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Abstract

Thin-layer chromatography (TLC) is commonly used as a screening method to verify the identity and 

quality of dried herbal medicinal plant material. While TLC is relatively simple, the method still requires 

technical experience and relies on the subjective classification of sample TLC profiles as “within-

specifications” or “off-specifications.” In this work, we report the development of an objective TLC-based 

system for the identification and quality assessment of herbal medicinal materials. Our proposed system is 

a miniaturized Pharmacopeia-based TLC method coupled with a smartphone app that allows for an 

objective interpretation of TLC profiles via multivariate image analysis and chemometric fingerprinting. 

An image of the TLC profile is captured using a smartphone camera interfaced with a 3D-printed photo-

box, and the analysis is automated using a framework of pre-uploaded algorithms hosted on a cloud server. 

The TLC profile image is converted to an unfolded red, green, and blue (RGB) channel intensity profile, 

and classified as “within-specifications” or “off-specifications” using aggregated Soft Independent 

Modeling of Class Analogy (SIMCA) models. We present the application of our system to two herbal 

medicinal plants, Blumea balsamifera and Vitex negundo. The proposed system demonstrates 90.2% 

sensitivity and 86.2% specificity for B. balsamifera classification, and 81.4% sensitivity and 92.0% 

specificity for V. negundo classification when compared to the respective laboratory-based Pharmacopeia 

TLC protocols for the ability to distinguish authentic samples from non-authentic and degraded samples. 

The system developed in this work is a cost-effective, rapid method that can serve as an herbal material 

quality assessment tool in resource-limited settings. 

Keywords

thin-layer chromatography, smartphone sensing, pattern recognition, chemometric fingerprinting, image 

analysis, herbal medicines
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Introduction

Traditional herbal medicines have grown in popularity over the past few decades because of their 

increased integration and acceptance in modern medicine.1 The increased demand for herbal products has 

also opened avenues for inclusive growth in the agricultural sector of many developing countries. Since 

herbal medicinal plants are viewed as high value crops,2,3 farmers have turned to herbal farming as an 

alternative livelihood, with many small farms forming community-based cooperatives to supply bulk 

medicinal plant material to pharmaceutical manufacturers.4   

However, despite the high demand and interest in herbal farming, manufacturers regularly reject a 

significant percentage of raw material from suppliers due to quality concerns. Since many herbal medicinal 

products are only minimally processed into teas and tablets, guaranteeing the safety and quality of these 

products starts at the raw material.5 Manufacturers therefore implement strict quality screening before 

accepting raw material for further processing. Some common grounds for supply rejection include incorrect 

plant variety, contamination with other plant types, material mishandling or mislabeling, and improper 

material preprocessing that leads to substandard quality.6 These rejections result in significant financial 

losses for the supplier as well as lost opportunity for the manufacturer and marketer. The limited supply of 

quality raw materials is one of the major factors hindering the growth of the herbal industry in many 

developing countries.6 

The loss of raw material early in the supply chain can be attributed to the lack of quality control 

techniques and technology at the community-based supplier level. Typically, farmers and suppliers do not 

have access to reliable methods for in-process quality assessment to pre-screen their materials prior to 

submission to manufacturers. An accessible tool is therefore needed to help mitigate supply rejections as 

well as to identify key preprocessing steps that may need improvement. An additional challenge, however, 

is that herbal plant material is usually preprocessed, stored, and pooled in a dried, homogenized form, so 

distinguishing a plant sample based on its morphological characteristics is no longer feasible at this point. 

Homogenized plant material, nonetheless, can still be identified based on its chemical profile, which can 
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be determined by analyzing the sample with techniques such as infrared spectroscopy, Raman spectroscopy, 

thin-layer chromatography (TLC), or high-performance liquid chromatography (HPLC).7,8 Most of these 

methods, however, are too impractical and costly for resource-limited settings. 

TLC, however, is the most promising method for adoption in resource-limited settings due to its 

simplicity and low capital cost. In fact, there are existing TLC-based field test kits in the market such as 

Speedy TLC Kit9,10, Global Pharma Health Fund (GPHF)’s MiniLab11, and Field Forensic Inc.’s 

microTLC.12 These kits are based on the TLC analysis of test and standard reference samples, followed by 

visual comparison of the TLC profiles. The widespread use of these kits demonstrates that with minimal 

training, TLC can be transferable to non-technical users in resource-limited settings.13,14 A similar test kit 

can be developed to assess herbal medicinal materials. 

