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Abstract 

Diabatization converts adiabatic electronic states to diabatic states, which can be fit with smooth 
functions, thereby decreasing the computational time for simulations. Here we present a new 
diabatization scheme based on components of the nonadiabatic couplings and the adiabatic 
energy gradients. The nonadiabatic couplings are multi-dimensional vectors that are singular 
along conical intersection seams, and this makes them essentially impossible to fit; furthermore 
they have unphysical aspects due to the assumptions of the generalized Born-Oppenheimer 
scheme, and therefore they are not usually used in diabatization schemes. However, we show 
here that the nonadiabatic couplings can provide a route to obtaining diabatic states by using the 
sign change of the energy gradient differences of adiabatic states on paths through conical 
intersections or locally avoided crossings. We present examples applying the method 
successfully to several test systems. We compare the method to other diabatization methods 
previously developed in our group. 
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1. Introduction 

Photodynamical processes are central to many applications in laser-driven chemistry, light-

driven devices, biological chemistry, photocatalysis, and solar cells. Photodynamics can be 

calculated quantum mechanically in the electronically adiabatic representation or in a diabatic 

representation. Adiabatic electronic wave functions are solutions or approximate solutions of the 

electronic Schrödinger equation with fixed nuclei; in practice they diagonalize the electronic 

Hamiltonian in a basis of configuration state functions. In an adiabatic representation, electronic 

states are coupled by the action of the nuclear momentum and nuclear kinetic energy operators 

acting on the electronic wave functions; in semiclassical treatments one usually keeps only the 

nuclear momentum coupling, and the resulting vector coupling matrix elements are called 

nonadiabatic couplings (NACs).1 The adiabatic representation is not appropriate if one wants to 

keep the dynamics cost low by using fitted potential energy surfaces and couplings because the 

adiabatic potential energy surfaces have cuspidal ridges along high-dimensional conical 

intersection seams and NACs that are singular on these seams,1,2 and these functions are almost 

impossible to fit. This motivates the transformation to a diabatic representation where the 

surfaces and couplings are smooth and scalar. Because the NACs cannot be completely 

transformed away,2 a diabatic representation is defined as one where the electronic wave 

functions are smooth enough that NACs – although not zero – may be neglected; electronic 

transitions are then caused by off-diagonal elements of the electronic Hamiltonian, which is 

smooth but not diagonal in a diabatic representation. The off-diagonal elements of the electronic 

Hamiltonian are called diabatic couplings (DCs).1,2  

For dynamics calculations, it is computationally efficient to fit the potentials (i.e., potential 

energy functions) and state couplings to analytic functions. Although adiabatic potentials have 

the advantage that they may be calculated directly by standard electronic structure methods (such 

as variational methods, perturbation theory, coupled cluster theory, and density functional 

theory), they have the disadvantage, as mentioned above, that they cannot be fit. The diabatic 

surfaces can be fit with analytical functions, but they can’t be calculated directly by standard 

(variational) electronic structure methods. To address these limitations, we are interested in a 

process called diabatization, which is a way to switch from the adiabatic to the diabatic 

representation. Diabatic transformations have been widely studied dating back to seminal work 

by Lichten,3 Smith,4 and O’Malley.5 Approximate diabatic representations may be based on 

smooth electronic wave functions like valence bond states, but in general one must find a 

mathematical scheme that uncovers the underlying smooth electronic states while retaining the 

accuracy achievable with adiabatic representations. Many diabatization methods have been 

developed, but work continues with the goal of designing a generally applicable, easy-to-use, and 

low-cost method. 
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Diabatization methods may be classified in various ways. One classification is into direct 

and indirect. Direct diabatization6,7,8,9,10,11,12,13,14,15 (also referred to as point-by-point 

diabatization) can be accomplished at a given geometry without following a path to that 

geometry; indirect diabatizations16,17,18 involve making the diabatic potential functions or wave 

functions smooth with respect to a previous point on a path. Direct diabatizations are preferred 

because it is hard to guarantee that path-dependent methods are independent of the path taken 

and because it is very laborious to cover all space with a set of paths.  

Another classification is into orbital-dependent and orbital-independent. Orbital-dependent 

diabatizations7,8,9,10,11,12,17,18 start by finding a set of smoothly varying orbitals called diabatic 

molecular orbitals (DMOs), which usually include reference orbitals. (Canonical molecular 

orbitals have avoided crossings and are therefore not smooth.) Diabatic molecular orbitals can be 

used to define diabatic state functions, and diabatic states can be defined in term of these by 

configurational uniformity.7,8,9,10,11,12 Orbital-free diabatizations6,13,14,15 avoid the need to find 

DMOs, which is an advantage because the definition of reference orbitals may require system-

specific expertise or trail-and-error. 

A third classification of diabatization methods is into adiabatic-

equivalent6,7,8,9,10,11,12,13,14,15,16,17,18 and adiabatic-nonequivalent19,20. A set of adiabatic-equivalent 

diabatic states spans the same space as a chosen set of adiabatic states, whereas a set of adiabatic 

non-equivalent diabats does not. For example, a set of valence bond states is smooth and might 

form a useful set of diabatic states, but it is obtained independently of any set of adiabatic 

states.19 The advantage of adiabatic-equivalent diabatic states is that one obtains the original set 

of adiabatic potential energy surfaces by diagonalizing the diabatic Hamiltonian matrix.  

Adiabatic potential energy surfaces intersect on (F – 2)-dimensional seams called conical 

intersections, where F is the number of internal degrees of freedom. If one has N atoms, then F = 

3N – 6. Passing through a conical intersection seam corresponds to crossing cuspidal ridges on 

the adiabatic potential energy surfaces of the crossing states, i.e., the potentials are continuous 

with discontinuous derivatives. The NACs are 3N-dimensional in atomic Cartesian coordinates, 

with each NAC being an element of an n × n anti-Hermitian matrix, and the NACs are singular on 

the cuspidal ridges. Since the cuspidal ridges are not necessarily determined by symmetry, the 

adiabatic potential energy surfaces and the NACs are essentially impossible to fit to functions. In 

general, trajectories do not pass precisely through conical intersections; they pass them at a finite 

distance away. In passing on the side of an intersection, the gap between two adiabatic surfaces 

goes through a local minimum, and we call the point of the local minimum a locally avoided 

crossing (the adiabatic surfaces, considered more globally, do cross on the conical intersection 

seam, even if they do not cross along a path – most paths do not pass precisely though the seam 

since it has a dimensionality two less than the full dimensionality of the internal coordinate 
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space). At a locally avoided crossing, if it is close to the conical intersection seam, both the 

adiabatic potential surfaces and the NACs may change rapidly, i.e., they are not smooth. 

