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Hydrodynamic oscillations and variable swimming

speed in squirmers close to repulsive walls

Juho S. Lintuvuori,a Aidan T. Brown,b Kevin Stratford c and Davide Marenduzzo b

We present a lattice Boltzmann study of the hydrodynamics of a fully resolved squirmer, confined

in a slab of fluid between two no-slip walls. We show that the coupling between hydrodynamics

and short-range repulsive interactions between the swimmer and the surface can lead to hydro-

dynamic trapping of both pushers and pullers at the wall, and to hydrodynamic oscillations in the

case of a pusher. We further show that a pusher moves significantly faster when close to a surface

than in the bulk, whereas a puller undergoes a transition between fast motion and a dynamical

standstill according to the range of the repulsive interaction. Our results critically require near-field

hydrodynamics and demonstrate that far-field hydrodynamics is insufficient to give even a quali-

tatively correct account of swimmer behaviour near walls. Finally our simulations suggest that it

should be possible to control the density and speed of squirmers at a surface by tuning the range

of steric and electrostatic swimmer-wall interactions.

1 Introduction

Motile organisms such as bacteria and sperm cells have a natu-

ral tendency to be attracted towards surfaces, and to swim near

them1. This phenomenon may be relevant for the initial stage

of the formation of biofilms, the microbial aggregates which of-

ten form on surfaces. However, experiments have shown that this

tendency is not unique to living swimmers, and is also exhibited

by phoretic, synthetic active particles2–4: in that context, it has

been exploited for example, to attract microswimmers inside a

colloidal crystal, where they orbit around the colloids4. The in-

teraction between self-propelled particles and walls also provides

a microscopic basis for the rectification of bacterial motion by

asymmetric geometries (e.g. funnels)5.

Previous work has proposed two possible mechanisms for sur-

face accumulation of self-motile particles. A first view is that ac-

cumulation occurs through far-field hydrodynamic interactions6.

Another possibility is that motility itself, in the absence of solvent-

mediated interactions, leads to accumulation7,8: this mechanism

requires a small enough channel, where the gap size is of the or-

der of the typical distance travelled ballistically by the active par-

ticles, before rotational diffusion or tumbling reorients them. The

case of phoretic particles may be more complex4,9, and may de-

pend on the dynamics of the chemicals reacting at the swimmers

surface. Schaar et al. recently showed that hydrodynamic torques
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91405 Orsay Cedex, France.
b SUPA, School of Physics and Astronomy, University of Edinburgh, UK.
c EPCC, School of Physics and Astronomy, University of Edinburgh, UK.

strongly affect the “detention times” over which microswimmers

reside near no-slip walls10. The behaviour is partly controlled

by the details of the force distribution with which active particles

stir the surrounding fluid; previous work has shown that these

details also control the behaviour of spherical squirmers near a

flat surface11,12.

Previous theories have not systematically studied the effects of

a short range repulsion between the particle and the wall; in ex-

periments, such repulsive interactions are typical, either due to

screened electrostatics, for charged walls, or due to steric interac-

tions, e.g. for polymer-coated surfaces. Here we show that explic-

itly including this repulsion is important, and strongly affects the

dynamics near a surface. The interplay between hydrodynamics

and short range repulsion can lead to trapping, periodic oscilla-

tions, and to a swimming speed significantly different from that in

the bulk. These results provide an experimentally viable route to

tune microswimmer concentration and speed near a no-slip sur-

face. Furthermore, recent theoretical calculations11 predict that

the equations of motion for squirmers which are pushers (exerting

extensile forces on the fluid) do not possess any stationary bound

state solution, i.e., where the particle swims stably along the wall

at fixed orientation. Our finding of oscillatory near-wall dynam-

ics shows that even without such stationary solutions, trapping

of swimmers at walls is possible. We show that this behaviour re-

quires near-field hydrodynamic interactions and that the observed

oscillatory dynamics can be explained by a theoretical model com-

bining far and near-field contributions.
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Fig. 1 (a) A cartoon showing an example of a squirmer near a flat wall,

defining the gap size h and angle φ used in the text. In the bulk, the

squirmer would move with speed u0 along the direction shown, at an

angle φ from the horizontal. (b) There is a repulsive interaction between

the wall and the squirmer. Examples of steady state φ(t) (dashed (blue)

line) and h(t) (solid (red) line) observed for (c) puller (β = +5) and (d)

pusher (β = −5) dynamics near a flat wall in the absence of thermal

noise are also shown. The interaction range is δc ∼ 0.16R (dot-dashed

line) and the potential diverges at ∼ 0.11R (dotted line).
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Fig. 2 Trajectories of the squirmers in (h,φ) space, showing a fixed point

for (a) a β = +5 puller and a limit cycle for (b) a β = −5 pusher. The

repulsive range was δc ≈ 0.16R (initial conditions h0 ≈ 3.25R and φ0 = 10◦;

no thermal noise).

2 Model and methods

2.1 Squirmer model

A popular model for swimmer hydrodynamics is a spherical

squirmer – a particle which is rendered self-motile through a sur-

face slip velocity13. The squirmer model has been used to study,

e.g., the collective motion and nutrient uptake of swimmers in

thin films14,15. To study the dynamics of a model squirmer in

confinement we employ a lattice Boltzmann (LB) method16. To

achieve time independent squirming motion, the following tan-

gential (slip) velocity profile at the particle surface is used 17

u(θ) = 2
∞

∑
n=1

sinθ

n(n+1)

dPn(cosθ)

d cosθ
Bn (1)

where θ is the polar angle and Pn is the nth Legendre polyno-

mial11.

