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ciples, microscopic theories will automatically account for many-

body hydrodynamic interactions and chemical gradients on both

large and small scales. These desirable features are achieved

at the cost of having to explicitly treat the dynamics of all con-

stituents of the system, namely the motors, the reactive chemical

species and the solvent, at a particle-based level.

Microscopic models have been constructed previously and used

to investigate chemically-powered motors.10,25–32 In contrast to

these models, the microscopic model described in this paper in-

volves only hard interactions between the Janus motor and sol-

vent species. The model captures all of the essential features of

the motor mechanism, is simple to treat theoretically and has the

advantage that its dynamics may be simulated efficiently.

The paper is structured as follows: The model for an active

Janus motor propelled through a diffusiophoretic mechanism is

described in Sec. 2. The corresponding continuum theory, which

includes a description of how the system is maintained out of

equilibrium, is presented in Sec. 3. The simulation method and

system parameters are given in Sec. 4. Simulation results for the

dynamical properties of a single Janus particle, along with a dis-

cussion of the quantities needed to make a comparison with the

continuum theory, can be found in Sec. 5. Section 6 gives a brief

description of the behavior of many Janus motors to show that

the model is able to describe the important many-body aspects of

the collective dynamics. A discussion of the results in the paper

are given in Sec. 7.

2 Microscopic model for Janus motors

In this paper we consider a particle-based microscopic model that

combines molecular dynamics for the motor interacting with the

solvent, including reactive chemical species, with a coarse-grain

description of the interactions among all solvent species. In this

model, solvent particles interact periodically only through an ef-

fective collision operator described in detail in Sec. 4 and other-

wise stream freely between collisions with the Janus motor.

Consider a Janus motor of radius R with catalytic and non-

catalytic hemispheres, denoted as C and N, respectively. As shown

in Fig. 1(a), a chemical reaction, A → B, takes place on the C

hemispherical surface that converts fuel particles A to product

particles B and, in the process, produces a concentration gradi-

ent of A and B particles in the vicinity of the motor (Fig. 1(b)).

We assume that such a reaction occurs whenever an A particle

collides with the catalytic hemisphere.

The A and B solvent particles interact with the Janus motor

through a variant of hard-sphere collisions in which the solvent

particles are allowed to penetrate the Janus sphere but experience

modified bounce-back collisions when their distance to the sphere

is less than a specified collision radius. More specifically, at a

position r from the center of mass of Janus motor, the A and B

particles interact with the motor through hard potentials WαJ(r),

WαJ(r) =

{

∞ , r < Rα

0 , r ≥ Rα ,
(1)

where α = A,B, and Rα ≤ R is the collision radius for a particle

of type α interacting with the motor surface. We let R denote the

C

C
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Fig. 1 (a) Sketch of the Janus particle comprising catalytic (C) and

noncatalytic (N) hemispherical surfaces. The chemical reaction, A → B,

occurs on the C surface and converts fuel A particles (green) to product

B particles (light blue). The orientation of the Janus particle ûuu and the

polar angle θ are indicated. (b) An instantaneous configuration drawn

from the simulation of the dynamics of the system shows the distribution

of B particles in the vicinity of the Janus particle.

larger of RA and RB. The collision radii are chosen so that the

quantity R−Rα is small compared to the motor radius.

The rules that govern the bounce-back collisions with the Janus

motor are as follows: Let r and v be the position and velocity of

the solvent particle of species α with mass m, and rJ , vJ and ωωωJ

be the position, linear velocity and angular velocity of the Janus

motor with mass M and moment of inertia I. The relative position

and velocity are defined by r∗ = r− rJ and v∗ = v−vJ .

The bounce-back collision dynamics differs for the A and B par-

ticles and, referring to Fig. 2, can be described as follows. During

free streaming the instantaneous relative positions of solvent par-

ticles of each species α are monitored at each time step δ t and a

bounce-back collision will occur if (r∗ · v∗) < 0, and |r∗| < Rα so

that the particle encountered the collision surface with radius Rα .