The elements of the diabatic Hamiltonian should be smooth at conical intersections and 

locally avoided crossings. Another advantage of the diabatic representation is that there is no 

complication due to geometric phase.21 When the diabatic Hamiltonian has been determined as a 

function of geometry, one may fit each element to a smooth analytic function to enable efficient 

dynamics calculations, which may then be carried out in either the adiabatic or diabatic 

representation. In the adiabatic case, one keeps only the nonadiabatic coupling that comes from 

the diabatic-to-adiabatic transformation. This is easy to calculate from the diabatic analytic 

functions on the fly without facing the task of fitting singular high-dimensional NAC vectors at 

cuspidal ridges (one only fits the smooth low-dimensional scalar diabatic Hamiltonian matrices).  

In previous work we have used the fourfold way9,10,11,12 and the dipole, quadrupole, and 

electrostatic potential (DQΦ) method14,15 for diabatization. Both methods are direct and 

adiabatic-equivalent, and neither requires the calculation of electronic structure NACs; the 

fourfold way is orbital-dependent and the DQΦ method is orbital-free. Here we propose a new 

direct, adiabatic-equivalent, orbital-free diabatization scheme that uses the electronic structure 

NACs in the first step. 

 

2. Theory 

2.1. Transformation 

As described in the Introduction, in an adiabatic representation, the NACs arise from the 

nuclear momentum and nuclear kinetic energy operators acting on the electronic wave 

functions.1,2 The nonrelativistic, spin-free Schrödinger equation can be written as1: 

 �− �
�� ∇�� + 	
��
�, ���Ψ
�, �� = �Ψ
�, �� (1) 

where E is the total energy, the electronic coordinates are denoted by r, the nuclear coordinates 

by R, and the nuclear mass by �. (We use isoinertial coordinates so masses are the same for all 

nuclei.) The electronic Hamiltonian, which includes electronic kinetic energy, electron-electron, 

electron-nuclear, and nuclear-nuclear interactions, is denoted by Hel, the Laplacian (∇�� ) extends 

over all nuclear coordinates, and Ψ
�, �� is the wave function. The wave function can be 

expanded as1: 

 Ψ
�, �� = ∑ ��
����
�;���� �  (2) 

where j labels electronic states, ��
�;�� are normalized eigenfunctions of the electronic 

Hamiltonian, and ��
�� are nuclear wave functions. Substituting eqn (2) into eqn (1) yields,1 

�− �
�� ∇�� + !�
�����
�� + ∑ �− �

� "#�$
�� ∙ ∇� − �
�� &�$
���$ �$
�� = ���
�� (3) 
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where 

 !�
�� = '��∗
�;��	
�� ��
�;��)� (4) 

 "#�$
�� = '��∗
�;��∇� �$
�;��)� (5) 

 &�$
�� = '��∗
�;��∇�� �$
�;��)� (6) 

The function !�
��, is the adiabatic potential energy function for nuclear motion in state j, and 

these potentials may be assembled as the elements of a diagonal matrix V(R). We always arrange 

them such that !�
�� ≤ !�
�� ≤ !*
��…. For N atoms, the vector "#�$
�� is the 3N-dimensional 

nuclear momentum coupling vector between states j and k, and &�$
�� is the kinetic energy 

coupling, which is usually considered less important in semiclassical approximations,22 and 

which can also be hard to treat consistently in approximate approaches.23 (We omit it here not 

because it is necessarily ignorable but rather as part of the freedom we have to choose a non-

unique diabatic transformation.) In the rest of the paper, "#�$
�� will be called a NAC. Note that 

a	NAC	is a 3N-dimensional vector in coordinate space, but it is also an off-diagonal matrix 

element of an n × n matrix in electronic state space; the anti-Hermitian property of the gradient in 

eqn (5) means that1 

  "#�$
�� = −"#$�
�� (7) 

and 

  "#��
�� = 0 (8) 

In a diabatic representation, one neglects the NACs.1,2 Although it is well known that one 

cannot completely eliminate the coupling due to NACs,2 the idea of making a transformation 

with a form similar to diagonalizing the NAC matrix is what motivates our strategy. In 

particular, we obtain a diabatic representation by a sequence of diagonalizations applied to 

matrices of the form: 

 3
�$�
�� = 45�
�$�
�� "�$
��
"�$
�� 5$
�$�
��6 

where "�$
�� is the magnitude of "#�$
��. Because 3
�$�
�� is a symmetric 2×2 matrix, it can be 

diagonalized by a single Jacobi rotation,24 which yields the diagonal matrix 

 37 
�$�
�� = 89
�$�
��:;�3
�$�
��9
�$�
�� (9) 

where 

 9
�$�
�� = @cos D�$ 
�� −sin D�$
��sin D�$ 
�� cos D�$ 
�� F  (10) 

and where 
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 tanG2D�$I = JKL
��MKL
�� (11) 

which will make the transformed off-diagonal N�$
�� element become zero in matrix 37 
�$�. 
The numerator is  

 N�$
�� = "O�$
�� (12) 

with "O�$
�� being either a NAC or a modified NAC, and the denominator is 

 P�$
�� = 5$
�$�
�� − 5�
�$�
�� (13) 

where 5$
�$�is explained in Section 2.3. The use of a modified NAC in the numerator allows us 

to remove undesired couplings in the Born–Oppenheimer approximation and will be explained in 

Section 2.2.  

The rotation does not yield wave functions; the submatrix diagonalized is not a submatrix 

of the Hamiltonian. The resulting rotation angle D�$ is then used for a 2×2 rotation of a submatrix 

of the Hamiltonian, which yields a continuous Hermitian diabatic Hamiltonian. Diagonalization 

of the diabatic Hamiltonian yields the original adiabatic eigenenergies. 

When there are more than 2 states, we apply this transformation in sequence to “eliminate” 

NACs one-by-one; for example for 3-state case, first "��
��, then "�*
��, and finally "�*
��. 
Note that a Jacobi transformation makes previously rotated off-diagonal elements nonzero again, 

therefore the procedure has to be repeated until all of the off-diagonal elements become zero to 

within a pre-established tolerance. We stop the iteration if the root mean square of the off-

diagonal elements is less than 5×10-7 a. u. This sequence of transformations of the adiabatic basis 

functions is then used to transform the potential energy matrix into the diabatic representation. In 

particular, we get the following diabatic potential energy matrix: 

 Q9
��R;�S
��9
�� = T
�� (14) 

where 9
�� = ∏9
�$�
��, i.e., the product of the individual rotation matrices of state pairs. 

