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Jammed packings of repulsive elastic spheres have emerged as a rich model system within which
elastic properties of disordered glassy materials may be elucidated. Most of the work on these
packings have focused on the case of vanishing temperature. Here, we explore the elastic properties
of the associated connectivity network for finite temperatures, ignoring the breaking of bonds and the
formation of new ones. Using extensive Monte Carlo simulations, we find that, as the temperature
is increased, the resulting spring network shrinks and exhibits a rapidly softening bulk modulus via
a cusp. Moreover, the shear modulus stiffens in a fixed volume ensemble but not in a fixed pressure
ensemble. These counter-intuitive behaviors may be understood from the characteristic spectrum of
soft modes near isostaticity, which resembles the spectrum of a rod near its buckling instability. Our
results suggest a generic mechanism for negative thermal expansion coefficients in marginal solids.
We discuss some consequences of bond breaking and an apparent analogy between thermalization
and shear.

Jammed packings of repulsive elastic particles exhibit
a number of remarkable features that makes them dif-
ferent from conventional solids and a rich model system
for fragile matter [1, 2]. One of these features is an ex-
cess of soft, low-frequency vibrational modes [3], the so-
called boson peak. Numerous consequences can be de-
rived from this peculiar vibrational spectrum, with re-
gards to, for instance, elastic or transport properties [4–
6]. Some of these features are shared with lattices close
to isostaticity [7–12], which may be exploited to develop
meta-materials with novel mechanical properties [13, 14].

While most studies have focused on the zero-
temperature consequences of the vibrational spectrum,
we here study the impact of thermal fluctuations. Specif-
ically, we consider the harmonic connectivity network
obtained from a jammed packing of repulsive, friction-
less spheres close to isostaticity, and study its mechanical
properties as we heat up the system to a low but finite
temperature.

Elastic properties of ordered and disordered networks
of springs at finite temperatures have been studied previ-
ously [15–17]. Most recently, motivated by the attractive
properties of highly responsive marginal solids for ma-
terial science and biophysics, spring networks have been
studied near the isostatic threshold [10–12, 18]. These
studies revealed, amongst others, interesting anomalies
in the entropic elasticity. While these studies have fo-
cused on networks that have soft bulk and shear mod-
uli, as in rigidity percolation [19], it is a characteristic of
jammed networks, studied in this work, to have a finite
bulk modulus at isostaticity [8]. As we will see, this has

∗
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major consequences for the impact of thermal fluctua-
tions on the material properties of the network.

Simulation approach. To prepare the initial condi-
tions for our simulations, we generate jammed packings of
repulsive elastic spheres. Each packing is created through
an energy minimization protocol with thermal equilibra-
tion, as described in Ref. [4]. The protocol results in a
series of contact networks at different coordination num-
bers above a critical value zc = 4.

The minimal contact number zc per particle re-
quired for rigidity follows from Maxwell’s counting ar-
gument [20]. Since there are d degrees of freedom for
a point particle, one needs at least zc = 2d contacts to
constrain the positions of all particles. Networks with zc
contacts are called isostatic.

Our hyperstatic contact networks (z > zc) are then
modeled as a network of Hookian springs. The effect of
thermal fluctuations on our spring network is simulated
as in Ref. [15] using the Metropolis Monte Carlo algo-
rithm. Briefly, in each computational step, a vertex trial
move is made. Energy decreasing steps are always ac-
cepted. Steps that increase the energy are accepted with
a probability proportional to the corresponding Boltz-
mann factor. After each vertex trial move, a trial move
to change the volume is performed.

Due to the small temperatures considered, crossing of
bonds is very unlikely, although it is not penalized in our
network simulations. Also, contacts do neither break nor
form in the course of our network simulations. (Some
consequences of bond breaking in particle packings are
discussed below.)

