light on the explanation of the relationship between D(dRMS−B)

and the salt concentration. Binding of pKID is steered by the long-
range non-native sparsely formed interactions, which primarily
rely on the highly charged αA helix in accordance with the "fly-
casting" mechanism43 at the USE and TSE stages (Figure S15,
ESI†), whereby the diffusive binding dynamics is thought to be
facilitated. When pKID and KIX are close in space to the BSE from
dRMS−B ∼ 1.0 nm, the αB helix is triggered to specifically anchor
with KIX through short-range native binding contacts prior to the
αA helix. This is based on the fact that αB has a larger number
of native binding contacts with KIX than αA. Therefore, the non-
native salt bridges between the αB helix with KIX are weakened.
For the αA helix, the native binding shows only a slight change,
but the number of non-native salt bridges decreases first because
the native binding of the αB helix aids in eliminating the non-
native interactions. Then, the non-native salt bridge increases,
mostly because the non-native interactions between αA and KIX
can guide the search for binding sites after αB accomplishes the
binding (Figure S15, ESI†). Further proceeding, the binding of
pKID to KIX in the BSE (dRMS−B from ∼ 0.5nm to ∼ 0nm) mostly
relates to a slight adaption of the αB helix by native contacts on
the surface of KIX to native binding sites with further elimination
of the non-native salt bridges, as well as native binding of the αA
helix by breaking the strongly pre-formed non-native salt bridges.
This will certainly lead to slow diffusive binding dynamics (Figure
S15, ESI†). In summary, although the salt concentration exhibits
little impact on the overall binding diffusion coefficient, it ma-
nipulates the diffusive dynamics step-by-step during binding by
forming periodical intermittent non-native salt bridges and het-
erogeneous binding pathways.

4 Conclusions
One functional advantage of IDPs is that (un)binding is efficiently
fast thanks to the inherent disorder. To explain this effect, the-
ory has successfully introduced a "fly-casting" mechanism43, by
which a flexible chain possesses a larger capture radius than a
rigid one, to facilitate binding at the very beginning stage. The
simulations and experiments also have unambiguously observed
the phenomena of binding acceleration by conformational disor-

Fig. 6 Non-native salt bridges and native contact formations of the
two helices during binding at moderate salt concentration Csalt =

0.15M. SB is an acronym for "salt bridge".

der85–88. Previously, the "fly-casting" mechanism was interpreted
in terms of free energy, where conformational disorder tends to
lower the binding energy barrier43, which contributes to the ex-
ponential term in Kramers’ theory. The pre-factor as diffusion
coefficient was often ignored. Incorporating the effects of the dif-
fusion coefficient by careful assessments of the "fly-casting" mech-
anism on binding rates has given contradictory results, where the
influence of the "fly-casting" mechanism on the binding kinetics
led by the conformational disorder is overestimated61. This oc-
curs because the diffusion of a flexible chain is likely slowed down
by its extended conformation because of the larger hydrodynamic
radius38. Based on our quantified D, one may draw another con-
clusion: as from Fig 3, when the two chains are completely dis-
sociative at dRMS−B > 4.0 with QB=0, D(dRMS−B) increases mono-
tonically with added conformational disorder. The seeming con-
tradiction primarily occurs because dRMS−B reflects the Cartesian
coordinates of the residues evolved in the binding native contacts.
This not only describes the binding process, but also captures the
intra-chain dynamics. The conformational disorder has more flex-
ible dynamics on each residue of the isolated IDP. This may result
in a higher diffusion along dRMS−B, compared with a rigid chain,
where the diffusion of dRMS−B only derives from binding.