The evaluation of herbal medicinal materials via TLC, however, is not as straightforward as the 

evaluation of synthetic drugs. While synthetic drugs have known active ingredients and formulations, herbal 

medicines are complex mixtures of the plant’s secondary metabolites, not all of which are known.15 The 

analysis of an herbal medicinal plant extract with its standard Pharmacopeia TLC protocol will therefore 

result in a complex pattern of colored bands, which can be likened to a fingerprint.16 The profile can be 

evaluated based on Pharmacopeia acceptance criteria, such as the presence of molecular markers or the 

matching of the whole sample fingerprint to that of a reference.8,17 This evaluation, however, can be very 

subjective and may require significant technical experience in comparing profiles visually. Visual 

comparison can be challenging because of the inherent variability of plant samples and their TLC profiles 

due to sourcing from regions with different climatic and soil conditions, processing with different drying 

methods, or harvesting during different seasons.7

A more objective system for evaluating TLC profiles of plant extracts can be achieved using image 

analysis and chemometric fingerprinting. The image of the TLC fingerprint can be captured using flatbed 

scanners or charge-coupled device (CCD) cameras, then converted to a multivariate digital signal for 

chemometric classification. A chemometric classification model is trained based on the fingerprints of 
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labeled samples, which provide data on the permissible limits of sample variation.17 The planar 

chromatography profiles of naturally-derived products such as propolis,18–21 traditional Chinese 

medicines,22–24 spirulina,25 chamomile tea,26 and saffron27 were analyzed in previous studies using 

multivariate image analysis coupled with principal component analysis (PCA), partial least squares 

discriminant analysis (PLS-DA), and hierarchical cluster analysis (HCA). These previous studies focused 

on discriminating samples between different varieties or classifying an authentic sample from known 

possible adulterants using multi-class classification approaches.

In the context of building a chemometric model for the identification and quality assurance of dried 

plant material, only the fingerprints of pure, authentic samples can be practically modeled, as possible 

sample contamination, mislabeling, or degradation can be very open-ended. This problem can be viewed 

as a novelty detection or one-class classification problem: either an unknown sample is classified as 

“within-specifications” with respect to the plant species of interest or not (“off-specifications”). A common 

approach is Soft Independent Modeling of Class Analogy (SIMCA), which models classes independently 

based on the PCA of the classes of interest.28 SIMCA has been applied previously for the identification of 

herbal medicines using HPLC29,30 and infrared spectroscopy,31–33 although there have been no previous 

reports of the approach applied to data from planar chromatography such as TLC.

The image capture and chemometric analysis of TLC profiles is typically conducted using image-

capturing devices interfaced with a personal computer, which can be costly and impractical for resource-

limited settings. A more practical, cost-effective alternative is a smartphone device. The use of the 

smartphone platform for field-level and/or resource-limited analysis has been rising in popularity because 

of its portability, cost-effectiveness, and robust technology including built-in camera and processing power 

capable of sending and storing data to a cloud server.34,35 There are recent reports of using a smartphone 

platform for the TLC image analysis and quantitative determination of single-component 

pharmaceutical36,37 and illegal drugs,38 although there have been no previous reports of a smartphone app 

for the identification of herbal medicinal materials.
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In this work, we aim to develop a method for the pre-screening of herbal medicinal plant materials 

in resource-limited settings. Our proposed system consists of a miniaturized, Pharmacopeia-based TLC 

method coupled with smartphone-based multivariate image analysis and SIMCA classification. We 

demonstrate the application of our system to two widely commercialized herbal medicinal plants in the 

Philippines2, Blumea balsamifera and Vitex negundo, which are used to treat kidney stones39 and asthma,40 

respectively. We also compare our system to the respective laboratory-based Pharmacopeia TLC protocol 

for the ability to distinguish authentic samples from non-authentic samples, degraded samples, as well as 

leaf mixtures. It is our aim that the accessibility of our method will allow community-based suppliers to 

more effectively manage and pre-screen their materials, potentially reducing rejection rates and improving 

the supply of quality herbal medicinal raw materials. 

Experimental

Reagents

Absolute ethanol was from Chem-Supply; 95% n-hexane was from RCI Labscan Limited, ethyl 

acetate, 95% H2SO4, and vanillin were from Ajax Finechem. Glacial acetic acid was from Macron Fine 

Chemicals. p-anisaldehyde was from Sigma-Aldrich. B. balsamifera standards dihydroquercetin-7,4'-

dimethyl ether (DQDE), blumeatin (BL), quercetin (QN), 5,7,3',5'-tetrahydroxyflavanone (THFE), and 

dihydroquercetin-4'-methyl ether (DQME), and V. negundo standard, agnuside (AGN), were from Wuhan 

ChemFaces Biochemical Co., Ltd. Aluminum TLC silica gel 60 F254 plates were from Merck. All reagents 

used were analytical grade unless otherwise stated. 

Collection and preparation of samples

Twenty-two B. balsamifera and fifteen V. negundo leaf samples were collected from various farms 

across the Philippines and were authenticated with the Pharmacopeia protocols described in the next 

subsection. All samples underwent standard primary processing including sorting, washing, drying, 
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homogenizing, and packing in sealed plastic bags with silica gel desiccants. Different drying methods used 

to process the samples included oven drying at 60 °C for 4 hours, air drying, and drying via dehydrator. 

These samples served as within-specifications (WS) samples for the respective plant species.

