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When a mixture of propylene glycol and water is deposited on a clean glass slide, it forms a
droplet of a given apparent contact angle rather than spreading as one would expect on such a
high-energy surface. The droplet is stabilized by a Marangoni flow due to the non-uniformity of
the components’ concentrations between the border and the apex of the droplet, itself a result of
evaporation. These self-contracting droplets have unusual properties such as absence of pinning and
the ability to move under an external humidity gradient. The droplets’ apparent contact angles
are a function of their concentration and the external humidity. Here we study the motion of such
droplets sliding down slopes and compare the results to normal non-volatile droplets. We precisely
control the external humidity and explore the influence of the volume, viscosity, surface tension, and
contact angle. We find that the droplets suffer a negligible pinning force so that for small velocities
the capillary number (Ca) is directly proportional to the Bond number (Bo): Ca = Bo sinα with
α the angle of the slope. Lastly we study the successive shapes the droplets take when sliding at
larger and larger velocities.

INTRODUCTION

When a small droplet of a pure, non-volatile liquid is
deposited on a surface, it spreads until the three phase
contact line around the droplet reaches an equilibrium
contact angle θ with the surface. In the case that the
liquid totally wets the surface (a high-energy surface for
the liquid), there is no equilibrium, and the droplet con-
tinuously spreads, with a dynamically decreasing con-
tact angle resulting from a balance of surface tension
and viscous dissipation [1, 2]. If the liquid is partially
wetting, the contact angle is dictated by Young’s law [3].
Young’s law is a horizontal balance between three forces
or minimization of three surface energies associated with
three interfaces: the liquid/air, liquid/substrate and sub-
strate/air interfaces [4]. It was theoretically and exper-
imentally shown that a non-uniform surface/air or liq-
uid/air energy could put the droplets in motion [5–7].
Recently Cira et al. [8, 9] showed that a two-component
droplet of the right miscible liquids will not spread on a
high-energy surface, but instead will form a well defined
droplet with an apparent contact angle θ. The stabiliza-
tion of the droplet is due to evaporation of one component
that creates a gradient of concentration in the droplet,
itself at the origin of a Marangoni flow working against
the spreading force, so that the droplet is ‘Marangoni-
contracted’ [10–13]. Such droplets move in response to
external humidity gradients that modify their evapora-
tion [14], and thus can attract each other [8].

The motion of a typical sessile droplet of viscosity η,
surface tension γ, volume V and density ρ is limited by
its contact angle hysteresis ∆θ due to microscopic geo-
metrical or chemical inhomogeneities that induce pinning
[15–17]. For example a small droplet presenting a small

mean contact angle θ and contact angle hysteresis placed
on an incline will only move under a gravitational force
ρV g sinα larger than the pinning force V 1/3γθ∆θ, with
α the angle of the slope with the horizontal and g the
gravitational acceleration [16, 18, 19]. Above the force
threshold the droplets then move at a velocity U such
that the capillary number (Ca = ηU

γ ) that compares vis-
cous forces and surface tension is a linear function of the
Bond number (Bo = V 2/3ρg

γ ) that compares gravity and

surface tension, times sin(α) [20, 21]. For usual sessile
droplets, contact angle hysteresis is strongly reduced on
super-hydrophobic surfaces, and can even be cancelled
for liquid-infused also known as ”SLIP” surfaces [22–24].
The droplet friction nature in the later case is a func-
tion of the ratio between the droplet and the oil viscos-
ity [25]. Here surprisingly the self-contracted droplets
do not suffer from pinning, as they move on a film of
their own constituents that spreads around them. The
pinning cancelation of Marangoni contracted droplets on
high-energy substrates has hardly been reported in the
literature. It was described by Huethorst and Marra [26],
for droplets of water in a 1-methoxy-2-propanol vapor at-
mosphere that maintain a constant static contact angle.
In the system we present here, there is no need to place
the droplets in a specific atmosphere as they self induce
a Marangoni contraction through evaporation. We can
control the contact angle and viscosity of the droplets by
tuning their concentration and the external humidity on
a large range.

