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Impedimetric biosensors for measuring small molecules based on weak/transient interactions between bioreceptor and 

target analyte are a challenge for detection electronics, particularly in field studies or in analysis of complex matrices. 

Protein-ligand binding sensors have enormous potential for biosensing, but accuracy in complex solutions is a major 

challenge. There is a need for simple post hoc analytical tools that are not computationally expensive, yet provide near real 

time feedback on data derived from impedance spectra. Here, we show use of a simple, open source support vector 

machine learning algorithm for analyzing impedimetric data in lieu of using equivalent circuit analysis. We demonstrte two 

different protein-based biosensors to show that the tool can be used for various applications. We conclude with a mobile 

phone-based demonstration focused on measurement of acetone, an important biomarker related to onset of diabetic 

ketoacidosis. In all conditions tested, the open source classifier was capable of performing as well, or better, than 

equivalent circuit analysis for characterizing weak/transient interactions between a model ligand (acetone) and a small 

chemosensory protein derived from tsetse fly. In addition, the tool has a low computational requirement, facilitating use 

for mobile acquisition systems such as mobile phone. The protocol is deployed through Jupyter notebook (an open source 

computing environment available for mobile phone, tablet, or computer use) and the code was written in Python. For each 

of the applications we provide step-by-step instructions in English, Spanish, Mandarin, and Portuguese to facilitate 

widespread use. All codes were based on scikit-learn, an open source software machine learning library in the Python 

language, and were processed in Jupyter notebook, an open-source web application for Python. The tool can easily be 

integrated with mobile biosensor equipment for rapid detection, facilitating use by a broad range of impedimetric 

biosensor users.   This post hoc analysis tool can serve as a launchpad for convergence of nanobiosensors  in planetary 

health monitoring applications based on mobile phone hardware. 

Introduction 

Biosensors offer rapid analysis of targets ranging from small 

molecules, to biomolecules or cells, and can be applied across 

a wide variety of planetary health applications in medical, 

agricultural, and environmental analysis
1, 2

. With the advent of 

mobile phone electrochemical and plasmonic acquisition 

systems 
3-5

, the portfolio of biosensors used in applied field 

studies is rapidly expanding. Biosensor accuracy, speed, range, 

and limit of detection are a function of the nature of molecular 

interactions between target analyte and bioreceptor structure, 

the transduction mechanism, inclusion of nanomaterials which 

enhance transduction, type of detection hardware, and 

acquisition approach (including post hoc analysis).  

Among the various transduction approaches, electrochemical 

biosensors are one of the most popular device types, and most 

current devices combine electroactive nanomaterials (e.g., 

graphene, nanometal, electropolymers) with biorecognition 

structures such as enzymes, antibodies, or aptamers, among 

others 
6-10

. Use of transducer nanomaterials enhances signal 

acquisition, while the biological material is used to impart 

selective targeting and in some cases, catalyze a reaction
11-13

. 

Impedimetric biosensors are most commonly developed based 

on Faradaic impedance (with redox couple in solution), but 

label-free biosensors using non-Faradaic impedance (absence 

of redox couple) are increasing in popularity
14, 15

. In either case, 

the output impedance depends on changes in the interfacial 

electron transfer resistance and/or electrostatic repulsion that 

result from steric hindrance caused by interactions of the 

target and bioreceptor
16-18

.  

Interpretation of impedimetric biosensor data is often not 

trivial, particular for fast electron transfer processes in 

nanomaterial-modified electrodes, non-Faradaic impedance, 

or weak/transient interactions between bioreceptor and 

target. Impedance data are usually fit to an equivalent circuit 

model using Chi
2
 testing, and parameters derived from the 

model to describe the underlying electrochemistry. Changes in 

equivalent circuit parameters are commonly reported as 

sensor output, although impedance at a single frequency is 

occasionally used as sensor output
14

. Equivalent circuit analysis 

is based on combinations of the Principle of Superposition, 

Ohm's Law, and Kirchoff's Laws, and is very accurate for simple 

electrode geometries with homogenous surfaces. However, as 

circuit models are assumed a priori, there is not necessarily a 

correspondence between circuit elements and underlying 

physico-chemical processes
19

. Furthermore, inclusion of 

transducer nanomaterials on the sensor surface complicates 

the equivalent circuit model, requiring additional “fitting” 
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elements. Thus, interpreting impedance data in complex 

solutions or with complex electrode geometries is challenging, 

and is sometimes more art than science
20

. The main challenge 

for planetary health biosensors is to balance enhancing 

conductivity with transducer nanomaterials (improving limit of 

detection) while limiting computational cost (maintaining 

speed), and at the same time developing simple label-free 

devices that can be used in diverse applications (ensuring 

robustness).  