Off-specifications (OS) samples were artificially prepared by treating pure, WS samples with non-

standard processing methods, including treatment with high temperature (oven heating at 100 °C for 2 

hours), exposure to high humidity to simulate improper sample storage, fermentation, and incomplete 

drying followed by sample storage. Various mixtures were also prepared to simulate sample impurity at 

different weight concentration levels (5, 10, 20, 30, 40, 50, 60, 70, 80, and 90% w/w adulterant). 

Investigated mixtures included B. balsamifera mixed with Blumea lacera, and B. balsamifera mixed with 

V. negundo.

Analysis of samples with standard Pharmacopeia protocols

All pure B. balsamifera and V. negundo samples were analyzed with their respective Pharmacopeia 

protocols summarized in Table 1. Analysis was conducted on silica gel 60 TLC plates at a development 

distance of 10 cm. B. balsamifera standards BL, QN, THFE, DQME, and DQDE, and V. negundo standard, 

AGN, were analyzed alongside their respective samples. The prepared OS samples and mixtures were also 

analyzed to determine if the respective Pharmacopeia protocol and acceptance criteria could correctly 

distinguish them as “off-specifications.” 

Adapted TLC method

Simplified, miniaturized versions of the TLC Pharmacopeia protocols for B. balsamifera and V. 

negundo were developed as the field TLC kit methods. Sample analysis proceeded as follows. First, 

approximately 0.1 g of dried homogenized leaf sample was soaked in 1.0 mL 95:5 (v/v) ethanol-water for 

30 minutes with occasional shaking. A small amount of the ethanolic extract was decanted into a fresh 

microtube. Using a calibrated glass capillary tube, 10 μL of the extract was spotted onto a 1.4 cm x 5.2 cm 
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silica gel 60 TLC plate. Development was performed using a mobile phase of 1:1 (v/v) hexane-ethyl acetate 

for B. balsamifera samples, or 80:10:5 (v/v) ethyl acetate-glacial acetic acid-water for V. negundo samples 

in a 25-mL scintillating vial that served as an improvised developing chamber. After pre-saturating the 

chamber with 1.0 mL of mobile phase for 5 min, the TLC plate was lowered into the chamber and 

development proceeded until the solvent reached a pre-marked solvent-front 4.2 mm from the spotting line. 

The TLC plate was then air dried and dipped in a vanillin-H2SO4 solution for B. balsamifera samples or 

anisaldehyde-H2SO4 solution for V. negundo samples for derivatization. The plate was dried for two minutes 

and heated for approximately one minute on a custom heater for band visualization. Immediately after 

visualization, the TLC plate was laminated and fixed onto a plate card using a clear vinyl sticker. All 

samples were analyzed in triplicate to evaluate method repeatability and subsequent data preprocessing 

methods.

Image capture with 3D-printed photo-box 

To facilitate the image capture of a TLC plate with a smartphone camera, a custom photo-box was 

designed using AutoCAD 123D Design and 3D-printed using Flashforge Creator Pro 3D printer with 

acrylonitrile butadiene styrene (ABS) polymer as the printing material. The 3D-printed photo-box was 

custom designed for the smartphone used in this study, an Asus Zenfone Go 5.0, which was selected because 

of its relatively low cost (approximately 70 USD) and widespread availability. A slot in the front of the 

photo-box can hold the smartphone in place so a TLC plate can be photographed at a consistent 10-cm 

distance from the rear-view camera. Also included in the photo-box was an internal, battery-powered white 

LED light with diffuser to ensure consistent, uniform lighting conditions for imaging the TLC plate. TLC 

plates were photographed by sliding the laminated plates through a rear slot in the photo-box. A black mask 

formed a frame around the TLC profiles to facilitate region-of-interest (ROI) detection during image 

processing. The black mask also featured a white reference strip (PaperOne All Purpose premium paper) to 

check for consistent lighting conditions during image capture. The photo-box set-up is shown in Figure 1.
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9

Smartphone Application 

To objectively classify a sample TLC profile, a smartphone Android application (app) was 

developed as an interface for image capture, image processing, chemometric analysis, and data storage. A 

summary of the app work-flow is illustrated in Figure 2. The app can be operated as follows. First, the user 

is required to log-in and select the plant species to be analyzed: B. balsamifera or V. negundo, which are 

also listed with their common names in the Philippines, “sambong” and “lagundi”, respectively. Afterwards, 

the user inputs sample details, inserts the TLC plate into the 3D-printed photobox, and captures an image. 

Images are captured in .JPEG format with a camera resolution of 3 MP (4:3). Once an image is captured, 

the user is prompted to upload the image to a dedicated cloud server for analysis. If mobile data or wi-fi 

connection is unavailable, the image is queued for submission until a stable connection is available. 

A pre-uploaded algorithm on the cloud server automatically performs all image processing and 

chemometric analysis with reference profiles and classification models. The image processing steps and the 

development of the chemometric model are detailed in the next subsections. The user is prompted to repeat 

image capture if the image is unfocused or if the lighting is not consistent with the lighting of the training 

images. If all processing is successful, a classification result of “within-specifications” or “off-

specifications” is returned to the user. All captured images and results are saved in the app history. 