In this letter we study in detail the friction the evapora-
tive Marangoni-contracted droplets feel running down a
slope, as a function of the parameters (V , θ, γ, η), first for
small slopes where droplets do not deform, then for larger
slopes on which the droplet shape changes, comparing the
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droplets to regular non-volatile sessile droplets. First we
briefly discuss how we can set θ.

RESULTS AND DISCUSSION

The droplets are composed of propylene glycol PG and
distilled water, with a concentration C noted as % of the
PG volume over the total volume. The mixture proper-
ties are extracted from the literature [27]. We first mea-
sured θ as a function of the relative humidity RH and
C. The experiments were done in a humidity controlled
chamber built in the laboratory with two sealed glove ac-
cess ports. The relative humidity can be set from 10%
to 95%. The droplets are deposited with a calibrated
pipet on clean fully hydrophilic glass slides, see [8] for
details. The contact angle θ was measured with a re-
flectometry setup [28] integrated with the box, see [8] for
details. Droplets of both pure liquids spread, as expected
on such a high-energy surface, but adding only a small
amount of PG to water (0.01 %) is enough to obtain a
stable θ around 5◦. The contact angle of 0.5 µL droplets
as a function of C for three different RH is shown on
Fig. 1 (a). θ increases to a maximum and decreases back
to zero as the droplet concentration is increased. The
amplitude of the curve and the maximum C for which a
stable droplet is observed both decrease with RH. Vary-
ing RH for C = 10%, we observe that cos θ increases
linearly with the humidity, with θ from 14 to 6 degrees
[Fig. 1 (b)]. At a fixed humidity we observe that θ de-
creases slightly with V from 0.5 to 4 µL [Fig. 1 (c)]. In
the following we will use values of θ measured for droplets
of 0.5 µL. The radius of the droplet R will be estimated
assuming a spherical cap shape and the contact angle of
V = 0.5 µL droplets, as θ variation with volume only
gives a 3% error on the estimation of R for the larger 4
µL droplets.

A sessile droplet deposited on a surface evaporates
faster from the borders than from the center because of
thermal [29, 30] and mainly geometrical [31, 32] effects.
For these two-component mixtures the droplet starts by
spreading on the time scale of one second after deposi-
tion before building up back to a radius constant on the
time scale of one minute. We observe under the micro-
scope that a thin film surrounds the droplet and spreads
hundreds of microns from the droplet [8]. Interferometry
measurements suggest that the film thickness increases
from less than 100 nm to 300 nm as the droplet con-
centration is increased, orders of magnitude thicker than
typical precursor films (Fig. 2). As for a sessile droplet,
the border of the droplet and the thin film evaporate
faster than the center [33]. We will assume that only wa-
ter is evaporating as it is 100 times more volatile than
PG [34]. Due to faster evaporation and thickness, C in-
creases in the thin film and border, and remains constant
in the bulk on the minute time-scale (in the following, all
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FIG. 1. (a) θ of 0.5 µL two-components droplets as a function
of C for three RH (triangles: RH = 70%, circles: RH = 51%,
diamonds: RH = 10%). The solid lines represent the best fit
of the model at each RH for C = 10%, with from the lowest
to the largest RH (blue, green and red): K = 0.17, 0.31, 0.50.
The dashed lines represent the best fit with the model from
[8], same color code. Inlet: zoom on low concentrations. (b)
Measured cos θ as a function of RH for C = 10%, 0.5 µL
droplets. The best linear fit is shown with a solid line, our
model with a dashed line and the model from Karpitschka
et al. [13] with a red dashed and dot line. (c) θ as a function
of V for C = 10% droplets at RH = 43%. The error bars in c)
represent the standard error with minimum 3 measurements.
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FIG. 2. (a) Representation of the droplet and its surrounding
thin film and notations. (b) Definition of the notations de-
scribing the meniscus between the bulk droplet and the thin
film.

measurements are done in the first minute). Because γ is
monotonically decreasing with C, the gradient of concen-
tration creates a gradient of surface tension that drives a
Marangoni flow along the droplet surface from the border
to the apex.
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Following from [8], we construct a flux based model to
capture the contact angle. Departing from [8], we incor-
porate Raoult’s law into the evaporative flux term. We
assume that C quickly varies between the droplet and the
film in a transition region or meniscus of typical length l
and thickness h (Fig. 2), and is quasi-constant elsewhere.
The force equilibrium in the horizontal direction gives:

γbulk cos θ = γfilm (1)

with γbulk and γfilm the surface tension of the droplet
and the thin film respectively. We write the conserva-
tion of water in the transition region. At equilibrium,
the local relative humidity above the thin film is equal
to the molar concentration of water zw, and we assume
that the evaporative flux is proportional to the difference
between the local relative humidity and RH (introduc-
ing Raoult’s law and improving the estimation done in
[8]): there is no evaporation if zw ≤ RH, and other-
wise the evaporation happens at the rate per unit area
Φevap = (zw−RH)Aw, with Aw the evaporative flux per
unit area of pure water at RH = 0%. We estimate the
water volume fraction in the transition region xwfilm as-
suming that a flux per unit area Φin of liquid of initial
water volume fraction xw is flowing from the droplet to
the thin film. The volume of the transition region with-
out evaporation is Vt = Φinhdrdt with dr an infinitesi-
mal arc along the droplet perimeter and dt the time to
fill Vt. The volume of water evaporating during this time
is Vevap = Φevapldrdt. After time dt, xwVt − Φevapldrdt
water is left in the transition region, which has total vol-
ume Φinhdrdt − Φevapldrdt, giving the water fraction of

the transition region xwfilm =
xwVt−Φevapldrdt

Φinhdrdt−Φevapldrdt
. It can

be rewritten:

xwfilm =
xw − (zw −RH)K

1− (zw −RH)K
(2)

with the non-dimensional parameter K = Awl
Φinh

. Equa-
tion (2) predicts a surface tension difference of maximum
3% between the bulk and the thin film and a viscosity
difference of maximum 14%. Combining Equations (1)
and (2), for a given RH, we choose the best K to fit the
measurement, and we observe that the model captures
the θ trend and predicts the maximum C up to which
we observe a stable droplet (Fig. 1 a), with a better
precision than what was proposed previously [8]. Keep-
ing a constant K also partially predicts the amplitude
variation as a function of RH. For example, for droplets
of 10% PG, the model predicts a quasi-linear evolution
of cos θ with RH in the range RH = 10 − 80%, for
K = 0.21, but with a larger slope than the best linear fit
of the data (Fig 1 b). The model by Karpitschka et al.
[13] resolves time dependent mass transport equations in
lubrication approximation taking into account capillary,
Marangoni, and diffusive fluxes from an evaporating
droplet, and fixing the thickness of the surrounding film

as the one of a precursor film. It proposes a relationship
θ ∝ (RHeq − RH)1/3 with RHeq the relative humidity
above which the droplet spreads completely, in good
agreement with our measurements.

Having either measured the parameters of the
Marangoni-contracted droplets as a function of RH and
C (θ), or having access to them in the literature (γ,
η), now we explore the role of these parameters on the
friction a droplet feels moving down a slope. We first
restrict ourselves to the range of V and α for which
the droplets do not noticeably deform. The choice of
a PG/water droplet is at first glance unpractical since
when C changes, θ, γ and η change. But it in fact reveals
a powerful tool to estimate the role of each parameter,
as γ is a monotonically decreasing function of C, when η
is monotonically increasing. The droplets are deposited
on a clean glass slide placed on a slope of angle α from
0 to 45◦ enclosed in the humidity-controlled chamber. V
ranges from 0.25 to 10 µL. The motion is recorded from
the top with a digital SLR camera. We observed that
after accelerating on the millimeter scale, the droplets
moved at constant U in the direction of the largest slope.
For a given V and C we gradually increased α and ob-
served that U is a direct linear function of sinα (Fig.
3 a). We then varied the volume of the droplets and
observed that larger droplets moved faster.

