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ABSTRACT: It is well known that classical trajectories, even if they are initiated with zero point 

energy (ZPE) in each mode (trajectories initiated this way are commonly called quasiclassical 

trajectories) do not maintain ZPE in the final states. The energy of high-frequency modes will 

typically leak into low-frequency modes or relative translation of subsystems during the time 

evolution. This can lead to severe problems such as unphysical dissociation of a molecule, 

production of energetically disallowed reaction products, and unphysical product energy 

distributions. Here a new molecular dynamics method called extended Hamiltonian molecular 

dynamics (EHMD) is developed to improve the ZPE problem in classical molecular dynamics. In 

EHMD, two images of a trajectory are connected by one or more springs. The EHMD method is 

tested with the Henon-Heiles Hamiltonian in reduced and real units and with a Hamiltonian with 

quartic anharmonicity in real units, and the method is found to improve zero-point maintenance 

as intended.  
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Advances in theoretical methods and computational power have made molecular dynamics 

(MD) simulations a powerful tool to investigate physical and chemical processes. Among various 

MD methods, classical trajectories and quasiclassical trajectories (which are classical trajectories 

with quantum mechanical selection of initial conditions) stand out as the most 

popular.1,2,3,4,5,6,7,8,9,10,11,12 Despite the success of these methods, the use of classical trajectories 

suffers from two major problems, namely neglect of tunneling and failure to enforce the 

requirement of zero point energy (ZPE). To alleviate these problems, various semiclassical 

methods have been suggested, but these methods raise the cost and complexity of the 

calculations and sometimes have other limitations, for example they may be limited to simulating 

thermally averaged ensembles. Therefore, it is worthwhile to look for a simpler scheme that 

requires minimal changes to conventional classical trajectory propagation. In recent work we 

have shown how to include tunneling in classical trajectories.13 Here we present a proposal to 

alleviate the ZPE problem. 

The ZPE problem studied here is the phenomenon that in classical trajectories on 

anharmonic systems (and all real molecules are anharmonic), the high-frequency modes leak 

energies into the low-frequency modes or relative translation of fragments without the constraint 

of the quantum mechanical effect that the ZPE is the lowest allowed energy in a vibrational 

mode. The partition of ZPE into individual modes is not unique except for systems with no 

rotation and a quadratic (i.e., harmonic) vibrational potential; nevertheless most molecules have 

small enough anharmonicity that a harmonic calculation of the energy in a given mode should 

not yield an energy significantly below the harmonic zero point energy. Thus the dynamics of an 

isolated molecule should maintain ZPE in each mode to within the accuracy of the harmonic 

approximation. However, it is well known that classical mechanics does not maintain the ZPE in 

each mode. Strictly speaking, ZPE is required only for stationary states, such as the reactants and 

products of a chemical reaction, but it is reasonable to expect ZPE to be approximately 

maintained in spectator modes, and we know that approximate ZPE maintenance is important 

even in active modes at transition states.14,15,16,17 Furthermore, the simulation of reactions by 

classical mechanics may produce species whose total vibrational energy is less than the total 

ZPE; in such a case, reactions may occur at energies that are energetically forbidden according to 

quantum mechanics. Such unphysical behavior of classical trajectories can also cause spurious 
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energy transfer or artificial dissociation of a molecular system. These problems have been well 

studied.18,19,20,21,22,23,24,25,26 The ZPE problem originates from the fact that the classical 

trajectories can enter regions of the phase space that correspond to energy distributions not 

allowed by quantum mechanics.27,28,29  

Many strategies have been proposed to tackle the ZPE problem of classical trajectories. 