In the LB method a no-slip boundary condition at the

fluid/solid interface can be achieved by using the standard

method of bounce-back on links (BBL)18,19. When the bound-

ary is moving (e.g. a colloidal particle) the BBL condition must

be modified to take into account particle motion20. These lo-

cal rules can include additional terms, such as a surface slip ve-

locity (Eq. 1): in this way it is possible to simulate squirming

motion21,22. Our implementation also includes thermal noise23,

allowing for simulations with a finite Péclet number.

2.2 Simulation parameters

We limit our simulations to simple squirmers with Bn = 0, for n ≥

3, but consider both pushers (B2 < 0) and pullers (B2 > 0). In

simulation units (SU) we measure the lengths in lattice spacings

and time in simulation steps. Parameters, all given in SU are:

B1 = 0.0015, B2 = ±0.0075, (which gives a swimming velocity in

the bulk equal to u0 =
2
3 B1 = 10−3 and β ≡ B2

B1
=±5), fluid viscos-

ity η = 0.1. We carried out simulations with and without thermal

noise. For simulations with thermal noise we used kBT = 10−5.

We considered a fully resolved swimmer with radius R = 9.2 (Fig.

1(a)). The physics is governed by two main hydrodynamic di-

mensionless quantities: the Reynolds and Péclet numbers. Using

the parameters above, these are Re= u0R
η ≈ 0.09 as well as both

infinite Pe and Pe = u0

DrR ≈ 2×104 respectively, where Dr =
kBT

8πηR3 ,

is the rotational diffusion constant. Our simulations were car-

ried out in a cuboidal simulation box 120× 120× 96, with peri-

odic boundary conditions in X and Y and solid walls at z = 0 and

z = 95. By matching the viscosity η to the kinematic viscosity of

water η ∼ 10−6 m2

s , we can map a single length and time SU to

∼ 1µm and 0.1µs, respectively. These would correspond to R ∼ 9

µm, u0 ∼ 10 mm
s , and a distance between walls of ∼ 100µm. Note

that while the mapped swimming speed is higher than observed

in experiments, the requirement of Re << 1 is fulfilled.

In order to model the wall-particle repulsion, we employ a soft

potential

VW(d) =V (d)−V (dc)− (d −dc)
∂V (d)

∂d

∣

∣

∣

∣

d=dc

, (2)

where the separation d ≡ d(z) = Zmin
max ± z−R is the distance be-
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tween the particle surface and the position where the potential

diverges (Zmax (Zmin) for top (bottom) walls) and

V (d) = ε (σ/d)ν . (3)

VW(d) has been cut-and-shifted to ensure that the potential and

force go smoothly to zero at d = dc. Parameters were chosen as

ε = 0.004, σ = 0.1, ν = 1.0. By choosing Zmax = Ztop − (δc − dc)

(Zmin = Zbottom +(δc − dc)) and keeping dc = 0.5SU constant, we

can have a well defined repulsion range δc, while keeping dc and

thus the potential form constant (Fig.1(b)). For the calculation of

the gap size between the squirmer and the solid surface h (Fig.

1(a)), we define the wall location half-way between the solid

node and the first fluid node (Zbottom = 0.5 and Ztop = 94.5), as

customary in LB simulations.

3 Results

3.1 Periodic swimming near a repulsive surface

In Fig. 1(c,d) we plot the evolution of the dimensionless gap

size ε = h(t)/R and of the angle φ between the squirmer direc-

tion and the surface plane (Fig. 1(a)). For a puller, after an

initial collision with the soft repulsive wall, the hydrodynami-

cally induced torques rotate the particle so that in steady state

it swims parallel to the no-slip wall (beyond the excluded volume

interaction range; dot-dashed line in Fig. 1(c)) with a distance

h ∼ 0.2R, in very good agreement with theoretical predictions11.

In steady state the puller points towards the surface, φ ∼ 24 de-

grees (Fig. 1(c)). For a β = −5 pusher, previous theories based

only on hydrodynamic interactions predict no stable swimming

near a surface11. However, in experiments, phoretic swimmers

which are thought to be pushers for mechanistic reasons24, are

typically observed to accumulate and undergo stable swimming

at no-slip surfaces2,4.

Strikingly, our simulations (Fig. 1(d)), show a stable peri-

odic orbit both in h(t) and φ(t). During a collision with the

soft-repulsive wall, hydrodynamic torques reorient the pusher

(Fig. 1(d)) leading to it swimming away from the wall (φ is

on average < 0 in Fig. 1(d)). This much is expected; surpris-

ingly, the hydrodynamic interactions between the swimmer and

the wall then pull the pusher towards the wall even though it

remains oriented away from it. The cycle repeats leading to hy-

drodynamic oscillations (Fig. 1(d)). This is even more apparent

from the squirmer trajectories in (h,φ) space, which show a fixed

point for a puller, in agreement with theoretical predictions11 and

the appearance of a limit cycle for a pusher as shown in Fig. 2.