To improve limit of detection, many labs coat electrodes with 

nanomaterials such as graphene and/or nanometal, which is 

known to significantly enhance conductivity and electroactive 

surface area
21-23

 while significantly decreasing charge transfer 

resistance (Rct). This results in fast electron transfer processes, 

where Faradaic current is represented by a near-linear Nyquist 

plot. In a classic Randles-Ershler equivalent circuit, post hoc 

sensor analysis is usually constrained to Rct, as other circuit 

parameters are a function of the solution resistance or 

inductance, which are not strong indicators of molecular 

interactions between bioreceptor and target analyte. This 

situation is particularly challenging for weak/transient 

interactions, where more complex circuit models with fitting 

parameters are required, increasing the computational cost 

while producing output parameters that have no physico-

chemical meaning in the electrochemical circuit. There is a 

need for simple post hoc analytical techniques that can be 

used for point of need biosensors, particularly for field 

applications.  

Machine learning has emerged as a powerful post hoc 

analytical tool for a wide range of sensor applications, 

including: flow cytometry
24

, electronic tongue/nose
25-27

, 

wearable sensors
28, 29

, whole organism biosensing
30, 31

, protein 

detection
32

, sensor material optimization
33

, food safety risk 

analysis
34

, environmental pollutant monitoring
35

 and 

multiplexing sensors arrays 
36-38

.  

Here, we present an open source machine learning algorithm 

applied for label-free biosensors based on weak/reversible 

interactions that can be used with common mobile hardware 

such as a mobile phone or tablet (Fig 1). We first test the 

classifier for well-known binding interactions between proteins 

and DNA as a proof of concept. Next, we challenge the 

algorithm for classifying impedimetric data from a biosensor 

based on reversible interactions between a small molecule 

(acetone) and an insect-derived chemosensory protein. 

Acetone is an important biomarker in salivary diagnostics of 

diabetic ketoacidosis (DKA), which is a potentially fatal 

outcome from complications associated with diabetes. Rapid 

diagnostic tools are vital, as the overall mortality rate for DKA 

ranges from 1 to 10% of all patient admissions, and an even 

higher mortality rate is found among non-hospitalized patients 

and children under the age of 10 
59

.  

The machine learning tool is based on Jupyter notebook (open 

source computing environment available for mobile phone, 

tablet, or computer use) and the code was written in Python. 

For each of the applications we provide step-by-step 

instructions in English, Spanish, Mandarin, and Portuguese to 

facilitate widespread use for a variety of applications. The 

open source tool can easily be integrated with mobile 

biosensor equipment for rapid detection, facilitating use by a 

broad range of biosensor users.  

 

Figure 1. An open source support vector machine learning algorithm was developed for 

analyzing impedimetric biosensor data. Interactions. We tested the tool for analyzing 

weak/transient interactions including protein-DNA, protein-protein, and protein-small 

molecule. The cloud-based tool can be used for point of need applications with a 

mobile phone or tablet. 

Methodology 

Strains and reagents 

Escherichia coli strain Rosetta DE3 (Promega, Madison WI, 

USA) was routinely grown in Luria-Bertani broth (LB) and/or on 

LB-agar (1.5%) plates containing 50 μg/mL kanamycin. All 

reagents and chemicals were purchased from Sigma-Aldrich 

(St. Louis, MO, USA) or Thermo Fischer Scientific (Waltham, 

MA, USA) except as noted. Potassium ferrocyanide (K4FeCN6), 

potassium ferricyanide (K3[Fe(CN)6], and potassium chloride 

(KCl) were purchased from EMD chemicals (Billerica, MA, USA). 

Ni- and Co-NTA agarose was purchased from Gold Biotech (St. 

Louis, MO, USA). Thrombin was purchased from Amersham-

Pharmacia Biotech (Little Chalford, UK). Polycrystalline 

diamond suspensions (3 and 1 mm) alumina slurry (0.05mm) 

were purchased from Buehler (Lake Bluff, IL, USA). 