These strategies can be generally classified into three types: (i) active methods, in which 

individual trajectories or ensemble behaviors are altered such that the regions of the phase space 

forbidden by QM are avoided in classical trajectories.30,31,32,33,34,35,36,37,38,39,40 (ii) passive 

methods, in which unphysical trajectories are simply discarded from the final 

statistics.19,41,42,43,44,45,46,47,48 (iii) methods that incorporate quantum mechanical effects in 

trajectories, for example, path-integral-based MD schemes,11,49,50,51,52,53,54,55,56,57 Bohmian 

dynamics,58 and other semiclassical dynamics schemes.59,60,61,62,63 Most of these methods deal 

with individual trajectories, although from one point of view ZPE maintenance is the property of 

an ensemble of trajectories.28,29 A disadvantage of active methods is that they may have drastic 

effects on the time evolution of the classical trajectories. 32,36,37  

Here we present a simple and computationally efficient ansatz that reduces the ZPE problem 

in classical trajectories. We call this new method extended Hamiltonian molecular dynamics 

(EHMD). The EHMD method maintains the simplicity of classical trajectories as much as 

possible. The goal of EHMD is not to achieve accurate quantum results, but rather to define 

semiclassical trajectories whose mode energies behave more quantum mechanically than those in 

purely classical trajectories, and thus to enable more realistic classical-like simulations of 

problems where the ZPE problem is a significant detriment to the ability of classical or 

quasiclassical simulations to interpret experimental results. 

Extended Hamiltonian. Consider a system with F vibrational degrees of freedom. Here we 

treat all degrees of freedom semiclassically; extensions to many-body Hamiltonians including 

translation and rotation and where some coordinates are treated semiclassically and others 

classically are possible but are relegated to possible later work. We use isoinertial coordinates 

with all masses scaled to a reduced mass of μ. Then the Hamiltonian is 

   (1) H =
1

2m
p
m
2

m=1

F

å +V q
1
,...,q
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where  is a vibrational coordinate, and  is its conjugate momentum. The extended 

Hamiltonian is then  

 

H
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where km  is a user-defined spring constant. The first sum represents two images of a trajectory, 

and if the spring constants were zero, these would just be two independent trajectories. The 

second sum in eq 2 couples the images. The equations of motion for EHMD are purely classical, 

i.e.,  

   (3)

    (4) 

The Henon-Heiles Hamiltonian. First we use the Henon-Heiles system to illustrate the 

behavior of EHMD because the Henon-Heiles system of two coupled oscillators64,65 (F = 2) has 

been widely employed to investigate the ZPE problem in classical MD.28,30,32,36,37,66 The Henon-

Heiles Hamiltonian is given by eq 1 with  

  𝑉(𝑞1, … , 𝑞𝐹) =
1

2
𝑘1𝑞1

2 +
1

2
𝑘2𝑞2
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3) (5) 

where 

   (6) 

and  is the vibrational frequency in radians/s. The frequencies in radians/s are related to the 

frequencies νm in wave numbers by ωm = 2πcνm, where c is the speed of light. 

In the present work, the initial conditions for an ensemble of trajectories are selected by 

random sampling of the harmonic part of the Hamiltonian. To be more specific, we assign a 

random number from a uniform distribution in the interval (0,2π) to each vibrational phase  

and assign the momenta and coordinates by  

 
 (8a) 

 
 (8b) 
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where  is the vibrational quantum number. The mode energies along the trajectory are functions 

of time defined harmonically as 

   (9) 

where the justification for using harmonic energies to monitor ZPEs was discussed in the 

introduction. We will consider two kinds of cases, first using the reduced units in which the 

Henon-Heiles system is usually studied and then using real units to make a connection with 

realistic levels of anharmonicity for real molecules. The reduced units are widely employed in 

previous work and hence provide a touchstone to connect to that work. The modeling results with 

real units will show how EHMD behaves for systems with realistic molecular parameters. For 

example, the Henon-Heiles model Hamiltonian can be employed to approximate the vibrations of 

linear CO2.
67  

 An ensemble of 500 trajectories was computed for each case with , which means 

the harmonic energy of each mode equals the harmonic ZPE at the beginning of the trajectory. 

For EHMD, the mode energies are computed as the average of the two images, and the ensemble 

averages are therefore averages over 1000 images. 