Experimentally, these observed oscillations could be difficult to

distinguish from true, steady-state trapping, providing a poten-

tial explanation for the experimental observations. Cyclic swim-

ming and decaying cyclic swimming in h have been previously

reported for pullers in refs.12 and21. Interestingly, a recent the-

oretical study has also reported transient oscillatory trajectories

around the central plane between two parallel surfaces25. Those

oscillations are well explained by far-field hydrodynamics. The

oscillations are dependent on initial conditions, which is why we

have not observed them here.

For both pushers and pullers, the hydrodynamically induced at-

traction is strong enough to resist, to some degree, the effects of

thermal noise, i.e., a finite Péclet number, see Fig. 3. However,

we were unable to approach experimentally realistic noise lev-

els (which correspond to Pe ∼ 50) in reasonable simulation times.

(Reducing Pe would require proportionate reduction in swimming

speed u0, and thus proportionally longer simulation runs to ob-

tain the same statistics). Another possibility would be to reduce

the particle size. However we chose to maintain a reasonably

large particle (R = 9.2) in order to have well resolved flow fields

near the particle surface and thus achieve small surface separa-

tions. Ref.20 reports that hydrodynamics is well-resolved in LB for

passive spheres moving near walls down to separations of 0.1R,

which is below the minimum separation in our simulations.

Decreasing β reduces the strength of hydrodynamic torques4.

β = 0 corresponds to a neutral squirmer with a quadrupolar flow

field near the particle: fluid velocity v ∝ r−3, with r the dis-

tance from the swimmer centre. When |β | > 0 a stresslet con-

tribution is included and the longest-range flow field becomes

dipolar, v ∝ r−2. Our choice of β = ±5 corresponds to reason-

ably strong pullers/pushers. The observed bulk swimming speed

and stresslet contribution, from a recent experimental study of

Janus swimmers inside a colloidal crystal4, can be used to esti-

mate |β | ∼ 4−8. We carried out additional simulations where we

reduced |β |. We observed no trapping at the wall for a neutral

squirmer or weak pullers/pushers with β =−2, 0 or 2 (see Fig. 6

in appendix A.1).

3.2 Effects of the external soft repulsion

The external soft repulsion, and in particular its range, plays a

key role in determining the swimming dynamics. This can be

seen from the φ(t) and h(t) curves presented in Fig. 3(a-d), for

different repulsive ranges (δc = 0.16R, 0.22R and 0.27R): these

simulations include the effect of thermal noise, with Pe ≈ 2×104,

and were all initialised near the top wall and pointing towards

it, with h0 ≈ 1.1R and φ0 = 45◦. For all ranges considered, both

the pusher and the puller are found to swim near the surface

(Fig. 3(a,d)). However, the hydrodynamic oscillations in the

pusher dynamics (visible both in h(t) and φ(t) Fig. 3(a,b)) are

suppressed when the repulsive range is increased, and disappear

altogether for δc = 0.27R (Fig. 3). In this case, for both pusher and

puller the steady state h < δc. The plot of the swimming orien-

tation φ(t) (Fig. 3(b,e)) confirms the absence of oscillations: the

pusher swims by keeping a stable orientation tilted away from the

wall, with φ slightly decreasing when δc is increased (Fig. 3(c));

the puller instead is rotated by hydrodynamic torques to point to-

wards the wall, so that φ ∼ 90◦ (this is always the case as soon as

δc ≥ 0.22R (Fig. 3(f))).

3.3 Comparison to theoretical predictions

Most existing theories of swimmer hydrodynamics rely on the far-

field approximation which is based on the velocity field a swim-

mer generates at distances which are large with respect to its size.

The far-field approximation can be adapted to include a no-slip

wall26: as a result one obtains the following expressions for the

1–11 | 3
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Fig. 3 Simulation results when the range of the soft repulsion is varied δc ≈ 0.16R (dotted (red) line), δc ≈ 0.22R (solid (blue) line) and δc ≈ 0.27R (dashed

(black) line), with Pe ≈ 2×104 for a β =−5 pusher (top row) and a β =+5 puller (bottom row). Time development of h(t)/R (a) for a pusher and (d) for

a puller as well as φ(t) for (b) a pusher and (e) a puller. (The sudden change in behaviour for a puller is discussed in the text). The steady state h and

φ as a function of δc for (c) a pusher (the errorbars gives the amplitude of the oscillations) and (f) a puller. (Initial conditions: h0 ≈ 1.1R and φ0 = 45.0◦;

Pe ≈ 2×104).

time derivative of φ at a given time,

dφ

dt
=

u0

R

[

9β sin(2φ)

64

(

R

h′

)3

−
3cosφ

16

(

R

h′

)4
]

(4)

where β = B2

B1
and h′ is the distance from the centre of the par-

ticle to the confining wall (h′ = h+R in Fig. 1(a)), and we have

truncated the expression at O[(R/h′)4] as in Ref.26. Eq. (4) was

obtained by rewriting the results of Ref.26 in terms of squirmer

modes using Ref.11. We also use lubrication theory to com-

pute the following prediction, based on near-field hydrodynam-

ics10,27,28,

dφ

dt
= −

3u0

2R
(1+β sinφ)cosφ +O

(

1

logε−1

)

(5)

which should apply when the dimensionless gap size ε = (h
′
−

R)/R is small (see appendix A.3 and A.4 for further details and

for the derivation of the lubrication results). We were unable to

obtain lubrication results for the translational swimmer velocity,

which is why we focus on the rotational dynamics.