Electrochemical analysis 

For all electrochemical analysis, a three-electrode system was 

used together with an electrochemical impedance analyzer 

(ERZ100, eDAQ, Colorado, USA). All electrochemical 

impedance spectroscopy (EIS) studies used Pt/Ir working 

electrodes (MF-2013, 1.6 mm diameter, BASi, West Lafayette, 

USA), Ag/AgCl reference electrodes (BASi, West Lafayette, 

USA) and platinum auxiliary electrodes (BASi, West Lafayette, 

USA) with nanoplatinum deposited as previously described
41, 

42
. Before all experiments, the Pt/Ir working electrodes were 

polished with two sizes of polycrystalline diamond suspensions 

(3 and 1 µm), rinsed with methanol, polished with alumina 

slurry (0.05µm) and then rinsed with deionized water. Probes 

were cleaned in a sonication bath in DI water for 15 min, then 

with 0.1 M H2SO4 using cyclic voltammetry (CV) at a potential 

range of -1.0V to +1.0V until the peak current changed by less 

than 1%, and then finally cleaned in a sonication bath in DI 

water for 15 min. To ensure consistency during adsorption 

studies, electrodes were fitted with a plastic cap that was 3D 

printed on a Makerbot Replicator 2 Desktop 3D printer (see 

supplemental Figure S1 for specifications). 
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EIS analyses were conducted at 0.25V (DC), with a 100mV (AC) 

amplitude in the range of 100 kHz to 1 Hz in a solution with 2.5 

mM potassium ferrocyanide (K4[Fe(CN)6]), 2.5 mM potassium 

ferricyanide (K3[Fe(CN)6], and 100 mM potassium chloride 

(KCl). For equivalent circuit analysis, all EIS data was 

transformed to Nyquist Plots and analyzed using ZMAN 

(WonATech, South Korea) 2.2 software or support vector 

classification analysis as noted. 

Protein expression and purification  

Recombinant insect chemosensory proteins (CSP) derived from 

Glossina morsitans (Gmm, tsetse fly) were heterologously 

expressed and purified from E. coli hosts using the methods 

described in detail by Song et al
43

. Briefly, GmmCSP3 

sequences were identified from genomic databases, codon 

optimized for E. coli expression, and synthesized/cloned into a 

pUC vector (Genewiz, Planefield, NJ). Expression constructs 

were synthesized with a 10X-histidine (10X C terminal His) tag 

and transformed into E. coli host cells. Single colony isolated 

via selection for ampicillin resistance on LB/ampicillin plates 

(100 µg/ml). Cells were harvested by centrifugation, washed 

with Co
2+

 equilibrium buffer, and suspended in the buffer. 

Protein purification was achieved using Co
2+

 affinity 

chromatography and elution of the bound protein with 

increasing concentrations of imidazole as described in detail by 

Song et al
43

. Purity of the protein was assessed by SDS- 

polyacrylamide gel electrophoresis (SDS-PAGE) and pure 

fractions were pooled and dialyzed (3000kDa) against buffer 

(20 mM HEPES, pH 7.5). Protein concentration was quantified 

with SDS-PAGE, and samples were frozen at -80 °C until used. 

Expression and purification of TATA binding protein (TBP) and 

multiprotein bridging factor 1 (MBF1) from Beauveria bassiana 

have been described in detail previously 
43

. Briefly, the coding 

sequences for both genes were codon optimized for 

expression in E. coli and synthesized (Genewiz) as above for 

the CSP proteins. Expression plasmids were transformed into 

competent E. coli Rosetta DE3 cells for expression and 

purification as above. Purified proteins were dialyzed, 

aliquoted and stored at -80°C until used. After protein elution 

using, purity was confirmed by SDS-PAGE. Protein 

concentration was determined using Pierce™ BCA Protein 

Assay Kit (Thermo Scientific). 

PCR products were digested, and then cloned into respective 

sites of an expression vector to produce plasmids. Expression 

plasmids were transformed into competent E. coli Rosetta DE3 

cells and transformed E. coli were cultured in LB broth, 

harvested, lysed, and then purified using Ni- or Co-NTA 

agarose columns. Purified 10XHis-tagged proteins were 

aliquoted and stored at -80°C until used. After protein elution 

using imidazole buffers, purity was confirmed by SDS-

polyacrylamide gel electrophoresis (SDS-PAGE) and protein 

concentration was determined using Pierce™ BCA Protein 

Assay Kit (Thermo Scientific). 