Examples in reduced units. In the reduced unit case, 
 
and . The mode 

energies as functions of time are shown in Figure 1. The first two systems considered here 

correspond to (a)  and (b) . System (a) is a case that has 

been studied in previous work.28,32 For EHMD, we set for system (a) and 

 for system (b). The mode energies of the EHMD and classical MD results 

are shown in Figure 1.  

In Figure 1(a), the modes have the same frequency; hence both modes have the same energy 

at the beginning of the trajectory. The classical MD mode energies show large energy flows 

between the modes, and the two mode energies end up differing by about 0.004 energy units after 

500 time units. The EHMD mode energies are more stable than the classical ones, and – although 

we still see some level of ZPE leaking between the two modes – we do not see one mode losing a 

large amount of energy to the other. The EHMD results are much better than the passive methods 
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reported before,28 and they are comparable to the active method.32  

Figure 1(b) shows an example where two modes have different frequencies. The mode 

energies start with ZPEs of 0.051 and 0.030. In about 200 reduced time units, the two mode 

energies of the classical simulation become very close to 0.041, which indicates a significant 

ZPE leakage from the high-frequency mode to the low-frequency mode. In contrast, in EHMD, 

although the two mode energies change rapidly at the beginning, they are stabilized after 100 

time units, and they become close to 0.046 and 0.037 for modes 1 and 2 respectively. Thus at 500 

time units the high-frequency mode has still not become classically equilibrated to the low-

frequency one. Since the ratio of energy in the two modes stabilizes, it is possible that one could 

improve the results even further by devising a better way to select the initial conditions of the 

ensemble, but we do not pursue that here. 

In Figure 1(c), we show an example corresponding to Fermi resonance, where the ratio of 

the frequencies is 2:1; in particular we have 1 22.0, 1, 1     . The initial mode energies are 

0.06 and 0.03. Classical MD results clearly show energy flow from the high-frequency mode to 

the low-frequency mode, and the two mode energies become nearly the same in about 400 time 

units; EHMD shows some leak from the high-frequency mode to the low-frequency mode in 

about 50 time units, but the mode energies are stable after that.  

Thus the EHMD method is a significant improvement over classical MD in all three cases. 

Examples with cubic anharmonicity and real units. We next consider three systems with 

realistic units based roughly on real systems: (A3) a system with frequencies equal to the 

asymmetric and symmetric stretching modes of CO2 with frequencies, ν1 = 2565 cm-1 and ν2 = 

1480 cm-1 (1 cm-1 corresponds to 11.96 J/mol); (B3) a system with frequencies equal to the H2O 

symmetric and asymmetric stretching modes with frequencies ν1 = 3585 cm-1 and ν2 = 3506 cm-1; 

and (C3) a system with frequencies equal to the H2O symmetric stretch and bending frequencies, 

ν1 = 3585 cm-1 and ν2 = 1885 cm-1. We set μ equal to the reduced mass of CO for case A and to 

the reduced mass of OH for systems B and C. The numerical value of the anharmonic constant λ 

is set to 0.5(k1 + k2)/a0 (where a0 is a bohr; 1 a0 = 0.5292 10–10 m) in cases A3 and B3, which is 

a reasonable approximation to a higher-order force constant for the bond stretching modes.68,69 

For system C3, we set λ equal to 0.25(k1 + k2)/a0. The spring constants κ for the EHMD 

calculations are (in the usual units of mdyne/Å, where 1 mdyne/Å = 1 N/cm): (A3) κ1 = 1.713, κ2 
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= 2.911, (B3) κ1 = κ2 = 0.623, (C3) κ1 = 0.4050, κ2 = 0.7784. 

Parts (a), (c), and (e) of Figure 2 show the classical MD mode energies as functions of time 

in red and blue and the EHMD mode energies as functions of time in yellow and green for 

systems A3, B3, and C3, respectively. The figures show that EHMD preserves ZPE much better 

than classical MD. The EHMD mode energies are stabilized after ~200 fs in all three systems. 

