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Towards Rapid Prediction of Drug-resistant Cancer Cell 
Phenotypes: Single Cell Mass Spectrometry Combined with 
Machine Learning
Renmeng Liu,‡a Genwei Zhang‡a and Zhibo Yang*a 

Combined single cell mass spectrometry and machine learning 
methods is demonstrated for the first time to achieve rapid and 
reliable prediction of the phenotype of unknow single cells based 
on their metabolomic profiles, with experimental validation. This 
approach can be potentially applied towards prediction of drug-
resistant phenotypes prior to chemotherapy.

Drug resistance, a phenomenon that renders tumor evasion of 
anticancer agents, is regarded as the major reason for 
chemotherapeutic failures.1 In other words, a small population 
of cells capable of surviving from chemo-treatment through 
complex drug-resistant mechanisms, become immune to the 
original therapy, and eventually induce cancer relapse.2 In 
general, there are two major types of drug resistance: primary 
and acquired. Primary resistance reduces the efficacy of 
chemotherapies before drug exposure, whereas acquired drug 
resistance develops afterwards.3 Unfortunately, drug resistance 
cannot be monitored or evaluated in advance using common 
molecular imaging techniques, such as positron emission 
tomography, until accomplishing one or two chemo-treatment 
cycles in modern clinical practice,4 resulting in ineffective 
treatment accompanied by serious toxicity for the patients. In 
addition, different tumor cells within the same histological 
region may respond differently to chemo-treatment due to 
intratumor heterogeneity.5 However, conventional studies of 
drug resistance based on cell populations lack the ability to 
uncover biological information masked by such tumor cell 
heterogeneity. Herein, it is imperative to study drug resistance 
through interrogation and evaluation of individual cells using 
single-cell based methodologies. Mass spectrometry (MS) is a 
fast developing technique with broad applications in 
fundamental science and biomedical studies.6 Recent 

development in MS allows for analysis of single cells with 
limited amount of analytes available (as low as in pL range for 
mammalian cells)7 due to its extraordinary sensitivity, high 
accuracy, and high throughput. To date, reported single cell MS 
(SCMS) techniques include but are not limited to secondary ion 
MS (SIMS),8 matrix-assisted laser desorption/ionization (MALDI) 
MS,9 laser ablation electrospray ionization (LAESI) MS,10 live-
single cell video-MS,11 induced nanoESI MS,12 the Single-probe 
MS,13 and the T-probe MS.14 Among these techniques, the 
Single-probe MS method stands out as an ambient technique to 
analyze live single cells of interest in situ and in real time with 
high efficiency and reliability.13, 15 
      On the other hand, cell adhesion-mediated drug resistance 
(CAM-DR) was reported for myelogenous leukemia cells upon 
adhering to extracellular matrix (ECM), which coexists with 
those leukemic cells in the bone marrow, through integrin-ECM 
interaction.16 Interestingly, this cell-ECM interaction confers 
reduced cell apoptosis upon exposure to cytotoxic drugs, and 
was recognized as one important form of primary drug 
resistance.17 Despite the achievements of illustrating related 
biological mechanisms,18 limited effort was contributed to 
predict such drug-resistant phenotype prior to any chemo-
treatment, exposing patients to the risk of ineffective 
chemotherapy and associated toxicity. Limited studies in this 
area are likely due to a variety of factors, including 1) the lack of 
rapid and sensitive single cell analytical approaches that can 
simultaneously unveil phenotypical discrimination and 
intratumor heterogeneity, 2) the shortage of methods for 
systematic metabolomic analysis of single cells to reveal cellular 
metabolomic profiles associated with different phenotypes, 
and 3) the absence of advanced data mining methods towards 
rapid and reliable prediction. 
      To address those issues, we used the Single-probe SCMS 
technique to conduct metabolomic analysis at single cell level 
(i.e., single cell metabolomics) of cultured chronic myelogenous 
leukemia (CML) cells (K-562) and obtain metabolomic 
information that is sensitive to upstream gene expression, 
protein regulation, and change of surrounding 
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Fig. 1 Workflow of the combined single cell mass spectrometry (SCMS) experiments and 
machine learning (ML) data analysis methods. (A) MS measurements of single cells using 
the Single-probe SCMS technique. (B) A comprehensive data processing approach to 
extract metabolomic information from raw SCMS datasets and visualize cellular profiles 
in low dimensional space. (C) ML models built on cells with two different phenotypes 
(with or without CAM-DR). (D) Rapid and reliable prediction of drug-resistant phenotypes 
at single cell level.