After the transformation, rows and columns of T
�� correspond to the diabatic states, but 

they might not be in the right order. We found, however, that it is easy to re-order them by 

inspection. 

The adiabatic potential curves or potential surfaces are sometimes called adiabats, and the 

diabatic potential curves or diabatic potential surfaces are sometimes called diabats. 

The resulting method is called the N/D method to recognize the key role of eqn (11). All 

that remains is to identify suitable formulas for the numerator N�$
�� and the denominator 

P�$
��, that is, for "O�$
�� and for 5V
�$�
��, with i = j or k. 
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2.2. Numerator 

First we consider the numerator. It is well documented that NACs are unphysical in various 

respects; this is discussed in various ways, including the lack of electron momentum in the Born-

Oppenheimer basis and the dependence of conventional Born-Oppenheimer calculations on the 

coordinate system.25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44 This is not a serious problem in 

regions where adiabatic states are strongly coupled because the NACs are singular at conical 

intersections and the singular terms that dominate in strongly coupled regions are free of these 

defects;45 however, the incorrect behavior of NACs when subsystems separate is very 

inconvenient for dynamics.25,26,28,32,33,40,43,44 Our first modification of NACs is to remove these 

long-range couplings because they are “fictitious” forces in the sense defined by Delos.32 As in 

other aspects of the present treatment, we do this by taking advantage of the fact that diabatic 

states are not uniquely defined.  

The starting NACs for the treatment proposed here are those calculated analytically by the 

Molpro electronic structure package.46,47 These NACs are calculated by displacing one 

coordinate at a time in the 3N-dimensional Cartesian coordinate system without transformation 

to a center-of-mass coordinate system. These NACs may be written, 

 "#�$
�� = ∑ ∑ "�$,WX*X �JW � 
��ȇWX (15) 

where ȇWX is a unit vector, Z labels an atom in the N-atom system, [	= 1,2,3 corresponds to the 

x,y,z Cartesian coordinates, and  

  "�$,WX
�� = '��∗
�, �� \
\]^_�$
�, ��)� (16) 

where ]^_ is an atomic Cartesian coordinate. To eliminate unphysical coupling we replace 

"#�$
�� by  

 #̀�$
�� = ∑ ∑ aW"�$,WX*X �JW � 
��ȇWX (17) 

where aW is a weighting function that may be different for each atom ρ and may even be zero for 

some atoms, and we define 

 `�$
�� = b #̀�$
��b (18) 

The choice to use the magnitudes of the NACs is well adapted to practical calculations because it 

is hard choose all the sign convention in practical electronic structure calculations to make the 

sign be a continuous function of geometry.  

Our second modification is to place a threshold on the usage of the NACs. This serves two 

purposes: (i) it avoids unnecessary operations in regions where the NACs are very small and 

inconsequential and may be sensitive to the numerical methods used to compute them; (ii) it 

allows for stable treatment of asymptotic regions where the couplings should have no effect. 

Applying the threshold yields the following expression for the numerator: 
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 	N�$
�� ≡ "O�$
�� = d 0 if	`�$ ≤ "fgh`�$
�� − "fgh otherwise  (19) 

where "fgh,�$ is a parameter. If "O�$
�� is zero and the dominator is positive (see in Section 2.3.) 

at some R, then the diagonalization is skipped at that R, i.e., 9
�$�
�� is set equal to the unit 

matrix (D�$= 0 degrees), and no rotation of state j with state k occurs at that R. If "O�$
�� is zero 

and the dominator is negative at some R, then a full rotation is applied (D�$= 90 degrees), i.e., 

state j and k switch at geometry R. In this way, the diabats are set equal to the adiabats in a way 

that is consistent with the rest of the surface. 

In some cases, one might want to use a different weight or a different threshold for 

different state pairs (replace aW and/or "fgh by a�$,W and/or "fgh,�$), but that was not necessary 

here. 

2.3. Denominator 

The denominator needs to work in concert with the NACs to provide diabatic curves that 

have the correct physics. The proposed function for the denominator is 

 P�$
�� = ε∑ ∑ k�$,WWʹJWʹ Wm� ℎ�$,WWʹ
��J;�W �  (20) 

where ε is a scaling factor, k�$,WWʹ is a weight, and  

 ℎ�$,WWʹ
�� = \
\oppʹ 8!$
�� − !�
��: (21) 

where qWWʹ are the N(N-1)/2 internuclear distances of atom pairs ρ and ρʹ for the N-atom system. 

Ideally, the internuclear distances that are roughly perpendicular to the seam of diabatic crossing 

should be used. This can be controlled by the weighting function k�$,WWʹ for each state pair. 

Notice that for N > 4, the internuclear distances are a redundant set of internal coordinates, but in 

practice we will set the weighting function of many of the partial derivatives equal to zero using k�$,WWʹ, and the number of terms retained in eqn (20) will be less than F.  

To motivate eqn (20), let’s consider passing through a locally avoided intersection of two 

states of the same symmetry. In the diabatic representation, the two states cross, and the 

gradients of those two states are smooth and do not cross. In the adiabatic representation, the 

potential energy surfaces do not cross, but the two energy gradients must switch if those two 

adiabatic states have a crossing or avoided crossing due to a change in configuration. Therefore, 

the denominator will change sign, and therefore the tangent of eqn (11) will also change sign. On 

one side of the sign change, 2D�$ 	will be in the range 0 to π/2, and on the other side of the sign 

change it will be in the range π/2 to π. Consequently, on one side of the sign change, cos D�$ 	will 

be greater than sin D�$, but on the other side it will be smaller. Thus, the transformation of eqn 

(10) will switch the diabats from one adiabat to another, which is our goal. In a simple case a 

single qWWʹ might be enough for diabatization.  
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According to eqn (20), a scaling factor (ε) is required to adjust the relative scale of the 

numerator and denominator because they would otherwise have different units. If the scaling 

factor were too small, then the nominator in eqn (11) will dominate, thus strong mixing would 

occur over a wide range of geometries. In an extreme case, the diabatic states would be stuck 

together instead of crossing one another. Even in the regions where the diabatic energies should 

be approximately equal to the adiabatic energies, the diabatic energies would still correspond to 

significant mixtures of adiabatic energies. On the other hand, if the scaling factor were too large, 

then the denominator in eqn (11) would dominate, and the diabatic coupling would be significant 

only for a very narrow range of geometries. In an extreme case, the diabatic energies would be 

approximately equal to the adiabatic energies, and due to the sign change the two diabatic curves 

would suddenly switch at the diabatic state crossing. A reasonable choice for ε will result in a 

reasonable peak in the NAC. (Theoretically a NAC will approach infinity at a conical 

intersection; however, the usual case encountered for a polyatomic system along a path is a 

locally avoided crossing because it is unlikely that a path goes precisely through a conical 

intersection by chance). 