We use these simulations to extract, first as a func-
tion of temperature, pressure and coordination, the elas-
tic network properties. We mostly focus on the total
network area A(T, p, z) and the negative thermal expan-
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sion coefficient NTE ≡ ∂T ln(A). The elastic response
to uniform compression and shear are described by the
bulk modulus B−1 ≡ −∂p ln(A) and the shear modu-
lus G ≡ ∂ασshear|α=0, respectively. (The shear stress
σshear(T, p, z, α) is a function of shear angle α.) These
linear response coefficients are determined in our simu-
lations from the mean squared displacement of area and
shear-angle via fluctuation-dissipation relations [21]. Fi-
nally, we explore how the elastic properties change when
adjust the pressure to keep the volume fixed (NVT en-
semble).

I. SIMULATION RESULTS

At fixed tension (negative pressure), we observe
that our spring networks contract linearly with in-
creasing temperature, as was found previously in high-
coordination number networks [15]. Importantly, we find
that the contraction diverges in a characteristic way as
the connectivity approaches isostaticity.

Specifically, we find that the negative thermal expan-
sion coefficient, NTE, exhibits a singularity as the aver-
age contact number per particle approaches isostaticity.
For vanishing tension τ , we find that the NTE scales in-
versely with the distance δz = z − zc from the critical
contact number. For large tensions, on the other hand,
the NTE∼ τ−1/2 is independent of contact number. Fig.
1 shows that the data for different T , δz and τ collapse
onto a master curve when we plot NTE δz vs. τδz−2.
The deviations suggest that the collapse for larger ten-
sions only works for small enough δz.

Like jammed packings, our networks are stiff to a uni-
form compression. A relative change δA/A in area re-
quires a similar relative change of the length of most
springs. Consequently, the scale of the bulk modulus
B0 of zero-temperature jammed networks is set by the
product of spring constant and co-ordination number.

By contrast, as we turn on temperature, we see that the
material becomes much softer to compression, which is
manifest by a cusp in the bulk modulus. Specifically, the
difference B−1−B−1

0 scales as Tδz3 for vanishing tension,
Fig. 2. As we increase the tension on the network, the
behavior crosses over to being proportional to T/τ3/2.

The shear modulus is inconspicuous for small enough
tension, as it follows the zero temperature result G ∼ δz,
which is small near the critical point due to soft modes.
For fixed area, however, the shear modulus crosses over to
G ∼ T 1/3 once the product Tδz3 becomes of order unity,
as shown in Fig. 3. This behavior is markedly different
from the scaling G ∼ T 1/2 observed in disordered spring
networks near isostaticity [10].

In summary, we find that jammed networks contract
upon heating and, respectively, become more tensed at
fixed volume. As a consequence, the bulk modulus soft-
ens for fixed pressure and the shear modulus hardens for
fixed volume.
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FIG. 1: Scaled Negative thermal expansion coefficient (NTE)
as a function of rescaled tension τδz−2 for various combina-
tions of temperature and coordination number difference δz
from criticality. The dashed and solid red lines represent our
scaling predicitions for small and large tension. The network
size is N = 2000.
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FIG. 2: The scaled difference of inverse bulk modulus at fi-
nite temperature and tension, B−1, and at zero temperature
and tension modulus, B−1

0
, on a double logarithmic scale as

a function of scaled tension, τδz−2. Different data sets cor-
respond to different combinations of temperature and δz, as
indicated in the legend. The dotted and solid orange line
indicates our scaling predictions for small and large tension,
respectively. The network size is N = 2000.

II. INTUITIVE PICTURE BASED ON A
SQUARE LATTICE

We now show that these properties are a consequence
of the peculiar vibrational spectrum of jammed networks.