To allow comparison between our model and the theoretical

predictions (Eq. 2 and 3), we carried out simulations starting with

h0 ≈ 3.25R and φ0 = 10◦ and at each point in time, we calculated

the expression for dφ/dt either directly from our numerics, or by

substituting the instantaneous values of h(t) and φ(t) into Eq. 4

and 5: these two equations respectively provide the far- and near-

field estimate of the system evolution given its current state and

can be combined by means of a matched asymptotic expansion

(see appendix A.5 for further details).

For early times, there is good agreement between the rotational

dynamics, dφ/dt, predicted by the far-field approximation and

that found in our direct numerical simulations (Fig. 4): we ob-

serve a decrease (pusher) and increase (puller) of φ(t) from the

initial φ0 = 10◦. Later on, the far-field estimate no longer cap-

tures the dynamics observed in simulation. In steady state, the

far field predicts
dφ
dt > 0 while simulations show no net motion

of φ(t), as shown in Fig. 3(b,e). By incorporating the near-field

contribution, we obtain good agreement between the theory and

our simulations, including the trapping of the puller and the os-

cillations of the pusher (Fig. 4). This is achieved by tuning two

free parameters which have identical values for the pusher and

the puller (see appendix A.5 for further details on matching the

far and near-field contributions). This result can be understood

by noting that the far- and near-field contributions are qualita-

tively different. In the far-field, a pusher swims stably parallel

to the wall, whereas a puller rotates until it is perpendicular to

it26. In the near-field, it is the puller which swims stably along

the wall, pointing slightly towards it11, whereas the pusher has

no stable swimming solution. In our simulations, the particle is

trapped close to the wall, so near-field hydrodynamics dominates,

although far-field contributions are non-negligible (as detailed in

appendix A.3). An analysis of the dynamics of approach to the

surface, dz/dt, leads to similar conclusions: prior to interacting

with the repulsive wall, the far-field works well; when the repul-

sive interaction is reached, there is a notable disagreement (see

Fig. 7 in appendix A.1). However, we were unable to obtain a

near-field prediction for dz/dt or dx/dt (see below) in order to
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Fig. 4 Observed simulation (solid (red) line), far field (dashed (blue)

line) and combined near and far-field (dotted (black) line), results for

uφ (t)/(u0/R) for (a) pusher (β = −5) and (b) puller (β = +5). The re-

pulsive range was δc ≈ 0.16R (initial conditions h0 ≈ 3.25R and φ0 = 10◦;

no thermal noise).

match the simulation results because the lowest order term is zero

in both cases (see Appendix A.3 and A.4 for further details).

3.4 Variable swimming speed along the wall

For movement along the wall (dx/dt ≡ u‖), the simulations and far

field predictions agree reasonably well at all times (Fig. 5(a); sim-

ilar conclusions were reached by Spagnolie and Lauga26). The

steady state velocities for both swimmers are considerably larger

than in the bulk, i.e. the presence of a surface accelerates the mo-

tion (∼ 50% increase, see Fig. 5(a)). The increase in the swim-

ming speed near a solid surface can be understood intuitively by

considering the swimming mechanism. The pusher is propelled

from behind, thus when pointing away from the surface it ejects

flow backwards against a solid wall – this should enhance the

swimming speed, as predicted for swimmers in porous media4,29.

The speed increase is retained for the periodic swimming. This is

because, in spite of the angular oscillations, the pusher always

points away from the wall (see Fig. 3(b)). Now u(t) oscillates, as

could be expected, but retains, on average, u(t)∼ 1.5u0 (solid line

in Fig. 5(a)). The speedup of the puller can be understood in a
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Fig. 5 (a) Simulations and far field results for the observed steady state

swimming speed along the wall u||(t)/u0 for a pusher (β = −5); simula-

tions (solid (red) line) and far field predictions (dot-dashed (green) line)

and puller (β =+5); simulations (dotted (blue) line) and far field prediction

(dashed (pink) line). (δc ≈ 0.16R; initial conditions: h0 ≈ 1.1R, φ0 = 45◦; no

thermal noise). (b) Time averaged 〈u||〉/u0 as a function of the repul-

sion range δc, from simulations (open symbols) and far field calculations

(closed symbols), for both pushers (squares and upward triangles) and

pullers (circles and downward triangles). Initial conditions: h0 ≈ 1.1R,

φ0 = 45◦; Pe ≈ 2×104.

similar way: the squirmer is now oriented towards the wall so by

pulling fluid inward along its swimming axis, it pulls itself along

the wall. There is limited data on the comparative behaviour of

phoretic particles near surfaces, but recent experiments do report

an enhanced swimming speed up to ∼ 2u0 for Janus colloids next

to a water-air interface30.

Increasing the range of the repulsive interaction leaves the

pusher dynamics along the surface mostly unaffected: we find

that u|| > u0 for all the interaction ranges considered, as shown

in Fig. 5(a,b). The case of the puller is very different, as any re-

pulsive interaction extending past the equilibrium swimming dis-

tance ∼ 0.2R leads to hydrodynamic torques orienting the particle

towards the wall (Fig. 3(e,f)); see also appendix A.1 for Fig. 8,

which shows that the far-field approximation for the tangential

speed remains good in this case as well). The reorientation oc-

curred with all the initial conditions we considered (in Fig. 4(b)
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the initial angle is almost tangential, φ0 = 10◦), and leads to a dra-

matic slowing down of the particle, whose motion virtually comes

to a standstill when δc ≥ 0.22R (see Fig. 5(b)).