If the diabatic crossing seam is highly curved, the employed coordinates qWWʹ might need to 

be functions of R controlled by geometry-dependent k�$,WWʹ, but k�$,WWʹ should be a smooth 

function. In our present treatment, we take k�$,WWʹ to be independent of geometry.  

Recently, in a series of articles, Yarkony and coworkers have drawn attention to a potential 

problem of many diabatization techniques, an issue Yarkony calls diabolical seams.48,49,50,51 

When using a property-based diabatization method, one will often seek to find extremes of a 

function derived with adiabatic functions via the diagonalization of a matrix of adiabatic 

properties. Analogous to diagonalization of the Hamiltonian, diagonalization of the property 

matrix results in problematic seams along discontinuous derivatives. When one diagonalizes the 

Hamiltonian, there is an (F-2)-dimensional seam where the eigenvectors (adiabatic state 

functions) have discontinuous derivatives, and this is the seam of the conical intersections. When 

one diagonalizes the property matrix, there is an (F-2)-dimensional seam where the eigenvectors 

(diabatic state functions) have a discontinuous derivative and this is the seam of the diabolical 

singularities. This seam will occur when: N�$
�� = P�$
�� = 0 in our matrix component 

notation. This unwanted behavior can potentially be avoided by moving the DSs, via property 

selection, into regions of the surface that are not important in dynamics simulations. As we will 

show in the sections below, we did not encounter diabolical seams in our work. 

In the following sections, we will show that the NACs and gradients of the adiabatic states, 

when used together, can provide relevant chemical insight into the system by uncovering the 

physical diabatic states that underlie the adiabatic ones.  
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3. Electronic structure methods 

All of the calculations in this work were carried out using the Molpro program package46,47 

with state-averaged CASSCF,52,53,54,55,56 i.e., SA(n)-CASSCF, where n is the number of states 

averaged. In all cases, equal weights were used for the state average. Molpro calculates the 

energy gradients for each state and the NAC values for the state couplings analytically via 

coupled-perturbed multi-configurational self-consistent field (MCSCF) calculations. active 

spaces will be labeled (e,o), where e is the number of active electrons and o is the number of 

active orbitals. 

3.1. LiF 

For the calculation of LiF dissociation, C2v symmetry was used and the first two singlet A1 

states were averaged with equal weights (n = 2). The 1s orbital of Li and the 1s and 2s orbitals of 

F were kept doubly occupied. The active space was (6,7), and the 6-311+G* basis set57,58 was 

used. The potential energy curve was scanned from 0.8 Å to 10.0 Å. 

3.2. H3 

Three sets of calculations were carried out for the H3 system 

The first set (called H3-MEP) is along an approximate minimum energy path of H + H2, 

where we note that geometries along this path are collinear. Three states were averaged, but only 

the first two singlet Aʹ states were used in the diabatization process (n = 3 for SA(n)-CASSCF, 

but n = 2 for eqn (2)). The symmetry of the system was set to Cs. The active space was (3,15) 

with twelve aʹ and three aʺ orbitals; the def2-QZVP basis set59 was used.  

In the second set (called H3-LIN), the arrangement of the three H atoms is set to be linear, 

then both R12 and R13 are changed from 1 to 6 bohr, with 0.2 bohr increments, to obtain the 

points of a two-dimensional (2D) surface (R23 = R12 + R13). In this case, these calculations were 

carried out by using SA(2)-CASSCF(3,15)/def2-QZVP with Cs symmetry. Note that the path of 

the H3-MEP set, is the minimum-energy path through this this 2D surface. 

 The third set (called H3-BENT) is again a 2D surface. The bond angle of H3 fixed at 60 

degrees, and both R12 and R13 are varied from 1 to 3 bohr with 0.1 bohr increments. In these 

calculations, SA(2)-CASSCF(3,15)/def2-QZVP was also used with Cs symmetry. 

3.3. (H2)2 

The calculation of the H2 dimer system corresponds to the calculation used in the previous 

fourfold way and DQΦ work.9,15 Thus n = 3 in SA(n)-CASSCF calculations, the active space is 

(4,4); and the TZP basis set60 was used. The symmetry was turned off. 

3.4. Li + HF 

The reaction path of Li + FH → LiF + H was previously studied with the fourfold way and 

DQΦ method.9,15 The symmetry of this three-body system is Cs. We consider n = 2 with both 
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states being singlet Aʹ. The active space is (7,8), including the 2s and 2p orbitals of Li, the 2p 

orbitals of F, and the 1s orbital of H; the 6-311+G* basis set57,58 was used. 

3.5. PhOH 

The photodissociation of phenol into PhO and H was also calculated. To get the diabatic 

representation for photodissociation, we considered n = 3. We used the same active space as Ref. 

12, which is (12,11); the def2-SVPD basis set61 was used. The equilibrium geometry of phenol 

was taken from Ref. 12. The torsion angle between the C(6)-C(1)-C(2) plane and the C(1)-O-H 

plane was θ = 45°; therefore the calculated structures belong to C1 symmetry. Then the OH bond 

distance was varied between 1.0 and 3.0 Å, and except for this bond distance and θ, the other 

internal coordinates are fixed at their equilibrium values. 

3.6. O3 

For O3, Cs symmetry was applied, and the first three 3Aʹ triplet states were calculated (n = 

3). The active space was (12,9) including the nine 2p orbitals. The bond angle of the three 

oxygen atoms was fixed at 175 degrees. One of the bond lengths was fixed at the equilibrium 

distance of O2 molecule, Re = 1.208 Å, and the other bond length was scanned from 3 to 1 Å. In 

these calculations, the maug-cc-pVTZ basis set62,63,64,65 was used. 

In all the calculations described so far, the adiabatic states are obtained with SA(n)-

CASSCF and diabatization was carried out by the N/D method. For O3, for comparison, we also 

ran calculations with the DQΦ method.15 In the DQΦ calculations, we started with the same 

SA(3)-CASSCF(12,9) calculations as used for N/D and then added external correlation by 

extended multi-state second order perturbation theory66,67,68,69 (XMS(3)-CASPT2) to obtain the 

adiabatic energies and dipole, quadruple, and electrostatic potential matrix elements required for 

DQΦ  diabatization. The def2-TZVPD basis set61 was used in the DQΦ calculations. 