The basic physics can be understood by considering the
square lattice in Fig. 4. Despite being ordered, this iso-
static lattice shares the vibrational properties of jammed
networks at criticality. Soft modes are easily identified as
zig-zag modes that can be excited at zero tension with-
out energy cost. There are O(N1/2) such zig-zag modes,
one for each boundary node. The deformations induced
by one of these soft modes are indicated by arrows in the
figure.
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FIG. 3: Scaled shear modulus on a double logarithmic scale
as a function of scaled temperature Tδz−3. Different data
sets correspond to different combinations of temperature and
δz, as indicated in the legend. The coordination δz is ranged
from 10−2 to 1.99 in 100 log-spaced steps. The dashed and
solid lines indicate our scaling predictions for small and large
temperature, respectively. The network size is N = 1600.

Excitation
L(1− ǫ)L

FIG. 4: Effect of floppy mode fluctuations on a square
lattice. (Left) A square lattice of linear dimension L at van-
ishing temperature. (Right) The red arrows indicate one of
the Ld−1 soft modes of the lattice. Excitation of this partic-
ular soft mode, for instance by thermal fluctuations or shear
stress, leads to the contraction of the vertical end-to-end dis-
tance. In this state, an external tension will pull out the zig-
zag undulations rather than stretch individual bonds. These
features are generic to jammed networks, which likewise con-
tract upon excitation as we argue based on the known spec-
trum of soft modes.

Given this cartoon picture of an isostatic network, an
important observation can be made that may, at first,
seem special to the square lattice: Exciting the said zig-
zag modes turns straight system-spanning lines into bro-
ken lines of shorter end-to-end distance. As a conse-
quence, thermally exciting many such modes leads to a
collapse of total network area (volume in 3D).

A finite negative thermal expansion coefficient is ob-
tained when one rigidifies the lattice, which can be done
in various ways. Here, we focus on adding δz extra con-
tacts per node and on applying a tension τ . The erstwhile
zero-frequency modes now stiffen in a characteristic way.
As a consequence, the negative thermal expansion coeffi-
cient acquires a finite value that diverges as a powerlaw as
δz and the tension vanish. The feature of straight lines
reducing their end-to-end distance by thermal undula-
tions is reminiscent of the physics of polymers [22, 23].
Indeed, we will see that the mode spectrum of near iso-

static networks and semiflexible polymers has striking
similarities.
Pulling the boundaries of the non-excited square lat-

tice, i.e. one applies a tension, obviously stretches the
springs in a simple affine way. This explains why the
zero-temperature bulk modulus is given by the spring
constant. At finite temperature, however, soft modes are
excited and the lattice is characterized by jagged lines.
An external stretching force now can pull out undula-
tions of these jagged lines rather than affinely stretch-
ing bonds. The bulk modulus, thus, softens due to the
presence of undulations that can be pulled out. This
phenomenon is equivalent to the longitudinal response of
semiflexible polymers being finite only at finite tempera-
tures, where undulations exist that can be pulled out by
external forces [22, 23].
At fixed area, exciting soft modes requires stretching

of bonds. As a consequence, the tension in the networks
increases. This increase in tension stabilizes the network
by generating a finite shear modulus at isostaticity.
Next we turn these intuitive arguments into scaling

arguments to show that, actually, the above behavior is
not special to square lattices but characteristic for the
harmonic response of jammed packings. Afterwards we
will discuss the relation of our results to random networks
generated in other ways, for instance by randomly cutting
excess bonds.

III. SCALING ARGUMENTS

Our scaling analysis is based on an estimate of how
the positional fluctuations of the nodes in the network
depend on temperature and tension. These fluctuations
can then be used to estimate the negative thermal ex-
pansion coefficient and the elastic moduli.
We assume that the spring constant k and rest length

a of the springs (at vanishing temperature and pressure)
is identical for all springs. Thus, it is convenient to mea-
sure lengths in units of a, energies in units of ka2, the
temperature T in units of ka2/kB and the tension in units
of k. Equivalently, we set a = 1 and kB = 1.
Since our goal is to explain the observed scaling laws,

we will not keep track of numerical pre-factors of order
unity.