In all the cases we have considered, the rotational motion plays

a fundamental role in the dynamics of the particle, and this is af-

fected by δc. The soft repulsion only slows down the particle

movement along the surface normal (as visible from Fig. 7 for

dz/dt in appendix A.1), and it does not create any torques; there-

fore any rotational motion of the particle only arises from the

combination of hydrodynamic and Brownian forces.

4 Discussion

We have presented a study of fully resolved spherical squirmers

swimming between two solid walls, using a microscopic model

which prescribes a slip velocity at the particle surface. Our re-

sults show that repulsive interactions, which have been neglected

in previous theories of swimmers interacting with surfaces, play

a very important role in the squirmer’s dynamics. First, they can

stabilise hydrodynamic oscillations of a pusher close to the wall.

A recent systematic investigation has demonstrated that in the pa-

rameter range we consider (−5 ≤ β ≤ 0) there is no stable bound

state with the pusher swimming near the wall.11, but experiments

routinely observe that bacteria (which are known to be pushers)

and phoretic swimmers (which are thought to be pushers) are at-

tracted to and swim near flat surfaces2,6. One way to reconcile

these results is if the trajectory of the swimmer at long times is

oscillatory (a limit cycle in the (h,φ) plane) instead of having con-

stant velocity (a stationary point in the (h,φ) plane). While this

conclusion should hold qualitatively for several different pusher

swimmers, we note that a spherical squirmer model does not pro-

vide a quantitatively accurate description of a rod-like bacterial

swimmer such as E.coli, so that the details of its hydrodynamic os-

cillations may in practice differ from those presented here. With

respect to bacterial accumulation at surfaces, it should be noted

that the repulsion range considered here, δc ≥ 0.16R, is larger

than could be expected to arise, for example, from electrostatic

interactions in a typical bacterial media. However, it remains rel-

evant for experiments on artificial synthetic swimmers which typ-

ically employ much lower salt concentrations, and hence exhibit

longer electrostatic screening lengths.

Second, we find that the swimming speed of a pusher is much

increased with respect to the bulk limit: this behaviour can be

understood as the swimmer, on average, is directed away from

the wall and pushes on it, enhancing its speed. Third, we find

that the tangential velocity of a puller slows down dramatically

with the range of the repulsive interaction with the wall. Our re-

sults critically require near-field hydrodynamics, as the far-field

approximation poorly captures the rotational dynamics we ob-

serve.

Our findings further imply that by tuning the extent of the

repulsion, properties such as the number density and speed of

active particles near a surface, could be controlled. Experimen-

tally this could be achieved, by varying either the buffer concen-

tration (for electrostatic repulsion) or the polymer coverage of

the surface (for steric repulsion). These predictions should be

testable with experiments using bacterial swimmers or artificial

microswimmers, although for phoretic particles one may need to

first estimate the effect of chemical gradients, here neglected, on

the dynamics4,9,31–33.

A Appendix

A.1 Additional figures

In this section we provide three additional figures (Fig. 6-8). Fig-

ure 6 shows the gap size h(t)/R as a function of time, when the

squirming parameter β is varied as β = 0, ±2. In figure 7 ob-

served simulation results and far-field predictions for the swim-

ming speed perpendicular to the wall uz/u0 are presented for a

β = −5 pusher and a β = +5 puller, respectively. It shows a dis-

agreement between the far-field prediction (eq. (7)) and observed

simulations results, which persists also after correcting the far-

field to include an extra normal velocity component arrising from

the external repulsive potential, uw = − 1
γ

∂V (d)
∂d

, where γ = 6πηR.

Finally in figure 8 the swimming speed along the wall ux/u0 is

presented for both a pusher and a puller when the interaction

range is δc ≈ 0.22R. In this case the observed simulation results

for ux agree well with the predictions from far-field theory given

by equation (6).

 0
 0.5

 1
 1.5
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 2.5

 3
 3.5

 0  2  4  6  8  10  12  14

h
(t

)/
R

10
4
 LB steps

β = 0

β = -2

β = +2

Fig. 6 Observed simulation results for h(t)/R for a neutral squirmer (β =

0; dashed (blue) line), for a pusher (β = −2; dotted (red) line) and for a

puller (β = +2; dot-dashed (black) line). The repulsive range was δc ≈

0.16R and Pe ≈ 2×104.

A.2 Far-field approximation

The far-field approximation is based on the velocity field which a

swimmer generates at distances which are large with respect to its

size. The far-field approximation can be adapted to include a no-

slip wall26: as a result one obtains the following expressions for

the time derivative of the positions parallel x and perpendicular z

as,

dx

dt
= u0

[

cosφ +
9β sin(2φ)

32

(

R

h′

)2

−
cosφ

8

(

R

h′

)3
]

(6)

dz

dt
= u0

[

sinφ −
9β

(

1−3sin2 φ
)

32

(

R

h′

)2

−
sinφ

2

(

R

h′

)3
]

,(7)
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Fig. 7 Observed simulation results (solid (red) line and dot-dashed (light

blue) line) and far field results (dotted (blue) line) for uz(t)/u0 for (a)

pusher and (b) puller. The disagreement between simulations and far-

field approximation persists after correcting the latter to include the re-

pulsive interaction from the wall, via an extra normal velocity equal to

uw = − 1
γ

∂V (d)
∂d

(where γ = 6πηR) (dashed (green) line). The appearance

of the sharp peaks, when uw is included, result from the interaction with

the repulsive potential. The repulsive range was δc ≈ 0.16R (initial condi-

tions h0 ≈ 3.25R and φ0 = 10◦; no thermal noise).

where β = B2

B1
and h′ is the distance from the centre of the particle

to the confining wall (h′ = h+R in Fig. 1(a) in the main text),

and we have truncated the expression at O[(R/h′)3] as in Ref.26.