Protein adsorption onto sensor surface and sensor 

characterization 

For characterizing acetone-CSP interactions, the optimal CSP 

concentration from previous studies
44

 was used or all testing. 

Briefly, 2 μL of His-tagged GmmCSP3 (9.23 mg/mL) was drop 

cast on the surface of an electrodes, dried at 20°C for 5 

minutes, and rinsed three times with DI water. A 5mM acetone 

stock solution was prepared in DI water, which is 

representative of salivary acetone levels for patients with DKA 
45

. Where noted, aliquots (2 μL) of acetone stock solution were 

drop cast on the surface of the biosensor, stored at 20°C for 2 

minutes, and rinsed with DI water three times prior to testing.  

For biosensors based on protein-biomolecule interactions, the 

concentration in each experiment was based on Song et al 
43

. A 

2 μL aliquot of His-tagged TBP was first drop cast on the 

surface of the electrode, agitated gently, allowed to dry at 

20°C for 5 minutes, and rinsed with DI water prior to 

impedance analysis. Next, 2 μL aliquots of MBF1 (no His-tag) or 

TATA
1
 (a 40 bp DNA sequence containing two potential TATA 

motifs) was drop cast onto the TBP-functionalized electrode, 

dried at 20°C for 5 minutes, and then rinsed with deionized 

water three times prior to impedance analysis. Control 

experiments included using uncoupled (no TBP) surfaces as 

well as TBP-coupled + bovine serum albumin (BSA) solutions 

and TBP-coupled + TATA
0 

(a 35 bp DNA sequence lacking the 

TATA sequence in TATA
1
).  

Data analysis and statistics 

EIS plots were analyzed with ZMAN 2.2 using an equivalent 

circuit model based on Chi
2
 analysis. Equivalent circuit 

parameters, namely solution resistance (Rs), charge transfer 

resistance (Rct), Warburg impedance (Zw), double layer 

capacitance (Cdl), and constant phase element (Q) were 

estimated using Chi
2
 fitting in the ZMAN software. 

Nyquist and Bode plots were generated with ZMAN 2.2 and 

several key values were extracted within the software from 

equivalent circuit analysis. Namely, the Nyquist with 

equivalent circuit analysis were used to extract Rs, Rct, Zw, and 

Cdl from a Randels-Ershler equivalent circuit. Bode plots were 

used to extract the impedance at a given cutoff frequency and 

associated phase angle. In addition to the Randels-Ershler 

circuit, various equivalent circuit models (shown in 

supplemental S5) were tested with the model search function 

in ZMAN software where noted.  

Support vector machine (SVM) classification  

For protein-ligand interactions, EIS data were exported and 

transformed into samples with 152 features that represent 

both real and imaginary impedance at frequencies from 

100kHz to 1Hz. The number of features was selected to satisfy 

expected confidence levels for principle components analysis. 

A total of 54 EIS scans were randomly split into two groups, 

with 80% of the data used as the training set and 20% used as 

the testing set. Each of the 54 data sets were binary labeled, 

with baseline impedance data in the absence of acetone 

labeled as “0”, and labeled 1 in the presence of 5mM acetone. 

EIS data for both baseline (no acetone) and positive (5mM 

acetone) experiments were standardized and transformed into 

a two-dimensional dataset, and then mapped in a new data 

space. To initially screen the data, the four most common 

types of SVM kernels 
46

 were used to screen the data. A 

shuffled K-fold cross validation was used for all applications of 

SVM in this study
47

; the training dataset was divided into ten 

folds and shuffled,, with 20% of the total data used for testing. 

Page 3 of 9 Analyst

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



The test accuracy shown for each kernel is the percentage of 

the prediction accuracy based on the decision boundaries. 