We assume that the solvent and Janus motor exchange momen-

tum at position r1 = R r̂1 on the surface of the Janus motor, and

that |v| ≫ |vJ | and |λ − (R−Rα)| is small, where λ is the mean

free path of the solvent particle, so that the relative velocities are

approximately the same at the positions r∗ and r1. To compute

r1, one needs to find the time ∆t that it takes the solvent parti-

cle to travel from r1 to r∗. Note that r∗ = r1 +v∗∆t, which yields

|r∗−v∗∆t|= |r1|. This travel time is

∆t± =
r∗ ·v∗

v∗2
± 1

v∗2

√

(r∗ ·v∗)2 − v∗2(r∗2 −R2), (2)

where the solution ∆t+ is taken, since ∆t− is the time it takes

the solvent particle to travel to the farther surface of the Janus

particle. Therefore, we have

r1 = r∗−v∗∆t+. (3)

At position r1, the velocity of the solvent particle, which is

treated as a spin-less point particle, relative to the moving and

rotating Janus motor surface is

ṽ = v∗−ωωωJ × r1 = ṽn + ṽt , (4)

where ṽn = r̂1(r̂1 · ṽ) and ṽt = ṽ− ṽn are the normal and tangential
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Fig. 2 Application of the bounce-back collision rule for a solvent particle

of type α. When a solvent particle moves with velocity v∗ toward the

Janus particle and finds itself at position r∗ (black dot) inside the

reflecting radius Rα (dashed circle), a bounce-back collision takes place

at the contact position r1 (black triangle) on the surface of the Janus

particle with radius R (solid circle). The travel time from r1 to r∗ is ∆t+

and the postcollision position of the solvent particle is r′ (black square).

components of ṽ, respectively. The momentum exchange during

each collision is given by

∆p = ∆pn +∆pt =−µ∆ṽn −
µI

I +µR2
∆ṽt , (5)

where µ = mM/(m+M) is the reduced mass.28,33 After a colli-

sion, the relative velocity is completely reversed, ṽ′ = −ṽ, and

the velocity changes in the normal and tangential directions are

∆ṽn = ṽ′n− ṽn =−2 ṽn and ∆ṽt = ṽ′t − ṽt =−2 ṽt , respectively. Then,

the post-collision linear and angular velocities are given by

v′ = v−∆p/m, (6)

v′J = vJ +∆p/M, ωωω ′
J =ωωωJ − (r1 ×∆p)/I.

These collision rules conserve the energy as well as the total lin-

ear and angular momentum of the system. After the collision at

the surface of the Janus motor, the post-collision position of the

solvent particle is taken to be r′,

r′ = r−2 v∗∆t+. (7)

Figure 3 (a) shows the conventional bounce-back rule, where

r1 = Rα r̂1, and the particle velocity is reversed upon collision with

the surface at Rα . In the presence of soft repulsive interactions

particles are repelled from the surface and to mimic this effect in

the modified bounce-back model the position of a solvent particle

is shifted according to Eq. (7), and so is the outgoing particle flux

(Fig. 3 (b)). While both simple and modified bounce-back rules

give rise to directed motion, in the modified bounce-back colli-

sion rule the solvent particles are forced to leave the Janus motor

after collision thereby incorporating an effective repulsion in the

dynamics. In general, depending on the nature of intermolecular

interactions between the surface of the Janus motor and solvent

species, one may chose various bounce-back rules that give rise to

directed motion. In these bounce-back collision models, since the

A and B species have different collision cross sections, πR2
α with

the Janus particle, and a concentration gradient of these species

is present, a body force on the motor is produced which leads to

directed motion by the diffusiophoretic mechanism.

R
Rα

(a) (b)

Fig. 3 The collision radius for (a) conventional bounce-back rule at Rα

and (b) modified bounce-back rule at R. The incoming and outgoing

solvent particles are indicated as blue arrows.