A.3 Lubrication Results

In Ref.34, the wall-parallel force Fx and torque Ty on a squirmer

moving near a no-slip boundary is calculated. We repeat these

calculations in Section A.4. We obtain different prefactors for Fx

and Ty compared to Ref.34, but we agree as to the functional form.

In summary, our corrected results for a squirmer oriented at angle

φ away from the parallel to the plane (see Fig. 9) are

Fx = −
4πηRuc

5
log(1/ε)+O(1) , (8)

Ty =
16πηR2uc

5
log(1/ε)+O(1) . (9)
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(D

e
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far field

β=+5, Sim
far field

φ, β = +5

Fig. 8 Simulations and far field results for the velocity along the wall

ux(t)/u0 for pusher (β = −5) (simulations solid (red) line and far field

dashed (green) line) and puller (β =+5) (simulations short-dashed (blue)

line and far field dotted (pink) line) as well as φ(t) for a puller (β = +5)

(dot-dashed (light blue) line), when the repulsion range was δc ≈ 0.22R

(initial conditions h0 ≈ 3.25R, φ0 = 10◦; no thermal noise).

Here, uc is the surface slip velocity (parallel to the wall) at the

point of closest approach (×) between the squirmer and the wall,

which, for the squirmer defined in Eq. 1 of the main text is

uc =−u(π/2−φ) =−
3

2
u0 cosφ (1+β sinφ) . (10)

From standard results for the drag on a sphere near a wall35 the

force and torque give simple expressions for the total rotation Ω

and speed ux of the squirmer

Ω =
dφ

dt
=

uc

R
+O(1/ logε) , (11)

ux =
dx

dt
= 0+O(1/ logε) . (12)

or, in terms of u0 and φ

dφ

dt
= −

3

2

u0

R
cosφ (1+β sinφ)+O

(

1

logε

)

dx

dt
= 0+O

(

1

logε

)

. (13)

In other words, the term of order unity in the total translational

motion of a squirmer near a wall vanishes, and the leading order

speed decays as O(1/ logε) as the squirmer approaches the wall.

It is not possible to calculate the numerical value of this term from

lubrication theory, since it depends on longer-range interactions

between the whole squirmer and the wall35. Since this logarith-

mic decay is very weak, the leading order term will remain com-

parable to u0 except for squirmers extremely close to surfaces. In

the current simulations ε & 0.1, giving |1/ logε|& 0.4, which is not

small. Hence, it is not contradictory that, in simulations, we see

ux increase as the squirmer approaches the wall: this is probably

because the swimmer does not approach the wall very closely in

the simulations. The lubrication calculations merely predict that,

for a sufficiently close approach, the translational speed of the

squirmer will begin to decrease and eventually slow to zero. For
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uc

Fx

Ty

u0

x
z

φR

Ω

ux

×
ǫR

Fig. 9 Definition of the geometry of a spherical squirmer of radius R next

to a plane surface. The ŷ direction is into the page. In the bulk, the

squirmer would move at speed u0 along the direction shown, at angle φ

from the horizontal. The squirmer is axisymmetric around this axis. uc is

the slip velocity at the point of closest approach, indicated by ×. At this

point, the squirmer wall gap is εR. The fluid flow generates a force Fx and

torque Ty on the squirmer, around its centre, which generate translation

at speed ux along the x-axis, and rotation, at angular velocity Ω around

the y-axis.

the vertical speed, uz, the term of order unity also vanishes34, so

we do not calculate uz here. For the rotational motion, the next-

to-leading order term also decays as O(1/ logε), so it will also be

significant.

We can provide an intuitive justification for Eq. (11)-(12). As

the swimmer gets closer and closer to the surface, most of the

viscous dissipation will occur in the thin region around the con-

tact point. We would therefore expect the solution to minimise

the dissipation in this region. This can be done by ensuring that

there is no difference in fluid velocity between the particle and

the plane surface at this point of contact. Hence, the total veloc-

ity on the particle surface, taking into account the slip velocity

and the solid-body motion of the particle should, in the limit of

infinitessimal gap size, approach zero, i.e.,

lim
ε→0

(uc +ux −RΩ) = 0 . (14)

This condition is satisfied (but not uniquely) by Eq. (11)-(12). It

is not satisfied by the original result derived in Ref.34.

A.4 Calculation of Lubrication Force and Torque

We briefly repeat here the lubrication calculations of Ref.34, to

obtain the results in Eq. (8)-(9). This calculation is identical to

the standard calculation of the forces and torques of a no-slip

sphere near a surface35, except for the new boundary condition

on the sphere surface introduced by the finite slip velocity.