Nevertheless, the effect of the "fly-casting" mechanism on dif-
fusive binding dynamics is faithfully observed within our salt
concentration-dependent simulations. The isolated IDP has an
inherent diffusive characteristic, which is insensitive to ionic
strength. However, the environment with low salt concentration
has a weaker Debye screening effect on electrostatic interaction.
Thus, the capture radius of the charged protein chain is relatively
larger than that with high salt concentration. The initially formed
electrostatic interactions, which are mostly non-specific and non-
native, can drive the two chains close to each other in space.
This indirectly accelerates the diffusive binding until the transi-
tion state stage. Therefore, we state that the "fly-casting" mecha-
nism can not only reduce the thermodynamic free energy barrier,
but can also accelerate local diffusion at the beginning of binding.
In general, IDPs hold higher percentages of charged residues than
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globular proteins38,89, and the vicinity of IDP binding interfaces
are rich in complementary charges90. These facts likely enhance
the effects of the "fly-casting" mechanism on IDPs’ binding kinetics
in practice.

It is still controversial whether the pre-formed structures in
IDPs aid or hinder binding91–95. From a diffusion perspective,
we have addressed the complex non-monotonic role of confor-
mational disorder on IDP binding at the last stage, from ini-
tial to final complex. A large degree of conformational disor-
der can prevent the orientational restraints and steric hindrance
as topological frustrations39. This leads to loosely formed or
fuzzy complexes80 that consequently accelerate the local diffu-
sion. Decreasing conformational disorder may partition the en-
ergy landscape into a handful of disconnected binding pathways,
where the diffusion is likely hindered by limited directional con-
straint movements. Further decreasing conformational disorder
into completely folded proteins, in some cases, boosts the pos-
sibility that a rigid protein can smoothly slide in the vicinity of
the binding sites to accomplish docking, particularly when the
binding interfaces are extended96. This potentially increases the
chance of escaping the traps on the energy landscape with the
emergence of additional pathways. Our results regarding the im-
pacts of conformational disorder on diffusive binding reveal an
unprecedented complex binding mechanism for IDPs.

The quantified position-, disorder-, and salt-dependent diffu-
sion coefficient, which inherently encodes the roughness of the
energy landscape, provides a practical way to infer the topogra-
phy of the binding energy landscape hierarchically. This moves
beyond previous investigations44–46, where the roughness was
mostly estimated by implicit averaging from the overall energy
landscape, lacking detail at each layer of the funnel. The to-
pography of the energy landscape is quantified by the quantity
Λ = δE/(∆E

√
2S), where δE, ∆E, and S are the average energy

gap, roughness, and entropy, respectively. Combined with our
previous work on quantification of the energy landscape44–46, we
are now able to provide a more precise portrait of the binding en-
ergy landscape (Fig. 7): the roughness at the top of the binding
funnel is moderate, then with binding proceeding to the middle
of the funnel, the roughness tends to slightly decrease because
of transiently formed attracting intermolecular interactions; fi-
nally, the roughness increases significantly at the bottom of the
funnel when the compact binary complex forms. This funnel pic-
ture is in accord with the disconnectivity graph energy landscape
representation of a protein-folding SBM97,98, implying that even
a native-centric model without any energetic frustration still has
remarkable topology-led energy roughness, which varies stepwise
differently during the binding/folding process.

The increase in intrinsic disorder in binding protein has a
distinct influence on increasing entropy, but decreasing energy
roughness, in modulation of the binding energy landscape. This
results in a higher Λ, representing a more funneled binding en-
ergy landscape45. Incorporating current studies based on quan-
tifications of the diffusion coefficient, we therefore offer a pro-
found understanding of the roles of intrinsic disorder on modulat-
ing the binding energy roughness (Fig. 7): a fully unfolded pro-
tein with a high degree of conformational disorder eliminates the

roughness triggered by topological frustrations throughout the
binding process, portraying a smooth binding energy landscape;
decreasing the intrinsic disorder in a protein chain increases the
binding roughness at every layer of the funnel, where the bot-
tom layer of the binding funnel appears to be more affected as a
result of the higher topological frustration that the compact com-
plex potentially has; further decreasing the conformational disor-
der continuously increases the roughness at the funnel top, but
smoothens the bottom of the funnel by means of multiple emerg-
ing binding pathways that assist to smooth the local topological
barriers on the energy landscape. Overall, the global roughness
of the binding energy landscape monotonically decreases with in-
creasing conformational disorder, consistent with our previous
work, where a completely different approach based on calcula-
tion of density of states was applied45.