3 Continuum model for Janus particle ve-

locity

Theoretical predictions of the diffusiophoretical motion of Janus

motors based on continuum theory in a low Péclet number regime

have been developed previously.34,35 The continuum treatment

assumes that the fluid and reactive species concentration fields

are described by the Stokes and reaction-diffusion equations, re-

spectively. The fluid velocity field satisfies stick boundary con-

ditions on the surface of the motor, and the concentration fields

satisfy reactive “radiation" boundary conditions on the catalytic

part of the Janus motor. Since the reactive chemical species have

different interactions with the Janus motor, the self-generated in-

homogeneous concentration field gives rise to a net body force

on the motor, which, in turn, produces a fluid flow in the bound-

ary layer around the Janus motor within which forces act. The

resulting fluid velocity field at the outer edge of the boundary

layer is the slip velocity, and this slip velocity provides a bound-

ary condition for the solution of the Stokes equation and thereby

determines the velocity field outside the boundary layer that ac-

companies the Janus motor motion. In this continuum theory, the

propulsion velocity of the Janus motor along its symmetry axis,

ûuu, can be calculated from the surface average of the slip velocity,

Vu = −〈ûuu · v(s)〉S, where 〈· · · 〉S = (4πR̄2)−1
∫

S0
dS denotes the sur-

face average at a radial distance r = R̄ corresponding to the outer

edge of the boundary layer.

In general, the solvent particle of type α can interact with the

catalytic and noncatalytic hemispheres through different poten-

tials WαC and WαN , respectively. A concentration gradient of prod-

uct particles created by the reactions on the catalytic surface to-

gether with different interactions of the fuel and product species

with the surface of the Janus motor give rise to a slip velocity

at the outer edge of the boundary layer at R̄. The value of the

axisymmetric slip velocity can be computed using the diffusio-

phoretic mechanism,3,34 and is given by

v(s)(R̄,θ) =− kBT

η
∇θ cB(R̄,θ)

[

ΛN +(ΛC −ΛN)Θ(θ)
]

, (8)

where θ is the polar angle in a spherical polar coordinate sys-

tem (see Fig. 1(a)), ∇θ is the gradient in the tangential direc-

tion, cB is the concentration of B particles, kBT is the thermal

energy at temperature T , η is the viscosity of solvent, and Θ(θ)

1–9 | 3
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is the characteristic function that is unity on the catalytic hemi-

sphere (0 < θ < π/2) and zero on the non-catalytic hemisphere

(π/2 < θ < π). The effects of interactions of the A and B particles

with the Janus particle appear through the factors ΛC and ΛN ,

where

ΛH =
∫ ∞

0
dr r

(

e−βWBH − e−βWAH

)

, (9)

with H =C,N. Here we assume that the species α interacts with

the catalytic and noncatalytic hemispheres with the same poten-

tial, that is ΛC = ΛN = Λ, and Eq. (8) becomes

v(s)(R̄,θ) =− kBT

η
∇scB(s)Λ, (10)

and with hard potentials described in Eq. (1) we have

Λ =
1

2
(R2

A −R2
B). (11)

The concentration field that appears in Eq. (10) may be de-

termined from the solution of a reaction-diffusion equation. The

form that this equation takes depends on how the system is main-

tained in a nonequilibrium state. Fuel A may be supplied and

product B removed at distant boundaries or nonequilibrium re-

actions may occur in the bulk that catabolize product molecules

and generate fuel, similar to the process that occurs in living cells.

To model the latter case, we may assume a reaction of the form

B
k2→ A in the bulk phase that serves to maintain the system in

a nonequilibrium steady state. In the low Péclet number regime,

the steady-state reaction diffusion equation with the bulk reaction

can be written as D∇2cA(r,θ)+k2cB(r,θ) = 0. Since the total bulk

concentration of the solvent particles satisfies c0 = cA + cB, which

we assume to hold locally, this equation may also be written as

(∇2 −κ2)cB(r,θ) = 0, (12)

where we have defined κ2 = k2/D. The reaction-diffusion

equation should be solved subject to the boundary conditions,

limr→∞ cA(r,θ) = c0, while the “radiation" boundary condition36

on the Janus motor that accounts for the catalytic conversion of

A → B on its surface is

kDR̄∂rcA(r,θ)|R̄ = k0cA(R̄,θ)Θ(θ), (13)

where k0 is the intrinsic reaction rate, kD = 4πR̄D is the Smolu-

chowski rate constant for a diffusion controlled reaction.