Image analysis and data preprocessing

A custom Python41 script using SciPy’s multi-dimensional image processing package42 was written 

to automatically crop, extract, denoise, background correct, and convert TLC profile images to matrices of 

RGB intensity values. However, prior to analyzing the TLC profiles, initial tests were conducted to 

determine if lighting conditions during image capture were consistent and uniform based on a white 

reference strip in the photo-box. To automatically extract the ROIs, images were initially cropped to the 

approximate location of the TLC profiles. The ROIs from the cropped images were then extracted using a 
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10

Gaussian filter mask and bounding box (see Supplementary Information, Figure ESI-1 and ESI-2 for more 

details). Extracted TLC profiles were denoised using median filter with a 4-pixel radius, and background 

corrected using the rolling ball background subtraction algorithm applied separately to each RGB color 

channel. The rolling background subtraction algorithm was ported to python from the ImageJ43 Background 

Subtractor.44 The images were then converted to a RGB densitograms by obtaining the average intensity 

horizontally for each of the image’s RGB color channels. Per sample, the output was a 750 x 3 matrix, 

where the first dimension was the spatial dimension of the TLC fingerprint (length), while the second 

dimension was the intensity component of each RGB channel. Afterwards, the RGB intensity values were 

inverted by subtracting the intensity values of each color channel from the maximum intensity value of 255. 

The RGB matrices of the TLC profiles were ported to R version 3.3.245 for further signal 

preprocessing. To correct variations in signal peak positions, the TLC profiles were aligned with respect to 

a reference using variable penalty dynamic time warping (VPdtw), implemented with the R VPdtw package 

version 2.1-1146. Alignment of each color channel was performed using a reference-based dilation penalty 

function and a maximum shift of 100 pixels. Samples that were tested as B. balsamifera were aligned with 

respect to the B. balsamifera reference profile (sample ID: BB19), whereas samples tested as V. negundo 

were aligned with respect to the V. negundo reference profile (sample ID: VN15). The aligned 750 x 3 

matrices were then unfolded into vectors of length 2250. All sample fingerprints were normalized to unit 

norm prior to modeling.

Chemometric analysis

SIMCA models of the B. balsamifera WS class and V. negundo WS class were constructed with 

95% Q and T2 Hotelling limits for outliers and single value decomposition method using Multivariate Data 

Analysis for Chemometrics (mdatools) R package version 0.8.2.47 Only WS samples were used to train the 

SIMCA models, while OS samples were used only for validation and testing. Iterated nested k-fold cross-

validation (k=5) with 40 iterations was used to tune model parameters and estimate prediction errors. OS 
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test samples (non-mixtures) were included in the inner cross-validation loop as negative test samples to 

estimate the specificity or true negative classification rate. The numbers of principal components (PCs) 

used for the outer cross-validation folds were determined based on the sensitivity (true positive 

classification rate) and specificity from the corresponding inner cross-validation fold. Model prediction 

errors were estimated using the sensitivities and specificities from the iterated outer cross-validation loops. 

Throughout all cross-validation procedures, technical replicate fingerprints were included during modeling 

to capture uncorrected variations due to sample TLC analysis. Technical replicate fingerprints were always 

grouped together during the randomized training/testing splits. Samples were mean-centered and scaled 

relative to the applicable training subset prior to any modeling and testing. The final SIMCA models were 

pre-uploaded to the smartphone app’s dedicated cloud server for future sample classification. The final 

models were tested with the prepared mixtures to evaluate the capability of the system to detect 

adulterations. 

Results and Discussion

Analysis with TLC Pharmacopeia protocols

The aim of this study was to develop a rapid, objective TLC-based system that can be correlated to 

the standard Pharmacopeia TLC protocol. Thus, all within-specifications (WS) and prepared off-

specifications (OS) samples and mixtures were analyzed initially using the respective Pharmacopeia TLC 

protocol as the standard test method for comparison. All pure WS samples and prepared OS samples were 

confirmed as WS and OS, respectively, using the Pharmacopeia acceptance criteria. The TLC profiles of 

representative B. balsamifera and V. negundo samples are shown in Figure 3 (the complete set of TLC 

profiles and sample details can be found in Supplementary Information, Tables ESI-1 and ESI-2). While 

characteristic patterns are discernible for each plant species, differences in band intensity and the presence 

or absence of some bands can be sources of uncertainty when visually assessing a sample using the 

Pharmacopeia acceptance criteria. For example, in some cases, it was unclear whether a certain band 
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intensity was within an acceptable range. This challenge emphasizes the need for more objective, data-

based classification methods especially for users with little or no technical training. 

Uncertainty in the Pharmacopeia acceptance criteria was also apparent when laboratory-prepared 

mixtures were tested. In this study, B. balsamifera was mixed with a related plant species, Blumea lacera.48 

Also, B. balsamifera and V. negundo mixtures were prepared to simulate accidental mixing of the two plant 

samples in a processing center that may be handling both products. Detecting impurities with other plant 

material is important for herbal medicinal materials, but this can be difficult to achieve using only visual 

inspection of TLC profiles. Even for trained users, variations in a TLC profile due to the presence of 

impurities may be mistaken as natural variations in the chemical profiles of the plant materials. We also 

found that detecting adulteration can be highly dependent on the nature of the adulterating plant material. 