However, in classical MD, we can see a strong oscillatory energy flow between the two modes 

during the whole simulation time for systems A and B. For system C, the two mode energies 

become very close to each other after 300 fs.  

To obtain a better quantitative understanding of the differences between the trajectories of 

classical MD and EHMD, we computed the histogram of mode energy distribution along the 

trajectories, and these are shown in Figs. 2(b), 2(d), and 2(f). One can see that, in all cases, the 

mode energy distribution for EHMD is much narrower than classical MD. We do see some ZPE 

leaking from the most probable mode energies in EHMD; however, the leakage is much smaller 

than in classical MD. 

At the present time, we have not determined the optimum way to set the κm values. In our 

experience, the quality of the trajectory results is not overly sensitive to the κm values, by which 

we mean that the ensemble-averaged mode energies are stable within certain ranges of κ values. 

However, the best results are usually obtained with κ values that are about 10 to 20 percent of the 

quadratic force constant of the target mode. Here target mode means the mode into which the 

energy is leaking. All force constants used for Figure 2 are given in the Table 1, which shows that 

the three values of κ1/ k2 are all in the range 9–21%, and the three values of κ2/ k1 are all in the 

range 9–11%. Figure 3 shows an example for system A with three other sets of κm values, which 

differ by as much as 29% from those in in Figure 2(a); all the EHMD results show very similar 

behavior. 
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Table 1. The quadratic force constants k1 and k2 in units of N cm-1, the cubic anharmonicity 

parameter λ in units of N cm-1 Å-1, and the spring constants κ in units of N cm-1.  
 

System A3 B3 C3 

k1 26.581 7.128 7.128 

k2 8.850 6.818 1.971 

λ 33.478 13.177 4.299 

κ1 1.713 0.623 0.4050 

κ2 2.991 0.623 0.7784 
 

Note that 1 N/cm is the same as the conventional force constant unit of 1 mdyn/Å, and  

1 N cm-1 Å-1 is the same as 1 mdyn/Å2. 

 

Test for a Hamiltonian with quartic anharmonicity. To further demonstrate the generality 

of our method, we have also tested a system with quartic anharmonicity. The Hamiltonian is 

given by eq 1 with the following potential 

  𝑉(𝑞1, … , 𝑞𝐹) =
1

2
𝑘1𝑞1

2 +
1

2
𝑘2𝑞2

2 + 𝜆(𝑞1 − 𝑞2)4 (10) 

where km is defined in eq 6, and qm is defined in eq 8. As examples, we considered systems like 

A3 and C3 that were tested with the Henon-Heiles Hamiltonian with real units. For both new 

systems, which will be called A4 and C4, the reduced mass and frequencies are defined in the 

same way as the real-unit examples for the Henon-Heiles Hamiltonian. The anharmonic constant 

λ is set to be l(k1 + k2)/a0
2, where l is a parameter to be varied to see the effect on the results. The 

numerical values of the force constants are summarized in Table 2.  

 

Table 2. The quadratic force constants k1 and k2 in units of N cm-1, the quartic anharmonicity 

parameter λ in units of N cm-1 Å-2, and the spring constants κ in units of N cm-1.a 
 

System A4 C4 

k1 26.772 7.178 

k2 8.913 1.985 

λ 63.717,b 127.434c 8.180d,d 16.360b 

κ1 2.335 0.1479 

κ2 0.7784 0.07784 
 

a Note that 1 N/cm is the same as the conventional force constant unit of 1 mdyn/Å, and  

1 N cm-1 Å-2 is the same as 1 mdyn/Å3.  b l = 0.5  c l = 1  d l = 0.25 

 