The solution of the reaction-diffusion equation (12) can be ex-

pressed as a series of Legendre polynomials,

cB(r,θ) = c0 ∑
ℓ

aℓ fℓ(r)Pℓ(u), (14)

where u = cosθ . Substitution of Eq. (14) into Eq. (12) yields a

Bessel equation for the radial function fℓ(r) whose solution, sub-

ject to the boundary conditions given above, can written in terms

of modified Bessel functions of second kind, Kℓ+ 1
2
(κr), as

fℓ(r) =
Kℓ+ 1

2
(κr)

√
κr

√
κR̄

Kℓ+ 1
2
(κR̄)

. (15)

The aℓ coefficients can be determined from the solution to a set

of linear equations as, aℓ = ∑m(M
−1)ℓmEm where

Mℓm =
2Qℓ

2ℓ+1
δmℓ+

k0

kD

∫ 1

0
du Pm(u)Pℓ(u),

Em =
k0

kD

∫ 1

0
du Pm(u), (16)

with Qℓ = κR̄ Kℓ+ 3
2
(κR̄)/Kℓ+ 1

2
(κR̄)− ℓ. The concentration pro-

file in the absence of a bulk reaction (k2 = 0) is recovered

by taking the κ → 0 limit of the equations above. Note that

limκ→0 fℓ(r) = (R̄/r)ℓ+1, corresponding to the solution of the

reaction-diffusion system where fuel is supplied and product re-

moved only at the distant boundaries of the system. Also note

that Kℓ+ 1
2
(κr)/

√
κr → e−κr/κr for large κr, which implies that the

bulk reaction “screens" the power law decay of the concentration

field with the screening length κ−1 =
√

D/k2 which determines

the average distance that a product particle travels from the cat-

alytic surface by diffusion before being converted back to a fuel

particle. We shall use a bulk reaction to maintain the system out

of equilibrium in the simulations presented below.

By taking the surface average of the slip velocity, these results

may now be used to determine the Janus motor velocity, leading

to

Vu =−〈ûuu ·v(s)〉S =
kBT

η

2c0

3R̄
a1Λ =

kBT

η

c0

3R̄
(R2

A −R2
B)a1. (17)

Note that when the solvent particles individually interact with

the same potential with the different hemispheres of the Janus

motor as in this model, the motor velocity depends only on the

ℓ = 1 component of the concentration field due to the fact that

the contributions from the surface average of other modes are

zero. Also note that in the cases where ΛC 6= ΛN , one can see

from the Eq. (8) the propulsion velocity will depend on the value

of ΛC −ΛN .

4 Simulation of Janus motor dynamics

Consider a single Janus motor with radius R, mass M and mo-

ment of inertia I = 2
5 MR2 confined in a cubic box with linear size

L = 50 a0 and periodic boundaries. The simulation volume also

contains A and B solvent particles with mass m and total density

n0 at temperature T . In what follows, we use dimensionless units

where mass is in units of m, lengths in units of a0 and energies in

units of kBT . Time is then expressed in units of t0 = (ma2
0/kBT )1/2.

In these units R = 2.5, n0 = 10, M = 4
3 πR3n0m ≈ 655 and I ≈ 1636.

Solvent particles interact with the Janus motor through mod-

ified bounce-back collisions as discussed earlier. In order to in-

vestigate the dependence of the propulsion velocity on the factor

Λ, various combinations of collision radii, listed in Table 1, were

considered. Solvent particles interact among themselves through

multiparticle collision dynamics (MPCD)37–40, which combines

effective multiparticle collisions at discrete time intervals τ = 0.1

with streaming between two consecutive collisions, so that the

mean free path is λ = τ(kBT/m)1/2 = 0.1. Multiparticle collisions

are carried out by first sorting the particles into cubic cells ξ with

linear size a0. The postcollision velocity of particle i in cell ξ

4 | 1–9
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is given by v′i = Vξ + R̂(vi −Vξ ), where R̂ is a rotation matrix