Two-component droplets of typical radius R = 1 mm
move at typical velocities U = 1 mm/s, so that the
Reynolds number is equal to Re = ρRU

η ≈ 1 (when
estimating Re on the thickness of the droplet δ ≈ θR,
Re ≈ 0.2). When the droplets slide down the slope, they
are subject to a drag force due to the gradient of ve-
locity from the surface of the droplet to the substrate.
For a sessile droplet of small contact angle and small
radius compared to the capillary length κ−1 =

√
γ/ρg,

the dissipation mainly happens in the wedge close to the
moving contact line. The force per unit length is writ-
ten, with Un the velocity of the contact line normal to
the droplet in the plane of motion: fdrag = ηUn ln(b/a)/θ
[4], with ln(b/a) the logarithmic ratio of a macroscopic
length scale b (typically R) and a microscopic length
scale a at which the continuous matter description fails,
such as the size of the molecules. A crude integra-
tion of the viscous force acting on a circular droplet is
then Fdrag = πRηU ln(b/a)/θ. The droplet is moving
due to the gravitational force projected in the direction
of motion Fprop = mg sinα. Equilibrating Fdrag and

Fprop, the velocity of the droplet is U = mg sinαA
πηR , with

A = θ/ ln(b/a). A sessile droplet presenting a contact
angle hysteresis would feel an additive pinning force, and
the droplet would only move above that threshold force.
Here we observe that the velocity is a linear function
of sin(α) for droplets with C = 10% and V = 0.25 to
1.5 µL [Fig. 3]. The linear fit of the velocity goes to
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FIG. 3. (a) U as a function of sinα for C = 10%. The dashed
lines are best linear fits, the slope increasing with the V= 0.25,
0.5, 0.75, 1, 1.5 µL. (b) Rescaled velocity as a function of the
slope. RH = 55%. (c) Velocity as a function of the viscosity
for various α. The symbols represent the series done at a
constant α and RH, varying C. At ambient humidity (RH =
50− 55%): ◦: α =3.73◦; �: 7.7◦; C: 11.3◦; �: 13.5◦; B: 19◦;.
At reduced humidity: ?: RH = 10%, α =15.1◦. The region
were pinning happens is grayed. The droplet concentration C
is shown as a second horizontal axis above the main axis.

zero, showing that contrary to sessile droplets, the two-
component droplets are not subject to pinning. The min-
imum rolling angle is unmeasurable, as it is the case with
droplets on liquid-infused materials [25]. Assuming that
the droplets are spherical caps, R ∝ V 1/3 and eventually
U ∝ V 2/3 ρg sinαA

η . We verify this scaling on Fig. 3 (b)

where we plot the velocity rescaled by (V0/V )2/3 with
V0 = 1 µL. This indicates that the viscous dissipation is
a linear function of the radius and happens at the border
of the droplet, as with typical sessile droplets with small
contact angles. This is a different regime than for water
droplets on liquid-infused surfaces for which the dissipa-
tion happens in the whole droplet and is thus a function
of their area, rather than the radius, when the viscosity
of the drop is large compared to that of the oil and the
apparent contact angle close to 90◦ [25]. However this
is similar to the other limit case for liquid-infused sur-
faces when the viscosity of the drop is small compared
to that of the infused oil, where the dissipation happens
in the oil meniscus around the drop, and is a function
of the drop radius [25]. In the present case the menis-
cus is formed of the same liquid as the droplet (at a
concentration only slightly different). From the velocity
measurements, at RH = 55%, C = 10% we extract the
value of ln(b/a) = 11.2, while an estimation based on
the size of a molecule of water a = 152 pm and R = 1
mm gives ln(b/a) = 15.7 and on the size of a molecule
of PG a ≈ 495 pm gives ln(b/a) = 14.5. We then esti-
mate a cut-off length a = 14 nm over an order of mag-
nitude larger than either components’ molecular length,
suggesting that for these droplets a may be set by some-
thing other than molecular length, such as the thickness
of the film on which the droplets glide, or the length of
the meniscus l between droplet and film [Fig. 2 (b)],
again similarly to drops on liquid-infused surfaces.