Figure 4 compares the classical and EHMD mode energies of system A4 (l = 0.5, 1.0) and 
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system C4 (l = 0.25, 0.5). As we can see from Figure 4, regardless of the choice of λ, the mode 

energies of the classical trajectories are more spread-out than those for EHMD, and the mode 

energies from EHMD are much more stable. Different choices of κm values have also been 

explored. Figures S1-S3 in the Electronic Supplementary Information (ESI) show that for each 

choice of the anharmonic constant λ, EHMD with a wide range of κm values can maintain the 

zero-point energy much better than classical MD. For system A4, for both λ = 0.5(k1 + k2)/a0
2 

and λ = (k1 + k2)/a0
2, the EHMD mode energies are stable for κm/k1 in the range 9–61% and for 

κm/k2 in the range 3–20%. For system C4, for λ = 0.25(k1 + k2)/a0
2, λ = 0.5(k1 + k2)/a0

2, and λ = 

(k1 + k2)/a0
2, the EHMD mode energies are stable for κ1/ k1 in the range 2–42% and κ2/ k2 in the 

range 4–80%. (For brevity, values outside these ranges are not discussed here.) From Figures S1 

and S2, we notice that, if k1/k2 >1, EHMD achieves better performance when κ1/κ2 >1. These 

examples demonstrate that EHMD also works well for a system with quartic anharmonicity, and 

the result is robust with a wide range of force constants. 

Discussion. The extended Hamiltonian is not designed to yield accurate quantum 

mechanical results, but rather to reduce the problem of ZPE leakage in the simplest possible way. 

The form of the spring term is motivated by the presence of harmonic springs in ring polymer 

MD (RPMD)55,56 and by the linearized quantum force term in Bohmian dynamics with 

approximated quantum force (BD-AQP).58,70 These two simulation approximations have 

common elements, and our work has similar elements, in particular the use of coupled 

trajectories to simulate the effect of the nonlocality of a quantum mechanical wave packet, but 

we have attempted to use these elements in a simpler way – by coupling only two trajectories. 

The RPMD equations involve all trajectories in a cyclic chain while the Bohmian approach 

developed by Garashchuk et al. connects all the trajectories to an averaged trajectory. In both 

cases, the individual trajectories experience a force from the other trajectories that can pull them 

closer together or push them further apart. The same is true for EHMD. Note that in EHMD, the 

restoring force of the spring ensures that the trajectories continue to remain close and affect one 

another. The comparison between RPMD, BD-AQP, and EHMD is schematically illustrated in 

Figure 5. Both RPMD and BD-AQP have had success in reducing ZPE leakage. Specifically, 

Habershon and Manolopoulos have shown that RPMD conserves ZPE for inter- and 

intramolecular modes of a water model better than the linearized semiclassical initial value 
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representation,52 and Garashchuk and Rassolov have shown BD-AQP conserves ZPE in a one-

dimensional Morse oscillator as well as in modified multi-dimensional oscillators.58 We 

emphasize the following important differences between EHMD and these methods: (i) The κ 

parameter in the EHMD extended term is not temperature dependent as in RPMD. (ii) The 

extended term (the potential energy in the springs) is associated with the difference of the 

coordinates in two trajectories, while in BD-AQP, the quantum force term is derived using a set 

of trajectories. (iii) EHMD is designed to be simpler than either of the more rigorous 

semiclassical methods, and the amount of work simply doubles, whereas it can go up by a large 

factor in the other methods.  

Another aspect of the similarity of the present method to a previous semiclassical method is 

the analogy to the displaced point path integral method;71,72 here we have displaced trajectories 

rather than displaced points.  

The strictly conserved energy in the extended Hamiltonian is the sum of the energies of two 

images plus the energy of the extended term. One can ask whether we see strong energy transfer 

between the extended term and the individual images. Figure 6 shows energies in the two springs 

and their sum for the A, B, and C systems with cubic anharmonicity with real units (Henon-

Heiles systems of Figure 2). One can see that spring energies are roughly 10%-20% of the mode 

energies, and they are conserved very well during the time propagation. This indicates that 

although the energies of the individual images are not strictly conserved, they are approximately 

conserved very well in an average sense.  