around a random unit axis by an angle 120◦ and Vξ is the center-

of-mass velocity of all the solvent particles in the cell ξ .41 In the

streaming step, a solvent particle undergoes a bounce-back col-

lision if it is moving toward and encounters the Janus motor as

described in Sec. 2, otherwise its position at next time step is

r(t+δ t) = r(t)+v(t)δ t, where δ t = 0.01 is the time step size. With

the parameters for the solvent given above, the solvent viscosity

is η = 7.93 and the common self diffusion constant for the A and

B solvent species is D = 0.061.

To maintain the system out of equilibrium, bulk reactions con-

verting product B particles back to fuel A particles are carried out

using reactive MPCD.42 At each MPC collision step, the reaction,

B
k2→ A, takes place independently in each cell ξ with probability

pξ (N
ξ
B ) = 1−e−a

ξ
2 τ , where N

ξ
B is the total number of B particles in

cell ξ and a
ξ
2 = k2N

ξ
B with k2 = 0.01 the bulk reaction rate. For our

parameters the screening length is found to be κ−1 ≈ 2.5, about

the same as the radius of the Janus particle.

5 Single Janus particle

A Janus motor can execute forward (Λ > 0), backward (Λ < 0)

directed motion or pure diffusive motion (Λ = 0); also see Movies

S1 and S2 for active motors.†First we investigate the purely diffu-

sive dynamics of a Janus motor with collision radii RA = RB = R so

that Λ= 0. The translational diffusion coefficient of the Janus mo-

tor, DJ , can be obtained from the long time behavior of the mean

squared displacement, MSD(t) = 6DJt, and we find DJ = 0.0028,

which is close to the Stokes-Einstein value, DJ = kBT/6πηR ≃
0.0027. The rotational diffusion coefficient, Dr, can be deter-

mined from the decay of the orientation correlation function,

〈ûuu(t) · ûuu(0)〉 = exp(−2Drt). The simulation result is Dr ≃ 0.00085.

The rotational diffusion coefficient is related to the rotational fric-

tion coefficient, ζr, by Dr = kBT/ζr. The rotational friction coeffi-

cient can be expressed approximately in terms of microscopic and

hydrodynamic contributions33,43,44, ζr = (ζ−1
e + ζ−1

h
)−1 ≃ 1417,

where ζe = 8
3

√

2πkBT µn0R4
[

2M/(5µ + 2M)
]

is the Enskog fric-

tion and ζh = 8πηR3 is the hydrodynamic friction for a spherical

object. Using this expression for the rotational friction coefficient,

we find Dr ≃ 0.0007.

An active Janus motor will undergo directed motion along its

symmetry axis as a result of chemically-powered propulsion, as

well as translational and rotational Brownian motion. The sim-

ulation value of propulsion velocity of an active Janus motor

may be determined from a time and ensemble average of its in-

stantaneous velocity projected onto its instantaneous orientation,

V S
u = 〈vJ(t) · ûuu(t)〉, where 〈...〉 denotes the average over time and

realizations. Table 1 lists the average steady state propulsion ve-

locity, V S
u , for various values of Λ. As expected, the Janus particle

switches from forward to backward motion when Λ becomes neg-

ative, and its speed increases as |Λ| increases. Note that for these

propulsion velocities the Péclet number (Pe =VuR/D) is Pe < 0.4.

In order to compare these simulation results with the predic-

tions of continuum theory, the intrinsic reaction rate coefficient

k0 and the location of the outer edge of the boundary layer R̄

are needed to obtain the coefficient a1 in Eq. (17). The rate

Table 1 Properties of Janus particles with various Λ factors: k0, k f and

kD = 4πDR̄ are the intrinsic, long-time and diffusion-controlled reaction

rate coefficients, respectively; R̄ is the radius of the outer edge of the

boundary layer. V T
u and V S

u are the results of Janus particle velocity

projected along particle axis ûuu from theory and simulation, respectively.