Prior to running the SVM algorithm, principal component 

analysis (PCA) was applied through singular value 

decomposition (SVD) to reduce the 152 features to two 

principal components. PCA was used to reduce the dimension 

of 152 features in the raw EIS data to a two-dimensional 

principal components matrix. Depending on the number of 

components to extract, full or randomized truncated SVD was 

used; this procedure was performed in LAPACK
48

. To ensure 

generalizability across other varied application-specific 

biosensors, code screens were prepared for four types of SVM 

kernels (linear, sigmoidal, radial basis function, and 

polynomial) to identify which approach best segregates the 

training data. This feature of the open source algorithm allows 

the user to select the most appropriate kernel for a given 

analysis by comparing the cross-validation results across kernel 

types. SVM hyperparameters (C and gamma) were optimized 

using grid search and random search methods
46, 49

. C is a 

tradeoff between misclassification and simplicity of the 

decision surface. Gamma is proportional to the radius of 

influence for selected support vectors 
50

. All SVM codes were 

produced with “scikit-learn”, an open source machine learning 

library in Python 
50

, and were processed with Jupyter 

notebook, an open-source web application for Python (see 

supplemental section for step-by-step instructions in English, 

Spanish, Mandarin, and Portuguese and Python code). 

Heatmaps were generated using the built in visualization 

feature in scikit-learn (see user’s manual for details). 

To validate the functionality of the SVM classifier for a well-

known detection system, a TBP-protein and TBP-DNA 

biosensor were fabricated based on published methods
43

. The 

biosensor is based on interactions between TBP and either 

multiprotein bridging factor 1 (MBF1) (protein-protein binding) 

or TBP and TATA (protein-DNA). His-tagged TBP was first 

adsorbed to the electrode surface, and then EIS was used to 

study the interactions of TBP with either MBF (a 17 kDa 

protein) or TATA
1
 (a TBP-binding 40mer DNA sequence). As a 

control, EIS data were also recorded after addition of buffer, a 

non-binding protein (BSA), and a non-binding 35mer sequence 

(TATA
0
). To challenge the approach for detection of small 

molecules, a CSP biosensor for detecting acetone was also 

developed. The experimental conditions were based on levels 

relevant to diagnosis of DKA. 

All experiments were repeated in triplicate, resulting in a total 

of 54 data sets. Analysis of variance (one-way ANOVA with 

Games-Howell method and 99% confidence) and student’s t-

test (two-sample t-test with 99.9% confidence) were 

performed for analyzing EIS data derived from equivalent 

circuit modeling as noted. All error bars represent the 

standard deviation of the arithmetic mean.  

Results & Discussion 

First, the functionality of the SVM classifier was validated for a 

well-known detection system using TBP-protein and TBP-DNA 

based on Song et al
43

. This well-documented biosensor 

produces large changes in impedance after target binding, and 

serves as a simple case study for the machine learning tool. 

The biosensor is based on interactions between TBP and either 

MBF (protein-protein binding) or TBP and TATA
1
, a 40 mer 

nucleotide sequence containing the TATA motif that is the 

recognition sequence bound by TBP, (protein-DNA). His-tagged 

TBP was first adsorbed to the electrode surface, and then EIS 

was used to study the interactions of TBP with either MBF (a 

17 kDa protein) or TATA
1
. As a control, EIS data were also 

recorded after addition of buffer, a non-binding protein (BSA), 

and a 35-mer nucleotide sequence lacking the TATA motif 

(TATA
0
). 

Representative Nyquist plots show that adsorption of His-

tagged TBP on the sensor surface caused a significant increase 

in Rct, as expected (Fig 2a). Binding between TBP and MBF also 

resulted in a significant change in charge transfer resistance, as 

did binding between TBP and TATA
1
. A Randles-Ershler 

equivalent circuit (Chi
2
=1087 ± 212) was used to extract Rs, Rct, 

Zw, Cdl for each experiment (see supplemental Table S1 for 

details). Similar to other manuscripts in the literature 
51

 , Rct 

was used as the most accurate parameter for characterizing 

protein-biomolecule interactions (Fig 2b). For comparison, 

addition of BSA or buffer did not result in any significant 

change in impedance due to non-specific binding (see 

supplemental Figure S2). EIS data was further analyzed by SVM 

classification by dividing the dataset into groups of TBP, 

TBP+MBF, and TBP+TATA
1
. Of the screened kernels, the linear 

type successfully classified each of the interactions (test 

accuracy =100%) and was the simplest of the considered 

kernel types. Such accuracy was not surprising given the large 

change in Rct for a protein-biomolecule interaction of this type. 

Results associated with the other common, but more complex, 

kernels and their optimization parameters are shown in 

supplemental Figure S3-S4. 