Fig. 2 (A) Experimental setup of the SCMS platform, which is an integrated system 
including a Single-probe device, a Thermo Orbitrap XL mass spectrometer, two 
microscopes, and a motorized XYZ-stage system. (B) Individual leukemic cells located on 
the sample plate to be analyzed.

microenvironment.19 Data analysis was conducted using 
machine leaning (ML) algorithms to mine the complex 
metabolomic datasets and unveil hidden biological patterns by 
performing clustering, regression, and prediction.20 To the best 

of our knowledge, it is the first time to combine SCMS 
experiments with ML models for single cell metabolomics 
studies. Our approach provides a potential solution towards 
rapid and reliable prediction of drug-resistant cancer cell 
phenotypes (e.g. CAM-DR) based on cellular metabolomic 
profiles. 
      K-562 cell line was used as a model system to demonstrate 
our strategy as shown in Fig. 1. As a well-established model, this 
cell line has been previously used to study the mechanism of 
CAM-DR in cancer cells.16-18 We followed the published 
protocols to prepare two different phenotypes.16 In brief, we 
first coated glass cover slips with fibronectin (FN), a major 
component of ECM,21 and then allowed CML cells (K-562 cell 
line) to interact with FN in the cell culture plate. Cells that can 
adhere to FN (phenotype I) were reported to present CAM-DR 
compared with those suspended in the culture medium 
(phenotype II).16 We prepared single cells of both phenotypes 
on the same type of glass cover slips (see “Cell Culture and 
Sample Preparation” in ESI†) Using a hemocytometer, we 
estimated that 23.9% ± 5.3% of cells possessed CAM-DR in a 
typical experiment. We then utilized the Single-probe SCMS 
platform (Fig. 2A and “SCMS Experiments” in ESI†) to 
interrogate individual cells and obtained their corresponding 
metabolomic profiles in real-time analysis (Fig. 2B). We 
analyzed 100 and 108 single cells of phenotypes I and II, 
respectively. The raw MS data were subjected to pre-treatment, 
including background removal, noise reduction, peak 
normalization, and peak alignment (as described in “SCMS Data 
Analysis” in ESI†). The endogenous cellular metabolites along 
with their relative ion intensities were subjected to downstream 
comprehensive analyses, including statistical analyses and ML 
predictions.
      To qualitatively evaluate and visualize the difference of 
metabolomic profiles between these two phenotypes, we 
analyzed the SCMS data using the t-distributed stochastic 
neighbor embedding (t-SNE), an algorithm for dimensionality 
reduction and visualization of data points in a non-linear fashion 
to achieve subtle group discrimination.22 As shown on the t-SNE 
plot (Fig. 3), an evident discrimination between these two 
phenotypes can be intuitively observed, although some 
overlapped data points still exist likely due to cell heterogeneity. 
Our results suggest that the metabolomic profiles of two 
phenotypes are significantly different, which might be 
attributed to integrin-ECM interaction. With such evident 
discrimination, we further applied ML algorithms to establish 
models capable of predicting cellular phenotypes (i.e., CAM-DR 
or non-CAM-DR) based on the metabolomic profiles of cells. 
      In our study, we constructed ML models using random forest 
(RF), penalized logistic regression (LR), and artificial neural 
network (ANN) following SCMS data pre-treatment as described 
earlier. RF is an ensemble learning method based on multiple 
constructed decision trees and eventually outputs the averaged 
decision. Penalized LR builds nonlinear relationship between 
the response variable and independent variables through a 
logistic function, followed by minimizing the impact of less 
contributing variables. Both RF and penalized LR methods have 
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Fig. 3 Visualization of cellular metabolomic profiles in two-dimensional space using t-

distributed stochastic neighbor embedding (t-SNE). Phenotypic discrimination between 

two types of cells (phenotype I and II) is evident.