We now extend the analysis to all stable (non wetting)
concentrations to verify the influence of θ and η. The
range of stable concentration, contact angle and viscos-
ity is: at RH = 55% C = 1% − 80%, θ = 8 − 13◦ and
η = 0.9 − 17.04 mPa.s; at RH = 10% C = 0.1% − 95%,
θ = 5.6 − 16◦ and η = 0.84 − 34.17 mPa.s. On Fig. 3
(c) we plot the velocity as a function of concentration
for different slopes. For a given α and V we observed
that U monotonically decreased with PG concentration,
except for very low C. Careful examination revealed
that at C . 1% otherwise non-pinning droplets began
pinning when moving on slopes with large α, especially
at higher humidities, leading to a reduction of velocity
and scattering of measurements (indicated by hatched
background and grayed points in Fig. 3 c). For these
low concentrations, the limited PG content leads to a
weaker Marangoni-contraction, evidenced by smaller con-
tact angles. From our observations and simulations from
Karpitschka et al. [13] the thin film is also thinner and
extends to a smaller distance from the meniscus at low C.
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One possible explanation leading to pinning is that the
droplets in this region move faster than their surrounding
films. The following analysis excludes the measurements
done in this regime.

On Fig. 4 (a) we rescale the data to present the
non-dimensional velocity η0R

mgA
U

sinα = U
Uinfη0

sinα ∝ η0/η,

with η0 the viscosity of pure water and Uinfη0 the
theoretical velocity of non-deformed drops on a vertical
surface, if they had the viscosity of pure water, as a
function of η0/η. Given that the larger than typical
cutoff length a had suggested a potential role for the
transition region in dissipation, we noted that if the
dissipation was happening largely in the meniscus, the
dissipative force might not be a function of θ. To test
this hypothesis, we also non-dimentionalized the velocity
with a fixed value of A, that was not a function of θ,
and plotted the non-dimensional velocity as a function
of the non-dimensional viscosity on Fig. 4 (b). We
observe an almost linear fit of slope 1 for (b). The fit
is worse for (a) as taking into account θ bows the curve
up for very low and very large C. The model using a
fixed value of A gives a more linear fit to the data over
a wider concentration range. We still observe a slight
deviation from a power law fit, with droplets moving
faster than predicted at high C (small η0/η). Again
this reduced drag is consistent with observations [8] and
simulations [13] of a more prominent film region at high
C. It is our personal interpretation that globally (b) is
a better fit, suggesting that the contact angle role on
dissipation is minimal and that the dissipation happens
in the transition region, whose geometry is minimally
affected by θ. This is again similar to droplets on a
liquid-infused surface when the droplet is less viscous
than the infused oil and the dissipation happens in the
oil meniscus [25].

When a sessile droplet is running down a slope at
larger and larger velocity, its receding contact line de-
forms from an oval shape to a corner shape, to a cusp
emitting smaller droplets [20, 21]. The two-component
droplet is stabilized by an internal flow that may re-
duce the deformation. We now study the motion and
shape of the two-component droplets on large slopes on
Fig. 5. For any C, as we increase α, the back of the
droplet deformed from an oval (a) to a cornered (b), to
a cusped droplet emitting smaller droplets (c). The suc-
cessive shapes were similar to what is observed for a ses-
sile droplet [20, 21]. Qualitatively the equilibrium lead-
ing to deformation can be described as follows. Along
the virtual contact line of the droplet, on the receding
side the drag force per unit length is balanced by sur-
face tension such as η ln(b/a)U cos Φ = γ, with Φ the
angle between the normal to the droplet and U in the
plane of motion (Fig. 5b). If η ln(b/a)U < γ the re-
ceding contact line should stay non-deformed, and oth-
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FIG. 4. Non-dimensional velocity as a function of the non-
dimensional viscosity. (a) A is a function of θ, (b) A is inde-
pendent of θ. Same symbols as in Fig. 3 (c).

erwise cos Φ = ηU
γ = 1/Ca, which gives us the threshold

for deformation Ca > 1. Plotting Ca versus Bo sinα on
Fig. 5 (d) we observe that all the data collapses on a
linear directing curve for small Bo sinα, as discussed in
the introduction, and that goes to zero for small veloc-
ities because there is no contact angle hysteresis (here
we define Bo as Bo = V ρg