 

4. Applications 

To apply the method to a given case, we must specify the options that can be different for 

different applications. There are four of these: (i) the unitless weights aW used in the numberator, 

(ii) the threshold "fgh used in the numerator, (iii) the choices of internuclear distances qWWʹ for 

each jk state pair for the denominator as determined by the nonzero weights k�$,WWʹ used in the 

denonimator, and (iv) the energetic scaling parameter ε used in the denominator. The values of 

these parameters used for the current article are given in Table 1. 
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Table 1 Parameters of the N/D calculationsa 

System aW  "fgh	
ar;�� s	GEg;�I k�$,WW´ 
LiF 1 0 160 k��,vwx = 1 

H3-MEP 1 0 sets 1,2: 20 

set 3: 10 
set 1: k��,�� = 1 

set 2: k��,�* = 1 

set 3: k��,�� = 1, k��,�* = –1 

H3-LIN 1 0.2 10 k��,�� = 1, k��,�* = –1 

H3-BENT 1 0.2 10 k��,�� = 1, k��,�* = –1 

(H2)2 1 0 200 set 1: k�*,�� = k�*,�* = k�*,�* = 1 

         k�*,�y = k�*,�y = k�*,*y = –1 

set 2: k�$,�� = k�$,�* = 1 

         k�$,�y = k�$,*y = –1 

 

LiHF 1 sets 1,3: 0.25 

set 2: 0.3 

sets 1,3: 70 

set 2: 300 
set 1: k��,xz = 1 

set 2: W��,vwx = 1 

set 3: k��,vwx =	k��,vwz = 1 

          k��,xz = −1 

phenol a}z = 1 a~fg�h	� 	= 0 

0.2 80 k�$,}z = 1 

O3 1 0.2 40 k�$,�� = 1 k�$,�* = –1 
a1 a0 = 1 bohr = 0.5292 Å; 1 Eh = 1 hartree = 27.212 eV. The value of aW is the same for all Z except 

where indicated otherwise. Only nonzero W�$,WW´ are shown.  

 

In the application of N/D method, the choices of NAC (nominator) and adiabatic energy 

gradient (denominator) are system dependent as listed in Table 1. These system-dependent 

choices provide some freedom to avoid diabolical singularities, where N�$
�� = P�$
�� = 0. By 

using well chosen parameters, one can move the diabolical singularities to a region of the surface 

that is unimportant for the dynamics of interest. 

 

4.1 LiF 

Our first example is LiF, which is a well studied case of ionic–covalent curve crossing. The 

NACs as well as the energy gradients are 3N-dimensional vectors in Cartesian coordinates. In 

Fig. 1a shows the magnitude of the NAC between the ground and the first excited states; Fig. 1b 

shows the difference between adiabatic energy gradients of the ground and the first excited states 

with respect to the internuclear distance of the two atoms as a function of the internuclear 
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distance. Figure 1b shows that the two gradients cross each other around 5.6 Å, where Fig. 1a 

shows that N12 has a peak.  

The adiabatic (V1 and V2) and diabatic (U11 and U22) potential energy curves and the 

diabatic coupling (U12) are shown in Fig. 2. The two diabatic curves cross smoothly around 5.6 

Å. Thus the method is successful in this simple case. 

In the repulsive wall region, the energy of the adiabatic ground state increases more rapidly 

than the energy of the adiabatic first excited state, leading to the denominator of eqn (11) 

changing its sign around 1.2 Å (see Fig. 1b). At the same time the numerator is increasing as the 

distance between the two atoms becomes shorter (see first peak in Fig. 1a). These two features 

lead to a sudden state crossing at 1.2 Å with the N/D scheme, but the energy of two diabatic 

states are not significantly different than the adiabatic energies in this region. This results in a 

sudden peak in the U12 coupling at short R, and the diabatic energies were manually switched 

back for the plot. 

Further analysis of the LiF case is provided in the ESI. 

 

 
Fig. 1 Input data for the N/D diabatization of LiF. Plot (a) shows the magnitude of the NAC 
between the ground and the first excited states (N12). Plot (b) shows difference between 
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adiabatic energy gradients of the ground and the first excited states (h12,LiF). The abscissa of 
both plots is the internuclear distance. 

 
Fig. 2 Adiabatic and diabatic potential energy curves and square of the diabatic coupling for LiF. 
Plot (a) shows the whole potential energy curves; plot (b) enlarges the avoided crossing region. 
Plot (c) show the square of the diabatic coupling, and plot (d) is another enlargement. 

 

4.2. H3 system 

4.2.1. H + H2 exchange reaction (H3-MEP) 

The minimum energy path of the H + H2 exchange is collinear. The central hydrogen is 

labeled H1 and the two terminal hydrogens are labeled H2 and H3. At the saddle point the two 

nearest-neighbor H–H bond lengths, R12 and R13 are equal to �zz‡  = 1.757 a0 , and this point is 

defined as the origin of the reaction coordinate, which is defined as 

 � = signG��� − �zz‡ I	
�G��� − �zz‡ I� + G��* − �zz‡ I�,  (22) 

For this example, the ground state and first excited state were taken into account. The two states 

are well separated in energy; the energy difference is 6.7 eV at the saddle point according to the 

CASSCF calculations. Thus, their crossing is widely avoided. Every component of the NAC was 

used to calculate the nominator N12, which is given in Fig. 3a.  
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Three different diabatizations will be presented to illustrate the flexibility of the N/D 

method; these sets differ only the parameters used to calculate the denominator D12. The three 

partial derivatives of the energy gap along the reaction path are shown in Fig. 3b. Based on the 

shape of these three curves, it is easy to conclude that the data set of gradient difference based on 

r23 will not lead to useful diabatization as it does not cross zero (gray curve in Fig. 3b). This 

gradient difference was not used in eqn (20). The investigated solutions include the following 

sets of gradient differences. Set 1 only includes the gradient difference for r12 (i.e, k��,�� = 1, 

and the other two are zero). Set 2 only includes the gradient difference for r13 (i.e, k��,�* = 1, 

and the other two are zero). Set 3 includes the gradient difference from both r12 and r13; their 

weights in eqn (20) are k��,��, = 1 and k��,�* = –1.  

Both sets 1 and 2 provide smooth diabats, but the state crossing is slightly shifted away 

from zero (the saddle point). Set 1 shifts the crossing slightly right, and set 2 shifts the crossing 

slightly left. These shifts are in accord with the locations where the partial derivative differences 

cross zero, as shown in Fig. 3b. When the combination of the two gradient differences is used, as 

described in set 3, the crossing occurs at the saddle point, as expected. The solutions of 

diabatizations based on these three sets are shown in Fig. 4. 