For example, when B. balsamifera was mixed with related species, B. lacera, 20% (w/w) impurity was 

discernible. However, when B. balsamifera was mixed with unrelated species, V. negundo, only 60% (w/w) 

impurity was discernible. 

It became evident that while some agencies recommend the Pharmacopeia TLC method to assess 

identity, batch-to-batch uniformity, and purity,49 the method is not a reliable means to detect impurities. To 

more effectively detect adulterations using TLC, comprehensive profiling using multiple chromatographic 

systems can improve the resolution of non-specific adulterants, although this is beyond the scope of this 

study. These prepared test mixtures were still evaluated using our developed system to determine if 

improved detection of adulterations can be achieved with the aid of image analysis and chemometric 

classification.

Analysis of samples with adapted TLC method

To facilitate the transfer of the TLC technique to resource-limited settings, we adapted the 

Pharmacopeia TLC protocol to a miniaturized set-up with the aim of reducing analysis time and reagent 

use. A major modification was the abbreviation of the development distance to 4.2 cm, which takes only 
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5-6 minutes in contrast to the 20-25 minutes needed full development. Additional advantages of this 

shortened development distance include the use of smaller TLC plates, the miniaturization of the 

development chamber, shortened chamber saturation times, and the use of lower volumes of organic mobile 

phase. Although the TLC profiles exhibit band overlap, major bands remain distinguishable just as in the 

fully-developed TLC profiles (Figure 3s).

Another technical challenge in transferring TLC to resource-limited settings is the use of organic 

solvents. To minimize the use of hazardous organic solvents, ethanol was used instead of methanol in 

reagent formulations, and extraction was performed with simple soaking and shaking in ethanol for 30 

minutes instead of the methanol reflux extraction conducted in the laboratory. However, the organic mobile 

phases prescribed in the Pharmacopeia protocols were retained in the adapted TLC methods. Although the 

use of organic solvents can present some usability challenges for a field method, other TLC-based field test 

kits such as the Speedy TLC Kit9,10 and GPHF-MiniLab11 also feature organic solvents as mobile phases. 

The adoption of these TLC kits in numerous resource-limited settings demonstrates that the use of organic 

solvents in the TLC method can be transferable to non-technical users with minimal training in proper 

handling techniques and precautions.13,14  

We also included additional steps in the TLC protocol to minimize method-related variations. A 

step in the operation of the TLC that is prone to error is the band visualization of the TLC plate. The color 

and intensity of the bands tend to fade very quickly, so to minimize error, we included a step where the 

TLC plate is laminated with a clear vinyl sticker immediately after band visualization. This step helps retain 

the color of the fingerprint for as long as 30 minutes, which is more than enough time for image capture. 

Other possible sources of error that can result in TLC profiles with variable band intensities include 

insufficient extraction, sample application, and derivatization. These errors can be minimized with careful 

adherence to the instructions provided in the TLC kit.
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TLC plate imaging

For smartphone-based imaging, lighting can be a major source of variation that can affect the 

quality of the images used for chemometric analysis. In the early development of our system, we evaluated 

the use of various light sources, including natural daylight, and fluorescent and LED lamps. Finally, 

however, to ensure that the lighting conditions are consistent and reproducible in different settings, we 

designed a 3D-printed photo-box with a built-in, battery-powered LED light for the image capture of TLC 

profiles. To further ensure consistent lighting conditions, a white reference strip was also built into the 

photo-box. All images captured using the photo-box were checked for the mean RGB intensity values of 

this white reference strip. In all training set images, the mean RGB intensity values of the reference strip 

are R = 166.0 (standard deviation, s.d. 0.3), G = 166.1 (s.d. 0.3), and B = 166.1 (s.d. 0.3). These values are 

used as lighting calibration checks prior to further image processing: if the color of the white reference strip 

is beyond the acceptable range, the user will be prompted to repeat image capture or to troubleshoot. Failed 

calibration checks may occur if flash is accidentally enabled during image capture (Figure ESI-2), if the 

battery is failing, or if the white reference strip is blemished somehow. 

Image analysis and preprocessing of fingerprints

Image analysis of the TLC profile was conducted to pre-process and convert the profile image into 

a digital fingerprint that can be used as input variables for multivariate analysis.  We automated all image 

analysis and chemometric preprocessing using pre-uploaded algorithms on a dedicated cloud server, which 

receives the sample image via the smartphone app. The overall schematic for the preprocessing of a sample 

TLC image is illustrated in Figure 4.