The numbers in parentheses are uncertain digits, e.g.,

1.23(4) = 1.23±0.04.

RA 2.5 2.5 2.5 2.485 2.47
RB 2.47 2.485 2.5 2.5 2.5
Λ 0.075 0.037 0.0 −0.037 −0.075

V S
u 0.0090(3) 0.0043(3) 0.000(1) −0.0044(3) −0.0095(3)

V T
u 0.012 0.0063 0.0 −0.0062 −0.013

k0 14(4) 15(4) 14(1) 15(4) 13(4)
k f 1.75(2) 1.71(1) 1.7(2) 1.71(2) 1.69(1)
kD 2.00 1.94 1.89 1.93 1.94

R̄ 2.60 2.52 2.46 2.52 2.52

Dr 0.00087 0.00083 0.00085 0.00083 0.00084
τr 576 604 586 600 597

DT
e 0.016 0.004 0.0028 0.004 0.018

DS
e 0.02 0.006 0.0028 0.0036 0.02

coefficient k0, that governs the reaction A → B on the catalytic

hemisphere of the Janus motor, can be computed in simula-

tions by monitoring the time evolution of the total number of

fuel A particles in the system arising from the irreversible chem-

ical reactions on the Janus particle.27,45 In the low Péclet num-

ber limit the effects from the motion of the Janus particle can

be neglected. The rate equation for A particle concentration is

dcA(t)/dt = −k f (t)cJcA(t), where cJ = 1/L3 is the Janus motor

number density. Here k f (t) is the time-dependent rate coeffi-

cient for the conversion of A to B, which starts at k f (0
+) = k0

and decays to the asymptotic value k f = k0kD/(k0 + kD).
45 The

outer edge of the boundary layer R̄ can be defined as the distance

within which the microscopic details of the dynamics of the inter-

actions between solvent particles and the Janus particle become

important so that a continuum description is not applicable. From

the asymptotic value of k f = k0kD/(k0 +kD) we may determine kD

and, use its value to determine R̄.

The time-dependent rate coefficient, k f (t), was computed by

measuring −(dcA(t)/dt)/(cJcA(t)) in simulations that started with

all fuel A particles in the bulk of the solution and in the absence

of the B → A bulk reaction (k2 = 0). Table 1 shows the values

of k0 and kD extracted from the simulation data for various Λ

values, and the associated radius of outer edge of the boundary

layer determined from R̄ = kD/4πD. The intrinsic rate coefficient

may be computed from a simple collision model. Since a reaction

happens only when an A particle is in contact with the collision

surface at RA, the rate k0 is then given by the rate of collisions of

the A particle with the catalytic part of the Janus sphere, leading

to k0 = R2
A

√

2πkBT/m.46 It takes the value k0 ≃ 15.66 for RA = 2.5,

which is slightly larger than the simulation values for various Λ.

For the backward-moving Janus motors, as expected, k0 decreases

as |Λ| increases because of the smaller collision radius RA. Using

Eq. (17) with the parameters k0, kD and R̄, the computed the-

oretical propulsion velocities (V T
u ) for different values of Λ are

1–9 | 5
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Fig. 4 Product concentration field, cB(r,θ), for moving (|Λ|= 0.037) and diffusive (Λ = 0) Janus motors. Panels (a), (c) and (e) are obtained from the

analytical expression in Eq. (14), whereas (b), (d) and (f) are the simulation results. The catalytic and the noncatalytic hemispheres are labeled in

panel (a).

listed in Table 1. We find the theoretical predictions are in good

agreement with the simulation results.

The steady-state concentration field of the product particle can

be calculated analytically using Eq. (14), along with the coeffi-

cients aℓ derived in Sec. 3 and using the reaction rates listed in

Table 1. Figure 4 compares the analytical and simulation results

outside the boundary layer for the forward-moving, backward-

moving and the diffusive Janus motors. Quantitative comparisons

of the product concentration field along various directions are

shown in Fig. 5. From Fig. 4, one sees good agreement between

the results at large distances from the Janus motor, with slightly

higher product concentrations near the catalytic surface (also see

Fig. 5). Such small deviations may be caused by perturbations

induced by motor motion due to the fact that our simulations are

in the small but finite Péclet number regime.