The molecular interactions between TBP and MBF/TATA
1 

shown in Fig 2 can be viewed as between transient and 

permanent interactions
52

. For these moderate to tight 

biomolecule interactions, a basic Randles-Ershler equivalent 

circuit or SVM (linear kernel) analysis can be used to analyze 

the data. In the following section, we show that for analysis of 

much weaker reversible protein-ligand interactions, equivalent 

circuit analysis is not sufficient and more complicated SVM 

classification must be used for accurate analysis.  
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Figure 2. Impedimetric biosensor for the detection of protein-protein or protein-DNA 

interactions. a) Representative Nyquist plots for TBP-MBF interactions or TBP-TATA 

interactions clearly show an increase in charge transfer resistance after addition of 

target. b) Average Rct derived from Randles-Ershler equivalent circuit model show 

significant results for TBP-biomolecule interactions but no significant change after 

addition of buffer or BSA (p values shown for each test group).  c) Support vector 

machine (SVM) classification results with linear kernel. Additional Nyquist plots, 

average charge transfer resistance, and other SVM kernels are shown in the 

supplemental section. 

Reversible protein-ligand interactions  

To further challenge the machine learning tool, a CSP biosensor for 

detecting acetone at levels relevant for DKA triage diagnosis was 

developed and tested. DKA is a potentially fatal outcome from 

complications associated with diabetes, and accurate measurement 

of acetone is challenging. CSP are an excellent candidate for binding 

volatiles such as acetone, but to date the technology has not been 

proven. In vivo, CSP solubilize volatile odorants and facilitate 

transport to downstream odorant receptors (ORs) through 

reversible association/disassociation 
39, 40

. This represents a model 

impedimetric biosensor based on interactions between low 

molecular weight binding proteins and small molecules. Biosensors 

based on CSP are becoming popular, but the transient ligand 

interactions and relationship to underlying electrochemistry are not 

well documented. Protein size, surface charge, and the nature of 

any conformation changes/ligand displacement upon binding have 

not yet been described in detail, although CSPs in general are 

smaller than 15kDa and the acetone levels critical to DKA (> 5mM) 

are below protein denaturing levels.  

Representative Nyquist plots (Fig 3a) and Bode plots (Fig 3b) show 

that the adsorption of CSP onto the electrode caused a significant 

change in EIS spectra, but the change after addition of clinically 

relevant acetone (5 mM) was less pronounced. Phase plots (see 

supplemental Figure S5) had similar behavior, with the most 

pronounced change in phase angle at a frequency of approximately 

1kHz. A Randles-Ershler equivalent circuit was used to derive Rs, Rct, 

Zw, and Cdl as previously described (Fig 3c). In addition, net 

impedance at various cut-off frequencies was extracted from Bode 

plots (Fig 3d). Using a 99.9% confidence level, there was no 

significant difference between baseline measurements and average 

Rs (p=0.015), Rct (p=0.002) Zw (p=0.016), or impedance at any cut-off 

frequency (p<0.002) after addition of 5mM acetone.  

 

Figure 3. EIS analysis of CSP-acetone interactions in the presence and absence of 5mM 

acetone. Representative a) Nyquist plots and b) Bode plots. c) Average parameters 

from Randles-Ershler equivalent circuit analysis (Rs, Rct, Zw and Cdl) from Randel’s 

equivalent circuit, baseline data and EIS in the presence of 5mM acetone. d) Net 

impedance at representative cut off frequencies. In panels ac and d, numbers denote 

the p-value and uppercase letters denote statistically significant groups. 

To further analyze the spectra, more complex equivalent circuit 

models were analyzed using ZMAN software with Chi
2
 fitting. All 

equivalent circuits with improved Chi
2
 fit (relative to Randles-

Ershler) had more than four elements in various parallel/series 

connections, including at least one resistive element(R), capacitive 

element(C), constant phase element (Q) and inductive element (I) 

(see supplemental Fig S6). However, statistical analysis of the 

output parameters for these circuits also showed no significant 

difference in baseline and in the presence of acetone for replicate 

biosensors. Furthermore, there is no direct physical analogous 

biological structure to the constant phase elements (Q) produced 

by the model, further complicating the interpretation of the results 

and inducing bias on the interpretation. Two important factors that 

could lead to the lack of statistical significance in equivalent circuit 

parameters are the possibility of CSP conformation changes upon 

binding, or dislocation of the ligand. For this study, we assume that 

ligand dislocation is insignificant due to the relatively high 

concentration of acetone (5mM), but conformation change cannot 

be ruled out. While these acetone concentrations are significantly 

lower than denaturing conditions, the levels are high enough to 

possibly induce CSP conformation changes. Khabiri stet al (2013) 

have shown in other protein-ligand systems that repulsion of water 

molecules from the first solvation shell of the protein causes polar 

amino acid side chains to be more rigid and less likely to interact 

with water (Khabiri et al., 2013, J. Mol. Model, 19: 4701-4711). 