Electrostatic interactions, which are more common in IDPs than
globular proteins38,89,90, also have heterogeneous roles in mod-
ulation of the topography of the binding energy landscape (Fig.
7): removing the ions in the solution increases the strengths of
electrostatic interactions by eliminating the ionic screening ef-
fect. This facilitates diffusive binding by smoothing the energy
roughness at the middle of the funnel via non-native long-range
transiently formed electrostatic interactions. Conversely, the non-
native salt bridges formed during the approach to the binding
complex lead to energetic roughness at the bottom of the fun-
nel. Such dual effects of electrostatic interactions on the rough-
ness are compensated during the binding process and lead to a
slightly decreasing global roughness of the binding energy land-
scape in the end. In addition, electrostatic interactions in IDPs
have been found to contribute to the stabilization of the bind-
ing complex99–101, which can deepen the bottom of the funnel
and increase the energy gap. Conversely, the intra-chain electro-
static interactions of some IDPs, which in particular have high
net or bipolar charge, are capable of collapsing the conformation
of isolated IDPs, depending on the environment65,102–106. These
collapsed structures in IDPs, either native or non-native, are ex-
pected to have distinct effects on the energy gap and entropy. This
adds baffling complexity into the effects of electrostatic interac-
tions on the binding energy landscape, whereby the interpretation
seems to proceed on a case-by-case basis.

The other advantage of intrinsic disorder in protein recognition
is the capability of binding with high specificity but low affin-
ity35,36,39,107–109. However, it is always practically challenging
to measure the specificity, which is conventionally defined as the
relative affinities between all possible binding targets. We have
verified the validity of transferring the conventional specificity to
intrinsic specificity, which describes the distributions of different
binding modes and is determined by the energy landscape110–112.
Therefore, measuring specificity is feasible by quantifying the to-
pography of the binding energy landscape. Based on our previous
work45, the intrinsic binding specificity is found to increase with
conformational disorder, along with decreasing energy roughness
and increasing entropy, while the first factor dominates to even-
tually increase the degree of funnelness of the binding energy
landscape. In the current work, we delineate this effect by means
of the diffusion coefficient, whereby the conformational disorder
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Fig. 7 Scheme illustrating the effects of conformational disorder and salt concentrations on the topography of binding energy landscapes. The
deepness, the size, and the roughness of the funnels represent the energy gap, entropy, and energy roughness of the energy landscapes, respectively.
The single funnel at the top shows binding with moderate conformational disorder and low salt concentration (strong electrostatic interactions). The
three funnels at the bottom show the change according to the conformational disorder. Conformational ensembles of pKID are shown on the top of
each funnel, with the native structure colored blue. The bound complex of pKID-KIX is shown at the basin of the funnel, indicating the destination of
binding.

increases the flexibility of the protein chain and therefore leads
to dynamic interaction patterns in the complex concomitant with
multiple binding pathways. This smooths the binding roughness
and finally results in high binding specificity. By the same to-
ken, we can conclude a lower specificity for rigid docking than
highly flexible binding. However, gradually increasing the par-
tially stabilizing or pre-formed structures in IDPs’ isolated states
has distinct effects on energy roughness during different binding
process, so the specificity of binding is anticipated to be compli-
cated to determine and be understood. The difficulty encountered
here calls for future upgrades or completely new developments of
theory, with deduction basically relying on each layer of the fun-
nel hierarchically, rather than integrally.

Summarizing, we have addressed the position-, disorder-, and
salt-dependent diffusion coefficient behavior of IDPs’ binding cou-
pled with folding to targets. Our study has filled the gap in
current research regarding IDPs, where major efforts are fo-
cused/based on using a free energy approach. With the quantified
diffusion coefficient, the shape of the binding energy landscape
can be inferred. Our theoretical investigations provide a profound
understanding of the topography of the binding energy landscape
in IDPs’ binding–folding and may provide guidance for biophys-
ical experiments regarding the affinity/specificity engineering of
IDPs by means of the energy landscape.
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