This illustrates an important point. When a system shows symmetry, one should take 

account of that symmetry when assigning the parameters. When this was done, the method is 

successful for the H + H2 reaction. For LiF we considered a narrowly avoided crossing, and here 

we consider a widely avoided one; the method is successful in both cases. 
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Fig. 3 Input data for the N/D diabatization of H2 + H exchange. Plot (a) shows the magnitude of 
the NAC between the ground and the first excited states. Plot (b) shows differences between 
partial derivatives (with respect to the three internuclear distances) of adiabatic energy 
differences I.e., gaps) of the ground and the first excited states. 
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Fig. 4 Adiabatic and diabatic potential energy curves and square of diabatic coupling for the H + 
H2 reaction (H3-MEP). Plots (a), (b), and (c) correspond to sets 1, 2, and 3, respectively. Plot (d) 
shows the square of the diabatic coupling in set 3. 
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states are degenerate. At long distances, the two adiabatic states are already degenerate, and the 

large NACs in this region do not affect the diabatic energies, thus their U12 coupling remains 

very small.  

 

 
Fig. 5 Diabatization of H3-LIN data set. Plot (a) contains the two adiabatic energy surfaces, V1 

and V2; the zero of energy is for three separated H atoms; the contour increment (solid gray lines 

for V1 and dashed back lines for V2) is 0.5 eV. Plot (b) contains the two diabatic energy surfaces, 

U11 (blue-to-red) and U22 (brown-to-green); the zero of energy corresponds to three separated H 

atoms; the contour increment (dashed back lines for U11 and solid gray lines for U22 and) is 0.5 

eV. Plot (c) shows the g12 surface, the contour increment, solid gray lines, is 0.1 bohr-1. Plot (d) 

shows the surface of U12
2, the contour increment, solid gray lines, is 1 eV2. 

 

4.2.3. Bent H3 arrangement (H3-BENT) 

In this example, the H3 structure is bent to 60 degrees. In this arrangement there is conical 

intersection seam for geometries with R12 = R13. The diabatization parameters of this H3-BENT 

system are the same as H3-LIN. As expected, the g12 values (Fig. 6c) blow up along the seam; the 

magnitude can go above 1 million bohr-1 in practical calculations, and would be infinite in exact 
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work. The ground and the first excited adiabatic states become degenerate along the seam, which 

is the diagonal of the plot (see Fig. 6a). The two diabatic surfaces, U11 (blue-to-red) and U22 

(brown-to-green), smoothly cross each other along the diagonal of the plot (see Fig. 6b). On the 

two sides of the seam, the diabatic surfaces approach the adiabatic surfaces as the two surfaces 

are not strongly coupled. This can also be seen in plot of coupling squared, (U12)
2 where the 

coupling decreases away from the seam (see Fig. 6d). The diabatic coupling increases as it 

approaches the seam, but right at the seam the two adiabatic states are degenerate, as are the 

diabatic states, and the U12 coupling is zero.  

 

 
Fig. 6 Diabatization of H3-BENT data set. Plot (a) contains the two adiabatic energy surfaces, V1 

and V2; the zero of energy is the three separated H atoms; the contour increment (solid gray lines 

for V1 and dashed back lines for V2) is 0.5 eV. Plot (b) contains the two diabatic energy surfaces, 

U11 (blue-to-red) and U22 (brown-to-green); the zero of energy is again for three separated H 

atoms; the contour increment (dashed back lines for U11 and solid gray lines for U22 and) is 0.5 

eV. Plot (c) shows a part of g12 surface (at the conical intersection seam g12 can go above 1 

million bohr-1) the contour increment, solid gray lines, is 1 bohr-1. Plot (d) shows the surface of 

(U12)
2, the contour increment, solid gray lines, is 0.05 eV2. Note that we were not able to 
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calculate four points along this seam; those geometry points are left out and they appear as empty 

regions of the plots. 

 

4.3 H2 dimer 

The H2 dimer was previously calculated by both the fourfold way and DQΦ (in particular 

by the Boys localized, DQ, and DΦ special cases of DQΦ).9,15 The four atoms are collinear, and 

we consider a system consisting of two hydrogen molecules with centers of mass separated by 10 

a0 and with each molecules starting with a bond distance of R0 = 1.5 a0. The bond lengths of the 

two molecules are simultaneously changed by ∆R; one of the H2 bond distances is decreased (R0 

– ∆R) and the other H2 bond distance is increased (R0 + ∆R). The range of ∆R is -0.2 to 0.2 a0. 

This reaction coordinate results in one bond switching from stretched to compressed while the 

other molecule simultaneously goes from compressed to stretch. When ∆R is zero, the two bond 

lengths are equal (at the middle of the reaction coordinate). Along this reaction path, the first and 

second excited states (i.e., states 2 and 3, both 1Σ+), show a locally avoided crossing in the 

adiabatic representation. These two crossing states are energetically well separated from the 

ground state. 

To carry out the N/D diabatization, we considered two possible ways to proceed. The 

ground state is well separated from the other two states and the ground state is only slightly 

coupled with either of the two excited states; see Fig. 7a. Therefore, in the first set of 

calculations, a simple two-by-two diabatization is carried out for state pair ij = 23. The partial 

derivatives of the 2-3 energy gap are shown in Fig. 7d for the six possible internuclear distances. 

We label the atoms left to right: 1,2 for the first H2 and 3,4 for the second H2. As can be seen in 

the plot, four of the curves can lead to useful diabatization, but, similarly to the situation in 

subsection 4.2, the diabats based on a single atom pair set would suffer from some asymmetry. 

Therefore, we again take a linear combination to get symmetric diabatic energy curves. Among 

the possible combinations, we only show the one for which the weights k�*,WWʹ are 1.0, 1.0, -1.0, 

1.0, -1.0, and -1.0 with respect to internuclear ditances, R12, R13, R14, R23, R24, and R34, 

respectively. The two diabatic curves cross smoothly where the two H2 molecules have equal 

bond lengths (R12 = R34) as shown in Fig. 8.  

A second set of calculations is shown for a three-by-three diabatization. The differences of 

the partial energy derivatives with respect to the six possible internuclear distances for state pairs 

12 and 13 are shown in Figs. 7b and 7c. For all three jk state pairs, the weights k�$,WWʹ were 

selected to be 1.0, 1.0, 0.0, 0.0, -1.0, and -1.0 for the partial derivatives with respect to the six 

internuclear distances in the same order as above. Figure 9 shows the result of this diabatization. 

In this diabatization the couplings of state pairs 12 and 13 are stronger than that of state pair 23, 

but state 1 is well separated from the other two states in energy, thus those couplings do not 
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cause the diabatic energy curves to differ noticeably from the adiabatic ones in Fig. 9a. As 

expected, diabatic states 2 and 3 cross each other where the two H2 molecules have equal bond 

lengths. Thus both strategies yield useful diabats, but the simpler two-state treatment r probably 

preferable. 