More detailed studies are needed to understand the detailed 

interactions between acetone and CSPs, although in the next 

section we show that CSPs are a useful biorecognition structure for 

acetone detection when applying the machine learning tool 

developed here. 

The case study in Fig 3 represents a common issue in non-Faradaic 

impedimetric biosensing where the device is based on interaction 

of proteins and small molecules. In such a case, the individual 

biosensor responds to target analyte, but variability of replicate 

sensors is high and interpretation of results at relevant levels is 

challenging. This is particularly true for weak/reversible interactions 

between small molecules and proteins where there is not an 

inherent reaction (as is the case for CSP-ligand binding). The CSP 
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biosensor system is a promising biomimetic sensor system, but 

more accurate post hoc tools are needed for accurate detection of 

target biomarkers. As described by Liu et al 
53

 , the underlying cause 

for this challenge is likely a result of the nature of CSP-ligand 

binding in sensors. Liu et al showed that protein conformation 

change (backbone displacement) plays a major role in the electrical 

(Faradaic) properties of the sensor; this work was based on the 

honeybee protein Ac-ASP3. Since conformation changes can occur 

with non-specific interactions such as hydrogen bonding, CSP 

biosensors are subject to erroneous outputs due to non-specific 

interactions. To alleviate the false negative issue shown in Fig 3, EIS 

data was further analyzed by SVM classification.  

SVM classification for acetone-CSP interactions 

The decision boundaries for each kernel are shown in Fig 4, 

where testing data that fall into blue areas is predicted as 

negative (no acetone) and those that fall in red areas as 

positive (> 5mM acetone). As discussed by Liu et al 
54

, other 

post hoc algorithms not analyzed here, such as random forest, 

may be more accurate in some cases. However, these 

approaches often increase accuracy by overfitting the data
55

, 

which ultimately decreases the robustness of the classifier. 

Moreover, many of these are computationally expensive and 

cannot be analyzed using mobile hardware such as a mobile 

phone or tablet. The Gaussian radial base function (RBF) kernel 

(accuracy = 98%) had the highest test accuracy for classifying 

the training dataset. However, using the default kernel settings 

the dataset was not linearly separable and the RBF kernel had 

an overfitting issue, requiring further analysis and tuning of 

the parameters. 

 

Figure 4. SVM classification for CSP-acetone biosensors using four common kernels. a) 

linear kernel (test accuracy =96%), b) sigmoidal kernel (test accuracy =83%), c) radial 

base function kernel (test accuracy =98%), and d) polynomial kernel (test accuracy 

=96%). Blue dots represented baseline EIS signals (no acetone in samples) and red dots 

represented positive EIS signals (5mM acetone in samples). The decision surface of 

these four SVM classifiers are plotted by red and blue regions. 

To tune the RBF kernel parameters, a grid search and cross 

validation were performed. In cross validation, the original 

dataset was shuffled and divided into ten different training 

and testing sets, with 20% of the total data used for testing. 

Next, each training set was used to fit the SVM classifier and 

average test accuracy calculated for each split training set. In 

the RBF kernel, the two governing hyper-parameters are the 

penalty parameter (C) and non-linear kernel coefficient (γ). The 

penalty hyper-parameter trades off misclassification against 

simplicity of decision surface, where lower C values tolerate 

more mistakes. The non-linear parameter defines the 

influence of a single training example on the output, and can 

be seen as the inverse of the radius of the influence of support 

vectors
50

. Each of these parameters were optimized using a 

grid parameter search function using the RBF kernel (Fig 5). In 

the top left panel of Fig 5, where C is low, the penalty for 

misclassification is small and the decision surface is simple 

relative to values in the first column with higher C values. As 

the nonlinear hyper-parameter increases (from left to right in 

Fig 5), the influence radius decreases, causing over-fitting. The 

protocol described herein resolves this issue by creating a 

visualization tool to select the optimum hyper-parameters.  

 

Figure 5. Tuning of RBF hyper-parameters (C and gamma) for CSP acetone interactions. 