We have interpreted the energies of the trajectories as being the energies of the images 

excluding the spring potentials. An alternative interpretation is shown in Figure 7, where we 

added half of each spring’s potential energy into each of the two modes that are coupled by the 

spring. We can call the sums the augmented mode energies. Figure 7 shows the augmented mode 

energies the cubic A, B, and C systems of Figure 2. One sees the augmented mode energies are 

all shifted up for the EHMD, because we included the potential energy of the extended term here. 

This extra energy has similar behavior as in BD-AQP, where the quantum mechanical Gaussian 

will add some extra energy to the system. The augmented mode energies are much better 

conserved than the mode energies of classical MD.  

In this article, we have presented a new semiclassical molecular dynamics method, called 
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extended Hamiltonian molecular dynamics. The EHMD method is designed to improve the 

treatment of the ZPE in classical trajectories. In the extended Hamiltonian ansatz, a trajectory has 

two images coupled by springs. By employing the Henon-Heiles Hamiltonian as well as 

Hamiltonian with a quartic potential as test systems, we have shown that EHMD maintains ZPE 

much better than classical MD in eight test cases. Extensions and improvements are possible, but 

this work demonstrates the possibility to improve classical trajectory simulations in a very simple 

way. 
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Figure 1. The two mode energies as a function of time are shown as red, blue colors for classical 

MD and yellow, green colors for EHMD (Henon-Heiles Hamiltonian). The two conditions are, (a) 

, (b) , (c)  

 

  

1  x y 1.7, 1  x y 2.0, 1  x y
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Figure 2. In plots (a), (c), and (e), the mode energies as functions of time are shown in red and 

blue for classical MD and in yellow and green for EHMD (Henon-Heiles Hamiltonian). Plots (b), 

(d), and (f) give histograms of mode energies distribution for classical MD and EHMD. The same 

colors are used as in panels (a), (c) and (e). The top, middle, and bottom pairs of plots correspond 

respectively to systems A3, B3, and C3.  
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Figure 3. The classical and EHMD (Henon-Heiles Hamiltonian) mode energies as functions of 

time for system A with different κ parameters. This shows that the EHMD results are stable 

within a range of κ parameters. The classical mode energies are shown in red and blue, and the 

EHMD mode energies are shown in yellow and green. Four sets of κ parameters are shown: (a) 

κ1 = 1.246, κ2 = 2.117; (b) κ1 = 1.401, κ2 = 2.382; (c) κ1 = 1.557, κ2 = 2.647; and (d) κ1 = 1.731, 

κ2 = 2.991, where are force constants are in N/cm (same as mdyne/Å). Notice that panel (d) is the 

same as Fig. 2(a).  
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Figure 4. Comparison of the classical MD and EHMD with quartic anharmonicity for: (a) and 

(c): quartic system A4; and (b )and (d): quartic system C4. The mode energies as functions of 

time are shown in red and blue for classical MD and in yellow and green for EHMD. (a) l = 0.5, 

(b) l = 0.25, (c) l = 1.0, (d) l = 0.5. 
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Figure 5. The conceptual illustration of the connected individual trajectories, in (a). RPMD, (b). 

BD-AQP, and (c). EHMD. 
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Figure 6. The classical MD and EHMD (Henon-Heiles Hamiltonian) mode energies and the 

extended-term energy as functions of time for systems A3, B3, and C3 of Figure 2. The classical 

MD mode energies are shown in red and blue; EHMD mode energies are shown in yellow and 

green. The separate spring potential energies for the two modes separately are shown in purple 

and grey, and the total energy of the extended term (sum of the two spring potential energies) is 

shown in vermilion.   
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Figure 7. The classical and EHMD (Henon-Heiles Hamiltonian) mode energies as functions of 

time for systems A3, B3, and C3 defined in the text. Here the mode energies for EHMD are 

defined by including one half of the potential energy of the spring for that mode. That is the 

reason one sees the mode energy shifted up for EHMD. 
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