Rγ because θ and thus R are

functions of the concentration). For larger Bo sinα, the
droplet shape transitions and the slope of the directing
curve increases. The slope increase can be interpreted
as a drag reduction under the influence of the release of
droplets [20]. The value of Ca for which the transition
occurs is constant for a given C on a large range of V
(Fig. 5 d), but is a function of C. More quantitatively
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FIG. 5. Shapes of a 1 µL, C = 30% droplet as the slope
is increased: (a) oval, (b) conical, (c) pearling (the solid bar
represents 2 mm). (d) Ca as a function of Bo sinα. Black,
red and green symbols represent respectively droplets with an
oval, conical and pearling receding contact line. The symbols
represent different concentrations and volumes (RH = 50%):
the volumes are only indicated for the C = 10% droplet (
O: 0.25 µL, 4: 0.5 µL, B: 0.75 µL, C: 1 µL, �: 1.5 µL, star
hexagon: 2 µL). �: C = 40% 1.5 µL; star pentagon: C = 5%,
1.5 µL. +: C = 1%; ◦: C = 20%, various volumes between
0.5 and 2 µL. (e) C = 40% droplets only (RH = 50%), the
symbols represent different volumes: ◦: 1.5 µL, 4: 3 µL, C:
5 µL, �: 10 µL. (f) C = 1% droplet only, V = .5 to 3 µL
(RH = 33%). In (e) and (f) the dashed lines highlight the
thresholds of Ca for the successive shapes.

[20] predicts a deformation of the droplet above a critical
capillary number Cac ∼ θ3/(9 × ln(b/a)). On figure 5
(e) we plot the same data for droplets of concentration
C = 40% only (θ ≈ 13◦). Deformation of the droplet
occurs for Ca above 0.7 × 10−4, of the order of the es-
timated value of Cac = 1.2 × 10−4. Similarly on figure
5 (d), for C = 1% at RH = 10% (θ ≈ 8◦) we observe
a deformation for Ca above 0.2× 10−4 very close to the
expected value Cac = 0.2× 10−4. We also observe that,
as predicted, the second transition from cone to pearling
droplet happens at twice Cac in both cases.

CONCLUSION

Two-component mixtures of well chosen miscible liq-
uids do not spread on high-energy surfaces but rather
form stable droplets. Non-uniform concentration due to
evaporation creates a Marangoni flow that stabilizes the
droplets. A simple force balance model coupled with
an estimation of the gradient of concentration gives a
good picture of the Marangoni contraction process. Like
typical sessile droplets, the two-component droplet ve-
locity down a slope is a linear function of Bo sinα for
small Ca, but contrary to sessile droplets, they do not
present contact angle hysteresis and pinning force, so
that Ca = Bo sinα. The droplets show an unmeasurable
rolling angle, as it is the case with drops on liquid-infused
surfaces. The influence of the static apparent contact an-
gle of the droplets on the friction force remains to be fully
understood but we suggest that is has a minimal role as
the dissipation happens in the transition region between
the droplet and its surrounding wetting film, which ge-
ometry is weakly affected by the contact angle, somehow
similarly to what is observed for certain types of drops
on liquid-infused surfaces. The absence of pinning is sur-
prising, and the microscopic process making it possible
remain to be determined but the presence of a thin film
around the droplet seems to play a role. Droplets of
very small viscosities moving on large slopes show some
pinning as the film may not spread quickly enough to
shield the droplet from the surface. Excluding the later
case, when the Marangoni-contracted droplets run down
slopes of increasing angle, their receding perimeter de-
forms from a circular arc to a cone at a given Ca and
later deforms into a cusp that deposit smaller droplets,
like regular sessile droplets. The first transition hap-
pens as predicted above a critical Ca of the order of
Cac ∼ θ3/(9 × ln(b/a)), and the second transition at
twice this value. The apparent contact angle then plays
an important role on the shape transition, and a weaker
one on the friction force.

We wish to thank Stefan Karpitschka for helpful com-
ments on the models and anonymous reviewers for feed-
back that strengthened the manuscript.
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[23] A. Lafuma and D. Quéré, EPL (Europhysics Letters) 96,
56001 (2011).

[24] J. D. Smith, R. Dhiman, S. Anand, E. Reza-Garduno,
R. E. Cohen, G. H. McKinley, and K. K. Varanasi, Soft
Matter 9, 1772 (2013).

[25] A. Keiser, L. Keiser, C. Clanet, and D. Quéré, Soft Mat-
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We discuss in this paper the nature of the friction generated as a Marangoni-contracted drop 
glides on a slope. 
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