A. Mean Square Displacement

We consider a large hyperstatic d-dimensional spring
network with co-ordination number zc + δz above the
minimal isostatic value zc = 2d needed for rigidity [20].
Close to the isostatic connectivity number, the vibra-
tional mode spectrum exhibits an anomaly: The density
D(ω) of modes with frequency ω approaches a plateau,
called boson peak in the glass community, above a fre-
quency of order ω∗ ∼ δz. This behavior is in stark con-
trast to highly co-ordinated networks, which exhibit the

Page 3 of 7 Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



4

scalingD(ω) ∼ ω2 expected for a continuous elastic solid.
The excess low-frequency modes result from extended
soft modes that appear if the network is larger than a
characteristic length scale l∗ ∼ δz−1, the so-called point-
to-set correlation length [24].

Importantly, under tension τ , the energy of an ex-
cited soft modes is shifted by an amount proportional
to the rescaled tension τ : if a soft mode has frequency
ω0 under vanishing tension, its frequency ωτ at finite ten-
sion is given by ω2

τ = ω2
0 + c1τ with c1 being a positive

constant of order unity. The dependence of mode fre-
quency on tension follows from the fact that a broken
line reduces its end-to-end distance roughly by a frac-
tion (δR/a)2/2 ∼ δR2 when excited by a typical nodal
displacement δR (see, e.g., the soft mode excitation in
Fig. 4). For a careful derivation of the mode spectrum,
see the argument in Ref. [5] and its revision in Ref. [25].

An excited single mode of frequency ω stores an en-
ergy of order LdδR2

ωω
2 in terms of the mean squared

displacement δR2
ω (averaged over all nodes). At equilib-

rium, each mode should store an energy of kBT/2, as
dictated by the equipartition theorem. Thus, we expect
that each floppy mode generates a mean square displace-
ment of 〈δR2

ω〉 ∼ L−dTω−2
λ , with the angled brackets

indicating a thermodynamic average. The total mean
square displacement 〈δR2〉 follows from the integral

〈δR2〉 ∼
∫ 1

ω∗

dω0

T

ω2
0 + c1τ

(1)

ω∗ ≪ 1∼ arctan [
√
c1τ/ω∗] (c1τ)

−1/2 (2)

∼
{

Tδz−1 τδz−2 ≪ 1

Tτ−1/2 τδz−2 ≫ 1
. (3)

where we employed the above-mentioned plateau
D(ω) =const.∼ O(Ld) in the density of states at zero-
tension that appears above the frequency ω∗ ∼ δz ≪ 1.
Note that the resulting scaling predictions are in good
agreement with our data collapse in Fig. 5.

B. Contraction

Next we study how the (negative) expansion δA of
the network area A depends on temperature and ten-
sion. Two contributions have to be considered. The first
contribution is the affine expansion of network bonds in
response to a finite tension. This zero-temperature con-
tribution is positive but it turns out to be subdominant
compared to the soft mode contribution at finite temper-
ature and close to the critical point.

At zero temperature, the bulk modulus is given by
B0 ∼ z, the average number of springs per node, be-
cause most springs are stretched by the same amount in
response to a tension. Equivalently the relative extension
ǫ0 is given by ǫ0 = τ/B0 ∼ τ/z in terms of the tension τ .
Heating induced contraction is caused by the excita-

tion of floppy modes. As we have mentioned above,
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FIG. 5: Nodal fluctuations in spring networks derived from
jammed particle packings. The scaled total mean square dis-
placement 〈δR2δz/T is shown as a function of τδz−2 for com-
binations of two temperatures and three different δz. The
asymptotics derived from our scaling arguments are plotted
on top of the data.

one excited floppy mode generates a contraction of or-
der 〈(δRω/a)

2/2〉 ∼ 〈δR2
ω〉. Thus, the heating-induced

negative extension ǫT ∼ −〈δR2〉 scales the same way as
the mean square nodal displacements.
We expect the total extension to be given by the sum

of the both contributions,

ǫ = ǫ0 + ǫT ∼ τ

z
− c2 〈δR2〉 . (4)

where we introduced another factor c2 of order unity.
The negative thermal expansion coefficient follows from
differentiation with respect to temperature,