At short times Janus motors move ballistically with velocity Vu ûuu

as a result of their propulsion, but at long times their motion

becomes diffusive with an enhanced diffusion constant given by

De = DJ +
1
3V 2

u τr,
3 where τr = (2Dr)

−1 is the characteristic time

for the rotational diffusion. The rotational diffusion constants Dr

and reorientation times τr were measured for various values of Λ

and are listed in Table 1. We find that the rotational dynamics

is not affected by the directed motion of the Janus particle for

both forward and backward propagation. The enhanced diffusion

constant was also measured by a fit to the long-time values of

the mean squared displacement. Good agreements between the

simulation (DS
e) and theoretical (DT

e ) estimates can be seen in

Table 1.

6 Collective behavior of Janus motors

The hard-sphere Janus motor model was also used to simulate

the dynamics of a collection of Janus motors. In addition to the

bounce-back collisions between solvent particles and the Janus

motor, the interaction between any two Janus motors is described

by a repulsive Lennard-Jones potential, VJL(r) = 4ε[(σ/r)12 −
(σ/r)6 + 1/4], when their distance r < 21/6 σ . Here ε = 1 is the

interaction strength and σ = 6 is the effective radius, which is

chosen to be larger than twice the hard-sphere radius R so that

each solvent particle can only interact with one Janus particle at
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Fig. 5 Comparison of product concentration profiles for the forward

(a-c) and the backward (d-f) Janus particles with |Λ|= 0.037 obtained

from simulation (black solid lines) and theory (red dashed lines) along

various directions with θ = 0, π/2, and π. Note that the ordinate scales

on panels corresponding to different directions are not the same.
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as expected no significant angular velocity correlation among the

Janus particles was found.

(a) (b)

Fig. 8 Collective behavior of (a) two forward-moving and (b) two

backward-moving Janus motors. The solid white arrows show the

direction of motion of Janus motors driven by self-phoresis, whereas the

hollow arrows indicate the direction of the force induced by the

concentration gradient field (light blue clouds) generated by neighboring

motors.

7 Discussion

Systems with active elements occur throughout nature and are

currently being investigated in many laboratories. The focus of

these investigations varies, ranging from studies of cargo trans-

port involving single motors to the more complex dynamics of

many interacting motors. As the systems under investigation be-

come more complicated, for example, involving many interacting

motors to study nonequilibrium phase transitions or phase seg-

regation, or crowded systems with mobile obstacles of arbitrary

shape, molecular simulation provides a promising way to discover

the essential features that underlie the physical phenomena and

to predict what new phenomena might be seen.

Continuum models for phoretic propulsion are certainly appli-

cable to large motors and, in fact, often provide good results for

small submicron scale motors. They will breakdown on the small-

est scales and for the smallest motors. The results in this paper

provide some insight into how the parameters that enter into con-

tinuum models may be determined in order to make comparisons

with simulations of small motors in fluctuating molecular envi-

ronments.

For many-motor systems microscopic dynamics that satisfies

the basic conservation laws of mass, momentum and energy will

correctly account for all aspects of coupling that arise from hy-

drodynamic flow fields induced by motor motion, concentration

gradients that have their origin in the catalytic activity of all mo-

tors, as well as direct motor-motor interactions. Effects, such as

those arising from variations of an individual motor’s speed due

to perturbations of chemical gradients by other motors in the sys-

tem and the chemotactic-like interactions due to these gradients,

are incorporated in the simulations. The simplicity of the Janus

model described in this paper will facilitate large-scale simula-

tions designed to probe collective behavior, beyond the illustrative

examples presented in the text. More generally, microscopic mod-

els will provide a way to analyze the delicate interplay of effects

that contribute to the new phenomena that are being explored in

chemically-active motor systems.
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A microscopic model for Janus motors captures essential features of the diffusiophoretic 

mechanism and will facilitate large-scale simulations designed to probe collective behavior of 

many Janus motors. 
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