been broadly applied to conventional metabolomic studies 
using liquid chromatography-mass spectrometry (LC-MS)23 and 
single cell RNA-seq datasets.24 ANN, as a fast-developing ML 
method, was inspired by the biological neural networks in 
animal brains. ANN optimizes parameters by learning from the 
prior knowledge, and the optimized model generates 
predictions through connected units and nodes. ANN has been 
previously applied to sorting single cells based on measured 
biomechanical properties,25 and prediction of patient survival 
though genomics data.26 Here, we further expanded the 
applications of those three methods to the analysis of single cell 
metabolomics datasets obtained from the Single-probe SCMS 
technique. Specifically, we applied RF, penalized LR (i.e., elastic 
net LR), and ANN to our pre-treated single cell metabolomics 
datasets, evaluated the predictive accuracy of each ML model, 
and recorded the demanded computing time under each 
experimental condition. We performed model construction, 
evaluation, and k-fold validation for each ML model (see 
“Machine Learning (ML) and Model Evaluation” and Tables S1–
S3 in ESI†).
      The pre-treated datasets were randomly shuffled with 80% 
cells being selected as the training set and the remaining 20% 
being selected as the testing set. The training set was used to 
construct and train ML models, whereas the testing set was 
used to evaluate the model performance. Due to tumor cell 
heterogeneity and experimental variation, single cell 
metabolomics datasets contain missing values (i.e., undetected 
cellular metabolites that were labelled as in 0 values in SCMS 
metabolomics datasets) in some SCMS measurements. 
Therefore, we evaluated the model performance according to 
different missing value threshold (MVT) as shown in Fig. 4. For 
example, a dataset with 20% MVT contains variables 
(metabolites) that can be detected in at least 80% of all 
measured single cells. As the MVT increases, the number of 
variables increases accordingly (i.e., from 7 to 3232 as the MVT 
increases from 0% to 90%) in each ML model. A gradually 
improved predictive accuracy was also observed in all three 
models (Fig. 4A–4C). Notably, a pronounced improvement was 
observed in predictive accuracy (from 77.1% ± 10.2% to the 

Fig. 4 Evaluation of ML models. (A–C) Predictive accuracy of the random forest (RF), 
penalized logistic regression (LR), and artificial neural network (ANN) model were 
evaluated using different missing value thresholds (MVTs). (D–F) Evaluation of the 
predictive power of the corresponding RF, penalized LR, and ANN models using receiver 
operating characteristic (ROC) curve analysis. The area under the curve (AUC) were 
calculated for all three models.