Representative SVM classification results for one training and testing set show the 

effects of parameters C and g in the output of the RBF kernels. Red and blue circles 

represent the baseline samples in training and testing sets; green and purple plus 

symbols represent the positive signals in training and testing sets. The background blue 

and red region indicated the classifier decision surface, where all data fall into the red 

region are predicted as positive.  Cross-validation scores are shown in the top right 

corner of each subplot. The optimal classifier zone is highlighted with a blue rectangle 

in the center of the image. 

The Python code has a built-in function to optimize the hyper-

parameters from data such as that shown in Fig 5. Based on 

this heat map (Fig 6), the optimum value of γ was 0.01, and the 

optimum value of C was 10. Using these parameters, the 

Python code is then modified (see details in step-by-step user 

guide) and the data is analyzed. Using the optimized kernel 

selection and hyper-parameters, the SVM demonstrated an 

accuracy of 95 ± 4% in cross validation and prediction of test 

samples.  
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Figure 6. Heatmap of validation accuracy as a function of RBF parameters C and γ. The 

color indicates the cross-validation accuracy, where lighter colors represent a higher 

cross-validation score. Optimal parameters are highlight with a blue rectangle in the 

center 

Decomposition of high dimensional EIS data to two-

dimensional data with PCA is known to improve 

sensor/detector accuracy due to identification of uncorrelated 

variables from a large set of data
56

. PCA explains the maximum 

amount of data variance with the fewest number of principal 

components. For a semi-quantitative biosensor application 

such as the data in Fig 1-6, the use of only two principal 

components can lead to loss of useful information during data 

decomposition. However, for the RFP kernel with optimal 

tuning parameters the results were statistically significant at 

the 95% confidence interval. To further analyze the dataset, 

classifiers with 3 and 10 principal components were built and 

the cross-validation accuracy was improved (97 ± 3%), which is 

expected as less information was lost during decomposition (a 

3D data representation for data analyzed with three principal 

components is shown in supplemental Fig S7). This result was 

expected, as use of reductionist clustering (i.e., using two-

dimensional PCA) increases the risk of eliminating important 

outliers within the data. For example, over-clustering could 

result in important deviations from the "normal", for example 

in the case of silent ischemia
57

. In this case the data curation 

can be improved by analyzing polar coordinates in lieu of, or in 

addition to, Cartesian coordinates from impedimetric sensor 

data. However, analysis of classifiers with a dimension larger 

than two is computationally expensive, and can make use of 

mobile phone based analytical systems challenging. Care 

should be taken to discern as to whether the computational 

need outweighs the ability to analyze data on site using mobile 

equipment such as a tablet or mobile phone. To maintain focus 

on mobile-enabled diagnostic systems in this study, we used a 

two-dimensional PCA analysis, which is valid for semi-

quantitative biosensor data where a regulatory or diagnostic 

metric is known (such as the case of DKA salivary biomarkers 

shown here).  

Although not used here, computational speed and memory 

requirement can be improved by using more advanced 

computational tools such as the tensor compiler by Kjolstad et 

al
58

. This approach is particularly useful for multidimensional 

data analysis, and provides a generic mechanism that can 

generate code for compound tensor operations with sparse 

tensors, eliminating the need for writing optimized code for a 

specific problem. This tensor algebra compiler library 

represents an excellent next step forward to improve the work 

herein. 

The SVM tool shown here is highly useful for point of need 

small molecule analysis using mobile detection and analysis 

systems (see supplemental Figure S8). Rapid triage analysis of 

breath disease state biomarkers is vital for triage analysis, and 

mobile phone solutions can bring this diagnosis to rural areas 

where health care is limited. Convergent technologies for 

triage diagnostics require systems-level solutions that are 

based on readily accessible hardware such as mobile phones 

or tablets 
60

.  

Conclusions 

Biosensors based on weak/transient interactions between 

small molecules and bioreceptors are a challenge for detection 

electronics, particularly in field studies or in analysis of 

complex matrices (e.g., body fluids, food, river water, etc.) 

using non-Faradaic impedimetric sensors. Support vector 

machine learning tools are facile post hoc analysis tools that do 

not require significant computational power and can be used 

for in situ analysis with mobile hardware such as a mobile 

phone or tablet. Here, we show use of a simple, open source 

machine learning algorithm for analysing such impedimetric 

data, and we show that the tool can be used for point of need 

applications. 
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