If one used larger k��,WWʹ and k�*,WWʹ, the couplings of state pairs 12 and 13 would be 

further decreased, but for all examples shown in the present article, k�$,WWʹ is independent of j 

and k. 

 

 
Fig. 7 Input data for the N/D diabatization of H2 dimer. Plot (a) shows the magnitudes of the 
NACs between state pairs 12, 13, and 23. Plots (b), (c), and (d) show differences between 
adiabatic energy gradients of state pairs 12, 13, and 23, respectively, with respect to the six 
internuclear distances. 
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Fig. 8 Adiabatic and diabatic potential energy curves (part a) and the square of the diabatic 
coupling (part b) for H2 dimer based on a two-by-two diabatization for state pair 23 (“set 1” 
diabatization).  
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Fig. 9 Adiabatic and diabatic potential energy curves (a) as well as their coupling (c) of H2 dimer 
based on a three-by-three diabatization (“set 2” diabatization). Plot (b) enlarges the coupling 
region of state pair 23. 
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states, respectively. In the products region, the ground state has a singly occupied H(1s) orbital 

and the first excited state corresponds to electron donation from an in-plane lone pair on the F to 

the H atom, which becomes very high in energy along the product coordinate. The reaction 

coordinate has been previously defined in a fourfold way and DQΦ study.9,15 The zero of the 

coordinate is located at the saddle point of the lower adiabatic potential curve. The positive side 

of the coordinate corresponds to motion towards LiF + H, the products; the negative side 

corresponds to motion towards LiH + F, the reactants. Distances between successive points along 

the reaction coordinate are defined by 

 ∆� = �∑ G∆�W� + ∆�W� + ∆�W�IW vw,x,z  (23) 

where ∆�W, ∆�W, and	∆�W corespond to differences in mass-weighted Cartesian coordinates of the 

atoms (this definition only affects the scale of the abscissa in plots; it has no effect on 

diabatization). 

Previous calculations with the fourfold way and DQΦ diabatization method were 

successful.9,15 However, the fourfold way required a reference orbital, and the introduction has 

already pointed out that it would be desirable to avoid reference orbitals, because defining them 

may require an in-depth knowledge of the system. Three partial derivative differences for this 

two-state problem are shown in Fig. 10b. These partial derivatives correspond to the LiF, LiH, 

and FH internuclear distances. Among these three curves, the FH data set, labeled set 1, 

(k��,xz = 1, k��,vwx = 0, and k��,xz = 0) and the LiF data set, labeled set 2, (k��,vwx = 1 and the 

other two weights are zero) can lead to useful diabatization, since these curves change sign near the 

saddle point. The two predicted diabatic energy sets are slightly different; when using set 1, the 

crossing is shifted towards the reactant side as compared to set 2, see Fig. 11a and 11b. We also 

investigated a linear combination of the three partial derivatives (set 3), where the k��,WWʹ 
weights in eqn (20) are 1.0, 1.0, and -1.0 for the LiF, LiH, and FH partial derivatives, 

respectively. For all three sets, g12 (which appears in the nominator) is shown in Fig. 10a. Figures 

11a, 11b, and 11c show very good agreement between the three sets of diabatization. As diabats 

are not unique, all three solutions to the diabatization problem can be acceptable, and one could 

choose which set of diabats to use based on other considerations, for example, on the behavior in 

other regions of geometry. 

 

Page 24 of 36Physical Chemistry Chemical Physics



 

 
 

25

 

Fig. 10 Input data for the N/D diabatization of reaction Li(2S, 2P) + FH → LiF + H. Plot (a) shows 
the magnitude of the NACs between the ground and the first excited states. Plot (b) shows 
differences between adiabatic energy gradients of the ground and the first excited states 
(ℎ��,WWʹ) with respect to the three internuclear distances.  
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Fig. 11 Adiabatic and diabatic potential energy curves (right plots) as well as their coupling (left 

plots) of Li(2S, 2P) + FH  → LiF + H. The plots on the right show the square of the coupling 
element of state pair 12. Plots (a), (b), and (c) correspond to sets 1, 2, and 3, respectively. 
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third adiabatic state at the equilibrium bond distance of OH. The minimum energy pathway of 

the dissociation occurs in a planar structure, and the presence of conical intersections is clearly 

seen in the shapes of the adiabatic potential energy curves. To show our results for a 

nonsymmetrical path, we distorted the geometry by turning the dissociating hydrogen out of the 

plane of the phenoxyl radical by the torsion angle θ, where θ = 45°. Along the O–H bond 

dissociation path at this fixed torsion angle, the presence of one of the state crossings is no longer 

in the shapes of the adiabatic energy curves, so this provides a good test. 

Phenol is a larger system than our previous examples, and it is used to illustrate that NAC 

components for atoms far from the reaction center are not essential for diabatization. The NAC 

components are typically nonzero even when we expect the diabats to be very similar the 

adiabats, and as we include more NAC components these nonzero components add up. However, 

most of those components could be considered to be “background noise”, and, if included, that 

noise could obscure the useful NAC components that carry the physics of the state crossing. As 

an example, in Fig. 12 we compare the whole magnitude of NAC components of all atoms (plot 

10a) with only the magnitude of NAC components of the oxygen atom and the dissociating 

hydrogen atom (plot 10b). In both plots, the NAC elements predict a sharp state crossing around 

1.3 Å for states 2 and 3, and a wide state crossing around 1.9 Å for states 1 and 2. However, as 

we move away from the crossings, the curves in plot 10b approach zero along the OH 

dissociation, but in plot 10a we still see significant NAC values at large values of the 

dissociation coordinate. Therefore we carried out N/D diabatization by using in the numerator 

only the NAC components shown in Fig. 12b. 

The partial derivative differences used in the denominator for state pairs 1 and 2,1 and 3, 

and 2 and 3 are shown in Fig. 12c as functions of the OH distance. 

Figure 13 shows the adiabatic potential energy curves and the diabatic potential energy 

curves and squares of the diabatic couplings obtained by the N/D method. Both of the avoided 

state crossings in the adiabatic representations have smooth state crossings in the diabatic 

representation. One can see a significant coupling for U13 at 1.3 Å. At this geometry, the diabatic 

energy difference of the two coupled states is large (~ 4.2 eV), thus this coupling barely affects 

the shapes of the potential curves. 
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Fig. 12 Plot (a) shows the magnitude of all NAC components for state pairs 12, 13, and 23. Plot 
(b) shows the magnitude of the NAC components of oxygen and the dissociating hydrogen for 
state pairs 12, 13, and 23. Plot (c) shows the differences between adiabatic energy gradients of 
state pairs 12, 13, and 23 with respect to the (dissociating) OH internuclear distance. 
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Fig. 13 Adiabatic and diabatic potential energy curves (a) as well as their coupling (b) of phenol 

dissociation (θ = 45°). 