Conversion to unfolded RGB intensity profiles. The TLC profiles from the adapted method feature 

several overlapping bands that are difficult to distinguish using only greyscale intensity values.  Thus, we 

retained the color information contained in the TLC profile by obtaining intensity profiles for each RGB 

color channel. Color can be used to distinguish between components with similar retention factors, which 
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is especially important in cases where bands are not completely resolved. Other groups studying the TLC 

fingerprints of natural products have also retained color information using this strategy,18–20,26 although not 

all groups have opted to use all three channels. Hemmateenejad et al. noted that chromatograms with 

overlapping, colored bands are best characterized with all three color channels.50 We therefore opted to use 

all three color channels as input variables for classification, yielding a three-way data set (IxJxK) wherein 

a matrix of JxK (J number of intensity values for K color channels) is measured for I samples. Chemometric 

techniques, however, are often suited for two-way data.51 A strategy for adapting three-way data for two-

way chemometric analysis is through unfolding, wherein the data is converted to a two-way data matrix, (I 

x (JxK)) by appending the three intensity profiles one after the other. One disadvantage of this approach is 

that the relationship between the color channels is lost. Nevertheless, multivariate analysis can still be 

performed satisfactorily on unfolded data sets compared to more complex three-way data analysis.50 

Profile alignment. An important preprocessing step for our application is profile alignment, which 

corrects band shifts that occur due to non-controllable variable conditions such as temperature, humidity, 

or slight changes in mobile phase solvent composition. These factors are especially difficult to control when 

TLC is performed outside a laboratory setting. Alignment corrects these shifts by adjusting the positions of 

the bands to match those of a reference, thereby ensuring that the variation in the fingerprints is primarily 

due to chemical composition and not due to external factors. 

To align the TLC profiles with minimal signal distortion, we implemented variable penalty 

dynamic time warping (VPdtw) algorithm. VPdtw limits the possible shifts for alignment by using a penalty 

function, which is calculated from the peaks of the reference profile. The requirement for peaks for the 

implementation of VPdtw necessitates color inversion of the TLC profiles. The RGB color system is an 

additive system in which the color white has RGB intensity values of (255, 255, 255), whereas black has 

RGB values of (0,0,0). Inverting the colors of an image involves subtracting each RGB value from 255, the 

maximum intensity value. The original TLC profiles have light backgrounds where bands appear as valleys, 

so when inversion is performed, the bands are transformed to peaks. Step (6) in Figure 4 shows an inverted 
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sample profile overlaid with a reference profile before and after alignment. The unaligned profile shows 

significant variation in the position of the sample peaks relative to the reference, but after implementation 

of VPdtw, the band positions are matched, even when the sample profile has different band intensities 

compared to the reference. 

Overall, the preprocessing steps correct some of the variations in the TLC profiles due to external 

factors. Figure 5 shows the technical replicates of sample BB21 before and after all preprocessing steps. 

The original TLC profile images show slight variations in band position and overall intensity, but many of 

these variations are corrected after preprocessing. The PCA scores plots of the B. balsamifera and V. 

negundo WS samples (with OS samples projected onto the WS class principal component model) in Figure 

6 show that WS technical replicates as well as the entire WS sample set become grouped more closely 

together after preprocessing. It must be noted, however, that the preprocessing procedures were unable to 

correct for slight variations in band intensity, which could be due to the extraction and derivatization steps 

in the TLC method. For the chemometric analysis, technical replicate samples were included in the 

modeling stage so that these uncorrected variations are also built into the model.  

Chemometric analysis

Since our objective is to assess a sample as either acceptable (WS) or not (OS) for a given herbal 

plant, we opted to use a novelty detection approach in which we model only the TLC profiles of WS 

samples. SIMCA was selected as it is based on class PCAs, which is useful in this case since it can reduce 

the dimensionality of the input TLC profile vectors. 

Model tuning. Sensitivity and specificity rates were used as classification performance metrics to 

optimize each SIMCA model for the number of principal components (PCs) to be retained. Ideally, both 

high sensitivity and specificity rates are desirable. However, tuning often involves a trade-off between these 

two metrics, so it becomes necessary to assess the practical implications of two types of classification errors: 

false negatives and false positives. For our application, the kit is a pre-screening tool for community-based 
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suppliers to assess the quality of their materials before submitting them to pharmaceutical manufacturers. 

A false negative is undesirable since it may lead to the decision to stall the submission of acceptable 

material, resulting in lost economic opportunity for the farmer and supplier. However, a false positive can 

result in even greater economic loss, as it may lead to the decision to submit material that is actually off-

specifications. Since this material will be tested again when received at the manufacturing facility, it is 

likely that it will be rejected, resulting in wasted transportation costs for the supplier as well as possible 

loss of credibility. Therefore, an optimal specificity (lower false positive rate) was prioritized when 

selecting the number of PCs to be retained during the tuning stage.