highest value of 94.8% ± 4.2%) in the RF model when the MVT 
was raised from 0% to 50%. However, further improvement of 
predictive accuracy was not observed with higher MVTs. 
Compared with the RF model, both penalized LR and ANN 
methods produced higher predictive accuracy when the MVT 
was below 40%, whereas comparable predictive accuracy was 
achieved as the MVT exceeded 40%. In addition, the highest 
predictive accuracy (i.e., 94.7% ± 1.8% and 96.2% ± 2.7%) can be 
obtained at 80% MVT for penalized LR and ANN models, 
respectively. Considering the trade-off between predictive 
accuracy and computing cost, which is a critical factor when 
handling larger sizes of data, we adopted ANN model with 40% 
MVT for rapid (~ 6 s) and reliable prediction (> 95% predictive 
accuracy) of drug-resistant phenotypes. We further 
demonstrated the predictive power of all ML models (with 40% 
MVT) in distinguishing two phenotypes using receiver operating 
characteristic (ROC) curve analysis27 that examines the 
sensitivity and specificity of the model (Fig. 4D–4F). 
Consistently, the ANN model is superior in prediction with the 
area under the curve (AUCANN) = 0.9976 compared with the 
other two models (AUCRF = 0.9542 and AUCpenalized LR = 0.9884). 
To experimentally validate our method and evaluate the 
predictive accuracy of the ANN model, we conducted SCMS 
experiments and data pre-treatment for another batch of 31 
single cells prepared on a different day, and utilized the trained 
ANN model to predict this new set of data (see “Method 
Validation” in ESI†). Our results show that the ANN model 
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produced 87.1% ± 4.8% predictive accuracy, achieving a 
comparable performance compared with our earlier results on 
the testing set.
      In conclusion, we reported studies using the combined 
ambient SCMS technique (i.e., the Single-probe MS) and ML 
models to distinguish and predict drug-resistant phenotypes 
(e.g. CAM-DR) of live single cells through cellular metabolomic 
profiles for the first time. Previous studies reported a number 
of prediction methods based on metabolic biomarkers (i.e., 
cellular species characteristic of specific disease, phenotype, 
etc.), including two-sample t-test,28 analysis of variance 
(ANOVA),23b loadings of principle component analysis (PCA),29 
and orthogonal partial least squares-discriminant analysis 
(OPLS-DA).14 Compared with the above reported models, our 
method presents the following unique advantages: 1) SCMS 
based experiments allow for recognition of heterogeneous cells 
with different phenotypes. 2) Minimum sample preparation 
enables metabolomic signatures of live cells to be captured 
through online and in situ measurements. 3) Constructed ML 
models provide rapid results, which facilitates their potential 
translational applications towards future point-of-care (POC)30 
prognostic assays. 4) Because our methods utilized a variety of 
cellular metabolites other than metabolic biomarkers alone, the 
model predictive accuracy is significantly improved (p-value < 
0.05, from Welch’s one-tail t-test) compared with other models 
utilizing biomarkers discovered through two-sample t-test or 
PCA loading plot (see “Statistical Analyses”, “Model 
Comparison” and Fig. S1 in ESI†). As a complementary approach 
to biomarker identification at the population level, LC-MS/MS 
analysis of cell lysate was performed. Among all discovered 
biomarkers from single cells (e.g., 70 metabolites obtained from 
t-test), 28 of them were identified using LC-MS/MS (see 
“Identification of Metabolic Biomarkers” and Table S4 in ESI†). 
This complementary method can potentially benefit future 
SCMS studies, although all species of interest in single cells may 
not be identified from cell lysates, likely due to rapid metabolite 
turnover during sample preparation.7 In addition, we validated 
our methods using cells prepared from different batches to 
obtain comparable results. Although the cultured CML cells 
were used as the model in the current study, our method can 
be potentially used towards future prediction and prognosis of 
patient derived samples. However, because the clinical samples 
are rather complex, additional procedures for sample 
preparation are necessary. For example, heterogenous cells 
obtained from bone marrow biopsy in clinic need to be firstly 
purified, followed by enrichment of leukemic cells using 
standard protocols including centrifugation and flow cytometry 
analysis31 prior to the SCMS experiments (~ 30 s/cell) and ML 
predictions of drug-resistant phenotypes.

Conflicts of interest
The authors declare no conflicts of interests.

Notes and references

1 M. M. Gottesman, Annu. Rev. Med., 2002, 53, 615-627.
2 L. A. Garraway and P. A. Janne, Cancer Discov., 2012, 2, 214-

226.
3 H. Zahreddine and K. L. B. Borden, Front Pharmacol, 2013, 4.
4 T. H. Lippert, H. J. Ruoff and M. Volm, Int. J. Med. Sci., 2011, 8, 

245-253.
5 B. Zhao, J. R. Pritchard, D. A. Lauffenburger and M. T. Hemann, 

Cancer Discov., 2014, 4, 166.
6 a) X. J. Feng, X. Liu, Q. M. Luo and B. F. Liu, Mass Spectrom. 

Rev., 2008, 27, 635-660; b) F. W. McLafferty, Annu. Rev. Anal. 
Chem., 2011, 4, 1-22.

7 L. Zhang and A. Vertes, Angew. Chem. Int. Ed., 2018, 57, 4466-
4477.

8 N. Musat, R. Foster, T. Vagner, B. Adam and M. M. M. Kuypers, 
Fems Microbiol. Rev., 2012, 36, 486-511.

9 A. J. Ibáñez, S. R. Fagerer, A. M. Schmidt, P. L. Urban, K. 
Jefimovs, P. Geiger, R. Dechant, M. Heinemann and R. Zenobi, 
Proc. Natl. Acad. Sci. U. S. A., 2013, 110, 8790.