We will calculate Fx and Ty, which are the force and torque

produced on the squirmer by its squirming motion when it is

held fixed relative to the wall, translationally and rotationally. To

do this, we define a cylindrical coordinate system (ρ∗,z,ψ), with

ρ∗2 = x2 + y2 and tanψ = y/x, where the origin of the coordinate

system is the point on the plane immediately above the squirmer’s

centre. The boundary of the squirmer is defined by z = h(ρ∗,φ),

and in the vicinity of the contact point is given by

h = −R

(

ε +
ρ∗2

2R2
+O

(

ρ∗4

R2

))

. (15)

To ensure that the equations of motion are all of order unity, we

use the dimensionless stretched variables X , Y, Z, H, ρ, with the

scaling

ε1/2RX = x, ε1/2RY = y, ε1/2Rρ = ρ∗ (16)

εRZ = z , εRH = h . (17)

The stretched height H is

H =−1−
ρ2

2
+O(ε) . (18)

The fluid velocity field u has x, y, z components u, v and w respec-

tively. In the stretched coordinate system, the Stokes equations

are

η

(

ε∇2
‖+

∂ 2

∂Z2

)

u = Rε

(

ε1/2 ∂ p

∂X
, ε1/2 ∂ p

∂Y
,

∂ p

∂Z

)

, (19)

ε1/2

(

∂u

∂X
+

∂v

∂Y

)

+
∂w

∂Z
= 0 . (20)

where ∇‖ = x̂∂/∂X + ŷ∂/∂Y and with fluid viscosity η and pres-

sure p. No-slip boundary conditions apply on the plane surface:

{u,v,w}|Z=0 = 0, and we write the boundary velocity on the up-

per surface as u(Z = H) = U , v(Z = H) = V and w(Z = H) = W .

Expanding the boundary conditions as power series in orders of

ε1/2 around ρ = 0, we have

U =uc +O(ε1/2) , (21)

V =0+O(ε1/2) , (22)

W =0−ucε1/2ρ cosψ +O(ε) . (23)

Performing a similar expansion for the velocity and pressure in

the thin swimmer-surface gap gives

u = u0 + ε1/2u1 +O(ε) , (24)

v = v0 + ε1/2v1 +O(ε) , (25)

w = 0+ ε1/2w0 + εw1 +O(ε3/2) , (26)

p = ε−3/2
[

p0 + ε1/2 p1 +O(ε)
]

. (27)

Here, the subscripts 0 and 1 indicate the leading and next-to-

leading order components of the solution. Here, we will derive

only the leading order terms. From Eq. (19), p0 is independent

of Z. Integrating Eq. (19) over Z and solving for u0 and v0 then
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gives

u0 =
R

2η

∂ p0

∂X
(Z −H)Z +

Z

H
uc , (28)

v0 =
R

2η

∂ p0

∂Y
(Z −H)Z . (29)

Combining these solutions and using the equation of continuity

(Eq. (20)) yields, after some algebra

H3R

12η
∇2
‖p0 −

H2R

4η
ρ ·∇‖p0 −

1

2
ucρ cosψ = 0 . (30)

Inserting the ansatz p0 = q0(ρ)cosψ then gives an equation in

terms of ρ alone

H3R

12ρ2η

∂

∂ρ

(

ρ
∂q0

∂ρ

)

−
H3R

12ρ3η
q0 −

H2R

4η

∂q0

∂ρ
+

1

2
uc = 0 . (31)

which has the particular solution

q0 =−
6ηρ

5H2R
uc . (32)

As discussed in34, the conditions that p0 be finite everywhere

means that this is the only physically relevant solution.

Next, we rewrite the x,y velocities in the cylindrical polar coor-

dinate system, i.e.,

u = uρ ρ̂+uψ ψ̂+uzẑ . (33)

Using the ansatz

uρ = cosψ ũρ (ρ) , (34)

uψ = sinψ ũψ (ρ) , (35)

we obtain for the in-plane components

ũρ =
R

2η
(Z −H)Zq′0 +

Z

H
uc , (36)

ũψ = −
R

2η
(Z −H)Z

q0

ρ
−

Z

H
uc , (37)

where the prime indicates the radial derivative ∂/∂ρ.

To obtain the total horizontal force Fx on the swimmer, we in-

tegrate small elements of force over the swimmer surface S, i.e.,

Fx =
∫

S
dFx , (38)

where35

dFx = x̂ ·σ · n̂dS , (39)

with σ the stress tensor, and dS an infinitesimal area el-

ement. We evaluate the stress tensor in cylindrical polar

coordinates, but use spherical polar coordinates centred on

the particle centre, with the polar angle χ = 0 at the point

of closest approach, to specify the normal n̂. This gives

dFx =
[

−psin χ cosψ +η
(

sin χ cosψτρ∗ρ∗− sin χ sinψτπρ∗+ cos χ cosψτρ∗z − cos χ sinψτψz

)]

dS . (40)

where τ is the rate of strain tensor, with components (in the unstretched coordinates z,ψ,ρ∗)

τρ∗ρ∗ = 2
∂vρ

∂ρ∗
, τψρ∗ = ρ ∗

∂

∂ρ∗

(

vψ

ρ∗

)