To tune the SIMCA models and to estimate the classification performances, we used an iterated 

nested 5-fold cross-validation strategy. The sample sizes used in this study are currently limited (n=22 for 

WS B. balsamifera class, and n=15 for WS V. negundo class) compared to the sample sizes recommended 

for building classification models, so the typical hold-out strategy for training, validation, and testing can 

result in unreliable performance estimates due to model instability.52 The nested k-fold cross-validation 

strategy aims to maximize small sample sizes for training, validation, and testing to improve model 

performance estimates. An illustrative schematic of the nested cross-validation procedure used in this study 

is shown in the Supplementary Information, Figure ESI-3. It should also be noted that only WS samples 

were used for training the model, while OS samples were included in the nested cross-validation procedure 

as validation or test samples to estimate the specificity rate of the models. The inclusion of negative samples 

in validating and testing one-class classification models was recommended by Zhuang et al. in order to 

avoid overfitting the model towards the target class.53  

The nested k-fold cross-validation procedure was repeated using new random splits for each 

iteration to evaluate model stability. Model stability can be first evaluated during the inner cross-validation 

loops: stable models will ideally yield the same optimized model hyperparameters (number of PCs 

retained), and similar validation sensitivity and specificity rates across iterations.52 For both B. balsamifera 

and V. negundo SIMCA model tuning, the inner cross-validation models were observed to be unstable most 
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likely due to the small sample sizes used (Tables ESI-3 and ESI-4). For WS B. balsamifera SIMCA 

modelling, tuning during the inner cross-validation loops resulted in varying number of PCs retained (1-4 

PCs). Similarly, for WS V. negundo SIMCA modelling, tuning resulted in 1-2 PCs retained. 

Model aggregation. Since we observed model instability during iterated nested k-fold cross-

validation, the predictions of the individual outer cross-validation models were aggregated to yield a final 

model for future prediction applications. Model aggregation is a strategy in which the predictions of 

different models are combined; in the case of classification models, aggregation can be done with a majority 

vote of the model predictions.52 In our case, aggregation of the outer cross-validation models was performed 

by majority 2/3 vote. Most cases yielded consistent classifications across the individual models, and thus 

readily obtained the required 2/3 majority vote to be classified as either WS or OS. On the other hand, there 

were cases in which the individual predictions for a sample were inconsistent, therefore failing to obtain a 

majority 2/3 vote. In these cases, the algorithm will abstain, and a classification will not be assigned to 

minimize the risk of misclassification. 

The final sensitivity and selectivity rates obtained for the aggregated SIMCA models were 90.2% 

sensitivity and 86.2% specificity for B. balsamifera, and 81.4% sensitivity and 92.0% specificity for V. 

negundo. Although the aggregated model strategy now requires a sample to be tested with multiple models, 

this strategy can nevertheless minimize the uncertainty of predictions from classification models built with 

a limited number of training samples. However, there were still some consistent sample misclassifications 

(Figures ESI-4 and ESI-5), such as samples BB22 (WS sample misclassified as OS) and BB_OS2 (OS 

sample misclassified as WS) for the B. balsamifera model, and sample VN02 (WS sample misclassified as 

OS) for the V. negundo model. The TLC profiles of the misclassified WS samples appear to have band 

intensities that are on the upper extremes relative to the profiles of the entire WS training set. Likewise, OS 

samples which were misclassified as WS appear to have TLC profiles with most of the characteristic 

features of the WS training set profiles, but with just some features that are slightly faded (Figure 3). 

Incorporation of additional training samples that augment the representation of these “borderline” cases 
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may minimize these misclassifications. We anticipate the improvement in the reliability of the classification 

models upon the incorporation of additional training samples in the future. 

The proposed system was also applied to the laboratory-prepared mixtures in order to evaluate the 

capability of the system to detect adulterations. However, similar to the standard Pharmacopeia method, 

the SIMCA classification models had varying performances based on the nature of the adulterant plant. The 

V. negundo model showed significant improvement as it can detect 20% (w/w) contamination with B. 

balsamifera. On the other hand, for adulterated B. balsamifera samples, the system demonstrated 

comparable performance to that of the conventional Pharmacopeia protocol: the B. balsamifera model can 

only detect at least 30% (w/w) contamination with B. lacera and 70% (w/w) contamination with V. 

negundo. Further modification of the TLC system can be explored in future studies to improve the capability 

of the system to detect adulterations with other plant material.

Nevertheless, it should be noted that similar classification performance as the conventional 

Pharmacopeia protocol is achievable using abbreviated TLC profiles coupled with the image analysis and 

chemometric fingerprinting (sensitivity and specificity values greater than 80%). In contrast, the same 

classification performance will be difficult by visual inspection alone.  Furthermore, the TLC-based system 

will provide community-based suppliers a field-ready prescreening tool for herbal medicinal materials, 

which should result in lower rejection rates as well as a means for them to improve their postharvest 

preprocessing.  

Page 19 of 32 Analytical Methods

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



20

Conclusions

A miniaturized, Pharmacopeia-based TLC method and smartphone app were developed to assess 

the identity and quality of dried herbal medicinal leaf material.  A plant sample can be assessed by analyzing 

its extract using a simplified TLC method and capturing an image of the TLC profile using a smartphone 

app and a 3D-printed photo-box. The smartphone app then sends the image to a dedicated cloud server with 

pre-uploaded algorithms that automate the multivariate image analysis and chemometric fingerprinting 

using aggregated SIMCA models for the plant species of interest. To our knowledge, our system is the first 

reported use of a smartphone app for the pattern recognition of TLC profiles. Avenues for future system 

development include the incorporation of additional training samples to improve classification performance 

and modification of the TLC solvent systems to improve adulteration detection and to improve ease-of-use.