NTE = −∂T ǫ ∼
{

δz−1 τδz2 ≪ 1

τ−1/2 τδz2 ≫ 1
. (5)

These two asymptotic regimes are indeed consistent with
our Monte Carlo simulation results in Fig. 1.
The bulk modulus follows from differentiation with re-

spect to the tension, B−1 = ∂τ ǫ. The temperature in-
duced change is

B−1 −B−1
a ∼ −∂τ 〈δR2〉 ∼

{

Tδz−3 τδz−2 ≪ 1

Tτ−3/2 τδz−2 ≫ 1
.

(6)
We have thus obtained a scaling-level explanation for the
observed cusp in the bulk modulus (Fig. 2).

C. Shear modulus and fixed volume ensemble

The zero-temperature shear modulus of jammed sys-
tems is soft close to isostaticity, as has been extensively
studied in the literature [5, 9]. The characteristic shear
modulus

G ∼
{

δz τδz−2 ≪ 1

τ1/2 τδz−2 ≫ 1
(7)
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is a direct consequence of the above spectrum and density
of soft modes.

If the volume is kept fixed, temperature will generate
a nonzero tension, which may stiffen the shear modulus.
The tension generated can be estimated by setting ǫ = 0
(or more generally to a given pre-described value) in (4),

τǫ=0 ∼
{

Tδz−1 T ≪ δz3

T 2/3 T ≫ δz3
. (8)

Inserting this scaling behavior for the tension into (7),
we get

G ∼
{

δz T ≪ δz3

T 1/3 T ≫ δz3
. (9)

We thus obtain the scaling G ∼ T 1/3 in the critical
regime, which is in agreement with simulations (Fig. 4).

IV. DISCUSSION

We have shown that the elastic properties of near-
isostatic spring networks derived from jammed packings
of elastic spheres exhibit critical behavior upon heating.
At fixed finite tension, the negative thermal expansion co-
efficient (NTE) diverges as τ−1/2 at isostaticity (δz = 0).
At vanishing tension, networks shrink with a NTE diverg-
ing as δz−1. Concomitantly, the bulk modulus exhibits
a cusp at criticality.

At fixed volume, the tendency to shrink leads to a rapid
build-up of tension. As a consequence, the shear modulus
at criticality stiffens with temperature as G ∝ T 1/3. Our
arguments predict that the region of stability is wider in
heated networks, as illustrated in the phase diagram of
Fig. 6: As the temperature increases tension builds up
to stabilize the network down to −δz ∼ T 1/3.

It is useful to compare our results with those of Den-
nison et al. [10], in which spring networks at fixed vol-
ume close to isostaticity were also studied. The authors
found that the shear modulus at criticality increases with
temperature as G ∼ T 1/2. This intriguing result is in
contrast with our setup, which as mentioned exhibits
G ∼ T 1/3.

This discrepancy indicates that the elastic properties
of spring networks not only depend on the co-ordination
number but also on the way that networks are prepared,
as has been previously observed at zero temperature [8].
Dennison et al. started with highly co-ordinated net-
works and gradually removed springs until a given coor-
dination number was achieved. These randomly diluted
networks, which we call ”pruned”, are in contrast to our
networks, which were generated at given co-ordination
numbers directly from simulated particle packings. The
comparison of the bulk moduli in both network types in
Fig. 7 shows that pruned networks exhibit a soft bulk
modulus for all temperatures in contrast to jammed net-
works, which have a bulk modulus of order the spring
constant at vanishing temperature.

A
re
a

Iter

δz

G ∼ δz

T Tc ∼ δz3

G ∼ T 1/3

FIG. 6: Effect of thermal fluctuations on the shear
modulus at fixed volume. In this schematic phase diagram
of the shear modulus, we indicate the phase boundary Tc ∼
|δz|3 separating the zero-temperature behavior G ∼ δz from

a thermally-stabilized regime G ∼ T 1/3. The latter regime
widens rapidly as temperatures are increased.