 

4.6. O3 system 

The O3 system was previously treated with DQΦ.15 In that paper, two cuts of the first two 1Aʺ 
singlet states along the asymmetrical ozone stretch were shown where the three oxygen atoms 
were fixed at 120 and 100 degrees, and one of the bond lengths was also fixed. The other bond 
length was varied to show the avoided crossing of the first two 1Aʺ singlet states along the 
asymmetrical ozone stretch. In that article, the NAC curves along the bond stretch were 
presented (see Figs 19 and 22 in Ref. 15) and they clearly show the coupling between the two 
states of interest. Here we apply the N/D method to this problem. 

In the new calculations, the first three 3Aʹ states were calculated. The bond angle of the 
three oxygen atoms was fixed at 175 degrees, i.e., the atoms are almost collinear. One of the 
bond lengths was fixed at the equilibrium distance of O2 molecule, Re = 1.208 Å. The other bond 

length was varied between 1 and 3 Å. At large O2( Σ�;* ) + O(3P) distances, the first two 3Aʹ states 

correspond to the threefold degenerate ground state of O(3P) atom (the third component of the 

ground state is the first 3Aʺ state). The first excited asymptote corresponds to the O2( Δ�� ) + 

O(3P) combination. This asymptote has six-fold spatial degeneracy, with three 3Aʹ and three 3Aʺ 
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states. The second excited 3Aʹ state is one of these six states in the 3Aʹ representation. For a 
complete treatment, one should include all low-energy states, but the three states considered here 
are enough to enough to compare DQΦ to the new N/D method. 

Figure 14 shows that as the distance between the molecule and the atom is decreased, the 
adiabatic energy of the first excited state (orange dashed curve) increases more rapidly than the 
adiabatic energy of the ground state (blue dashed curve). Around 1.8 Å, there is a locally avoided 
crossing for the first and the second (gray dashed curve) adiabatic excited states. Both the first 
and the second adiabatic excited-state potentials show breaks at 1.3 Å. This is a clear sign of 
further avoided crossing with higher energy states not present in this plot. 

Figure 14a shows a diabatization solution based on DQΦ method (in the notation of the 

DQΦ method,15 the parameters are γ = 1.0 a.u. for the dipole, α = 1.0 a.u. and origin at center of 

mass for the quadrupole, and β = 1.0 a.u. for the electrostatic potential at the center of mass). 
Many other combinations of α, β, γ, and origins were tried, but none of them could qualitatively 
improve the diabatization scheme. As it can be seen, the predicted diabatic energy curves 

(purple, red, and green) become degenerate, i.e., the DQΦ method is not successful. 

The N/D diabats are much better; they smoothly cross, as shown in Fig. 14b. For this 
diabatization the magnitude of the all NAC components was used; see Fig. 15a. According to the 
NACs, we expect three state crossings along the O2 + O reaction path. Starting from longer 
distance, there is a coupling for states two and three (g23) at 1.8 Å. Then the ground and the first 
excited states should cross (g12) around 1.6 Å. Finally, states two and three (g23) have to cross, 
again, at 1.4 Å. We label the central O as atom 1; in the denominator the gradient difference 
from both r12 and r13 were used with 1.0 and -1.0 weights  

Again the N/D method provides acceptable and useful results. 

 

Page 30 of 36Physical Chemistry Chemical Physics



 

 
 

31

 

Fig. 14 Adiabatic and diabatic potential energy curves of an 3Aʹ O2( Σ�;* ) + O(3P) collision, for 

details see the text. Plot (a) shows a flawed diabatization by DQΦ method. Plot (b) shows a 
diabatization by N/D method, and the diabatic coupling of N/D are shown in plot (c). For part a, 
the adiabatic energies and one-electron properties were calculated by XMS(3)-CASPT2; for 
parts b and c, the results are based on SA(3)-CASSCF; this difference does not introduce 
qualitative differences. 
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Fig. 15 Plot (a) shows the magnitude of all NAC components for state pairs 12, 13, and 23. Plot 
(b) shows the selected denominators in eqn (20) for state pairs 12, 13, and 23, for details see 
the text. 

 

5. Concluding remarks 

Diabatic states can provide relevant chemical insight into an electronically adiabatic system 

by uncovering the smooth electronic configurations that underlie the adiabatic states. In 

principle, one could use only the nonadiabatic couplings to carry out diabatization; however, we 

show here that incorporation of the adiabatic energy gradients into the procedure makes the 

diabatization process very convenient because the difference of the energy gradients carries 

useful information about the underlying diabatic states. The article shows how the nonadiabatic 

couplings and the gradients of the adiabatic states, when used together, provide a very 

convenient way to uncover the underlying diabatic states. In addition to providing chemical 

insight, diabatization is very useful for enabling fitting of potential energy surfaces and couplings 

so one may carry our efficient simulations of dynamics.  
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Thus we present a new diabatization method based on NACs and differences of energy 

gradients, and it is called the N/D method. The N/D method is a direct, orbital-independent 

diabatization scheme. It is adiabatic-equivalent and can therefore be converted back to an 

adiabatic representation by diagonalizing the diabatic Hamiltonian matrix. One can then use the 

adiabatic or diabatic representation to carry out dynamics simulations and study reaction rate 

constants, energy transfer rate constants, and photochemical mechanisms. 

We showed that the N/D method can be successfully applied to systems previously 

analyzed with the fourfold way and the DQΦ method including LiF, (H2)2, Li + HF, and phenol. 

We also provide successful applications to the H3 system and O + O2 interactions. The N/D 

method avoids working with orbitals, which makes the N/D scheme easier to use than the 

fourfold way. We applied the DQΦ and N/D methods to the three 3Aʹ triplet states of O3 and 

showed that while the DQΦ method failed to give smooth, reasonable diabats, the N/D method 

was successful; the three adiabatic properties included in the DQΦ method failed to distinguish 

diabatic states, but the N/D method included sufficient information about the adiabatic states to 

discover underlying diabats.  

The N/D method requires some system-dependent decisions, but this is a common 

requirement for diabatization methods or indeed for many methods of calculating adiabatic 

electronic states. For the N/D method these decisions include choosing the nonadiabatic coupling 

vector components and adiabatic gradient components and weights as well as thresholds and 

scaling factors. Although further analysis might lead to systematic ways to choose these 

parameters, in all six cases considered here we were able to find suitable values of the 

parameters.  
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