While the use of the smartphone app greatly improves the user-friendliness of the TLC profile 

interpretation, the method is still based on TLC, which may present some challenges when the system is 

transferred to users with minimal technical background. A balance between practicality on the field and 

technical reliability was explored continuously. Additional steps in the method and the chemometric 

preprocessing were therefore included to help mitigate sources of variation in the TLC method that can 

affect the generation of a reliable sample fingerprint for chemometric classification. Thus, the TLC method 

was adapted to be relatively simple with the potential for transfer to users with minimal training.  

Overall, the system developed in this work is a cost-effective, rapid method that can serve as a 

potential prescreening tool for verifying the identity and quality of herbal medicinal materials in resource-

limited settings. Although we developed the method with the herbal supply chain in mind, the application 

of the method can be expanded to assess the freshness and/or authenticity of herbal medicinal finished 

products or food products. The accessibility of the method can lead to improved quality assessment from 

raw materials to finished products. 
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Tables

Table 1. Pharmacopeia protocols for B. balsamifera and V. negundo
B. balsamifera V. negundo

Reference Philippine Pharmacopeia54 US Pharmacopeia55

Extraction 1 g leaf sample with 10 mL 95% 
(v/v) ethanol, soak for 30 minutes

2 g leaf sample with 25 mL 
methanol, 10-minute reflux

Sample Volume 10 μL 10 μL
Mobile Phase 1:1 (v/v) hexane : ethyl acetate 80:10:5 (v/v) ethyl acetate : 

glacial acetic acid : water
Visualization 

reagent 
Vanillin- H2SO4

(prepared with 1:1 (v/v) 1% vanillin 
in 95% ethanol, 10% H2SO4 in 95% 

ethanol)

Anisaldehyde-H2SO4
(prepared with 170 mL methanol, 20 
mL glacial acetic acid, 10 mL H2SO4 

and 1 mL p-anisaldehyde)
Acceptance 

Criteria
Profile matches that of reference 

profile under visible light, UV 254 
nm, 366 nm, and vanillin 

derivatization

The presence of the following bands 
with increasing Rf value: “two weak 

grey-brown, one pink, one dark-
brown, one strong pink, and one 

pink”55
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Table 2. Inner and outer cross-validation, and aggregated model parameters for B. balsamifera and V. negundo 
SIMCA models from iterated nested 5-fold cross-validation (CV)

B. balsamifera SIMCA models V. negundo SIMCA models
Number of 
components 1-4 1-2, 4

% 
Cumulative 

Variance

1 component: 20.7% (s.d. 1.0%)
2 components: 38.1% (s.d. 2.1%)
3 components: 47.7% (s.d. 2.1%) 
4 components: 55.4% (s.d. 0.7%)

1 component: 22.83% (s.d. 1.9%)
2 components: 33.6% (s.d. 1.7%)
4 components: 53.9% (s.d. 0.3%)

Sensitivity 87.9% (s.d. 5.1%) 71.4% (s.d. 7.1%)

Inner CV 
Parameters

Specificity 90.8% (s.d. 6.1%) 93.9% (s.d. 5.3%)
Sensitivity 87.1% (s.d 4.0%) 76.9% (s.d. 4.6%)Outer CV 

Parameters Specificity 86.3% (s.d. 3.6%) 90.5% (s.d. 4.0%) 
Sensitivity 90.2% 81.4%
Specificity 86.2% 92.0%Aggregated 

Model 
Parameters Classification 

of mixtures

5-20% (w/w) B. lacera misclassified
5-60% (w/w) V. negundo 

misclassified

5-10% (w/w) B. balsamifera 
misclassified
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Figures

Figure 1. System for smartphone TLC plate imaging. (a) A developed TLC plate is mounted and laminated on a plate 
card, then inserted into (b) the custom 3D-printed photo-box with internal light source. (c) The smartphone, an Asus 

Zenfone Go 5.0, is inserted into front slot of the photo-box for TLC plate imaging. Internal components of photo-box are 
shown in (d).
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Figure 2. Screenshots demonstrating the “bluQ – PlantQ” app workflow
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Figure 3. Representative profiles of (a) B. balsamifera and (b) V. negundo samples analyzed using the standard 
Pharmacopeia TLC protocol, and the adapted TLC method.
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Figure 4. Schematic for image analysis and chemometric preprocessing steps
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Figure 5. The RGB intensity profiles of sample BB21 technical replicates A, B, and C (a) before 
preprocessing and (b) after preprocessing. 
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Figure 6. PCA scores plots of B. balsamifera WS samples with projected OS samples (a) before and 
(b) after preprocessing, and V. negundo WS samples with projected OS samples (c) before and (d) 

after preprocessing. ( = WS samples,  = OS samples)
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A Pharmacopeia-based TLC method was coupled with a smartphone app for the in-field screening of herbal 
medicinal materials. 
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