The structural differences of the different network
types must also be accommodated in the analytical scal-
ing picture. Our above arguments rely on the assump-
tion that the pressure couples to the soft modes only via a
change in frequency, which is well-established for jammed
packings. However, for other network preparations, the
pressure might also couple linearly to the soft modes (like
a shear stress). This will lead to a softening of the bulk
modulus, as can be accommodated by introducing an ap-
propriate coupling term in our scaling arguments. A sim-
ilar effect appears in polymer physics, where it may be
easier to apprehend: The linear response of a semiflex-
ible polymer to a longitudinal stretching force is quite
stiff, unless the force exhibits a (possibly small) trans-
verse component upon which the response is dominated
by the soft bending modes.

Finally, we hypothesize that heating in close-to-
isostatic networks is somewhat analogous to shearing the
network by a shear angle α ∼ T 1/2: In other words,
we are suggesting that all available floppy modes are ex-
cited by roughly the same amount of energy, propor-
tional to α2. This shear-equipartition assumption for
soft modes is consistent with existing scaling analyses,
in particular Ref. [7]. Moreover, the so far unexplained
temperature scaling G ∼ T 1/2 for pruned networks then
becomes simply a consequence of the scaling G ∼ α
for isostatic pruned networks at zero tension [7]. Ex-
tended to the shearing of jammed, rather than pruned,
isostatic networks, we moreover recover the scaling of
the negative shear dilatancy observed for fixed pressure
in Ref. [26]. At finite volume, on the other hand, we pre-
dict that shearing jammed networks will lead to a sharp
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FIG. 7: Effect of structure on bulk modulus. Bulk
modulus for networks from packings(solid line) and
their pruned counterparts where pruning started
from δz = 1.99(dashed line) and δz = 0.61(solid and
dotted line). The bulk modulus softens with T for the net-
works from packings while it is temperature-independent for
the pruned networks. The upper bound of the bulk mod-
ulus is given by the networks from jammed packings when
considered as a variational problem. We see that the pruned
networks do not couple to the tension like the networks from
jammed packings do. The bulk modulus is compared to its
value at zero-temperature far away from the isostatic point
δz = 1.99. Note that the bulk modulus of pruned networks
is well-described by a scaling ∝ δz1.5. The same scaling be-
havior was observed for shear moduli in the pruned networks
of Ref. [7] close to isostaticity. In contrast, the networks for
jammed packings maintain their bulk modulus approaching
the isostatic point unless they get softened by temperature.
In the limit of zero temperature the networks obtained from
jammed packings have a large bulk modulus while the one of
pruned networks vanishes, also see [8]. The wiggly data for
pruned networks stems from every δz data point being pruned
independently. System size is N = 100.

rise G ∼ α2/3 of shear modulus with shear angle, con-
trasting with the linear rise in pruned networks [7].

Ultimately, the response of our thermalized networks
to tension (pressures) results from the phonon spectrum
being dominated by many soft modes with frequencies
that sensitively depend on tension. Similar mode spectra
arise in (semiflexible) biopolymer networks, which there-
fore also exhibit negative thermal expansion coefficients
and shear dilatancy [27–29].

Our study focused on spring networks without the pos-
sibility of change in connectivity, in particular by bond
breaking. A jammed random close pack of elastic spheres
simply has no space to contract. Hence, heating of such
packings without free space must immediately lead to
bond breaking to ensure a mode spectrum consistent with
the density constraint. Contraction as observed in our
simulation may occur if a packing is over-coordinated
(i.e. due to compression) or exhibits enough free volume
and some degree of attractive interactions. We expect
that the mean square displacement is the quantity most
robustly observed in packings, as it does not rely on the
precise coupling of external forces and local tension.
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