10 B. Shrestha and A. Vertes, Anal. Chem., 2009, 81, 8265-8271.
11 T. Masujima, Anal. Sci., 2009, 25, 953-960.
12 H. Zhu, G. Zou, N. Wang, M. Zhuang, W. Xiong and G. Huang, 

Proc. Natl. Acad. Sci. U. S. A., 2017, 114, 2586.
13 N. Pan, W. Rao, N. R. Kothapalli, R. M. Liu, A. W. G. Burgett 

and Z. B. Yang, Anal. Chem., 2014, 86, 9376-9380.
14 R. Liu, N. Pan, Y. Zhu and Z. Yang, Anal. Chem., 2018, 90, 

11078-11085.
15 a) N. Pan, W. Rao, S. J. Standke and Z. B. Yang, Anal. Chem., 

2016, 88, 6812-6819; b) W. Rao, N. Pan and Z. Yang, J. Vis. 
Exp., 2016, 112, 53911.

16 J. S. Damiano, L. A. Hazlehurst and W. S. Dalton, Leukemia, 
2001, 15, 1232.

17 K. H. Shain and W. S. Dalton, Mol. Cancer Ther., 2001, 1, 69.
18 a) J. S. Damiano, A. E. Cress, L. A. Hazlehurst, A. A. Shtil and W. 

S. Dalton, Blood, 1999, 93, 1658-1667; b) L. A. Hazlehurst and 
W. S. Dalton, Cancer Metast. Rev., 2001, 20, 43-50.

19 G. J. Patti, O. Yanes and G. Siuzdak, Nat. Rev. Mol. Cell Biol., 
2012, 13, 263.

20 D. Grapov, J. Fahrmann, K. Wanichthanarak and S. 
Khoomrung, OMICS, 2018, 22, 630.

21 P. A. Harper, P. Brown and R. L. Juliano, J. Cell Sci., 1983, 63, 
287.

22 a) T. D. Do, T. J. Comi, S. J. B. Dunham, S. S. Rubakhin and J. V. 
Sweedler, Anal. Chem., 2017, 89, 3078-3086; b) X. Li, W. Chen, 
Y. Chen, X. Zhang, J. Gu and M. Q. Zhang, Nucleic Acids Res., 
2017, 45, e166.

23 a) B. Xi, H. Gu, H. Baniasadi and D. Raftery, Methods Mol. Biol., 
2014, 1198, 333-353; b) D. Grissa, M. Pétéra, M. Brandolini, A. 
Napoli, B. Comte and E. Pujos-Guillot, Front. Mol. Biosci., 
2016, 3, 30.

24 M. B. Pouyan and D. Kostka, Bioinformatics, 2018, 34, i79-i88.
25 E. M. Darling and F. Guilak, Tissue Eng. Pt. A, 2008, 14, 1507-

1515.
26 T. Ching, X. Zhu and L. X. Garmire, PLOS Comput. Biol., 2018, 

14, e1006076.
27 J. G. Xia, D. I. Broadhurst, M. Wilson and D. S. Wishart, 

Metabolomics, 2013, 9, 280-299.
28 D. J. Hinton, M. S. Vázquez, J. R. Geske, M. J. Hitschfeld, A. M. 

C. Ho, V. M. Karpyak, J. M. Biernacka and D.-S. Choi, Sci. Rep., 
2017, 7, 2496.

29 P. Nemes, A. M. Knolhoff, S. S. Rubakhin and J. V. Sweedler, 
Anal. Chem., 2011, 83, 6810-6817.

30 C. R. Ferreira, K. E. Yannell, A. K. Jarmusch, V. Pirro, Z. Ouyang 
and R. G. Cooks, Clin. Chem., 2016, 62, 99.

31 J. Cloos, J. R. Harris, J. J. W. M. Janssen, A. Kelder, F. Huang, G. 
Sijm, M. Vonk, A. N. Snel, J. R. Scheick, W. J. Scholten, J. 
Carbaat-Ham, D. Veldhuizen, D. Hanekamp, Y. J. M. Oussoren-
Brockhoff, G. J. L. Kaspers, G. J. Schuurhuis, A. K. Sasser and G. 
Ossenkoppele, J. Vis. Exp., 2018, 133, e56386.

Page 4 of 5ChemComm



The combination of single cell mass spectrometry with machine learning enables prediction of drug-
resistant cell phenotypes based on metabolomic profiles.

Page 5 of 5 ChemComm