+
1

ρ∗

∂vρ

∂ψ
,

τρ∗z =
∂vρ

∂ z
+

∂vz

∂ρ∗
, τψz =

∂vψ

∂ z
+

1

ρ∗

∂vz

∂ψ
, (41)

and dS = R2 sin χdχdψ is the area increment in spherical polar coordinates. Inserting the expansions for the velocities and rescaling into

the stretched coordinates gives

dFx =

{

−ε−3/2q0 sin χ cos2 ψ +
η

R

[

2ε−1/2 sin χ cos2 ψ
∂ ũρ

∂ρ
− ε−1/2 sin χ sin2 ψ

(

ρ
∂

∂ρ

(

ũψ

ρ

)

−
1

ρ

∂ ũρ

∂ψ

)

+ (42)

+cos χ cos2 ψ

(

ε−1 ∂ ũρ

∂Z
+

∂ ũz

∂ρ

)

− cos χ sin2 ψ

(

ε−1 ∂ ũψ

∂Z
−

1

ρ

∂ ũz

∂ψ

)]}

dS

∣

∣

∣

∣

Z=H

. (43)

Performing the integral over ψ gives

Fx = R2π

∫ π

0

{

−ε−3/2q0 sin χ +
η

R

[

2ε−1/2 sin χ
∂ ũρ

∂ρ
− ε−1/2 sin χ

(

ρ
∂

∂ρ

(

ũψ

ρ

)

−
1

ρ

∂ ũρ

∂ψ

)

+

+cos χ

(

ε−1 ∂ ũρ

∂Z
+

∂ ũz

∂ρ

)

− cos χ

(

ε−1 ∂ ũψ

∂Z
−

1

ρ

∂ ũz

∂ψ

)]}

sin χdχ

∣

∣

∣

∣

Z=H

. (44)
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To perform the integral over χ, we expand to first order around

χ = 0, giving sin χ = ε1/2ρ +O(ε). The inner, lubrication re-

gion extends to some real distance ρ∗
0 of order the particle size,

ρ∗
0 = DR, where D = O(1) is an unknown constant which can be

obtained by matching to the outer solution. In the stretched coor-

dinate system, the corresponding limit is ρ0 = Dε−1/2. To lowest

order

Fx = R2π

∫ ρ0

0
−q0ρ2 +

ηρ

R

(

∂ ũρ

∂Z

∣

∣

∣

∣

Z=H

−
∂ ũψ

∂Z

∣

∣

∣

∣

Z=H

)

dρ , (45)

and evaluating this integral gives

Fx = −
8πηRuc

5
log(ρ0)+O(1) . (46)

We wish to express Fx in terms of ε. As discussed in Ref.34,35, we

do not need to determine the unknown constant D in order to do

this, because logρ0 =−(1/2) logε + logD, so the value of D can be

absorbed into the O(1) term. Hence we obtain the expression in

Eq. (8).

The torque Ty can be calculated in the same way by integrating

the differential elements of torque34

dTy = R [(n̂ · ẑ)x̂− (n̂ · x̂)ẑ] ·σ · n̂dS , (47)

giving, after the same steps as above, the integral

Ty = R3π

∫ ρ0

0

ηρ

R

(

∂ ũρ

∂Z

∣

∣

∣

∣

Z=H

−
∂ ũψ

∂Z

∣

∣

∣

∣

Z=H

)

dρ , (48)

which yields the expression in Eq. (9). As stated in the previous

section, standard results then give the speed and rotational ve-

locity of the squirmer when it is not held fixed. From Ref.35, to

lowest order

Ω =
RFx +4Ty

12πηR3 log(1/ε)
, (49)

ux =
4RFx +Ty

12πηR2 log(1/ε)
, (50)

which gives Eq. (11)-(12).

A.5 Matching Lubrication and Far-field Results

In order to obtain a result which can be compared with the

simulation results everywhere, we perform a matched asymp-

totic expansion of the near-field and far-field results. We define

q = R/h′ = 1/(1+ ε). Then, the far-field corresponds to q → 0,

while the near-field corresponds to ε → 0. In the near-field, the

next-to-leading-order term is O(1/ logε), so, in order to match

this term to the far-field we define the function

f (q) =
2q

log
(

1+q
1−q

) , (51)

which has the near-field limit f → −2/ log(ε), and the far-field

limit f → 1. For intermediate values, f (q) is smooth and

monotonic. We then use the following matched expansion

1

Ru0

dφ

dt
= cosφq4

[

−
3

2
+

(

21

16
+ c1q2

)

f (q)

]

+β sin(2φ)q3

[

−
3

4
+

(

57

64
+ c2q2

)

f (q)

]

, (52)

where c1 and c2 are constants to be determined by matching

to the simulations. This expansion matches both the lubrication

results and the far-field results in their respective domains of ap-

plicability, with corrections of O(1/ logε) in the near field, and

O(βq5) and O(q6) in the far-field, which is the next order of ap-

proximation there26. There are two next-to-leading-order terms

in the far-field because we have linearly independent contribu-

tions from the n = 1 and n = 2 Legendre components of the slip

velocity.

With the fitting parameters, c1 = 1, c2 = 0.29, we obtain semi-

quantitative agreement with the simulation results. Because of

the very slow decay of the next-to-leading-order terms in the lu-

brication theory, we would not expect an exact match. Thorough

testing of the lubrication theory would require simulations where

the swimmer approaches much closer to the plane surface.
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