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Instabilities, defects, and defect ordering in an over-
damped active nematic’

Elias Putzig,** Gabriel S. Redner,? Arvind Baskaran,” and Aparna Baskaran®

We consider a phenomenological continuum theory for an extensile, overdamped active nematic
liquid crystal, applicable in the dense regime. Constructed from general principles, the theory is
universal, with parameters independent of any particular microscopic realization. We show that
it exhibits two distinct instabilities, one of which arises due to shear forces, and the other due
to active torques. Both lead to the proliferation of defects. We focus on the active torque bend
instability and find three distinct nonequilibrium steady states including a defect-ordered nematic
in which +% disclinations develop polar ordering. We characterize the phenomenology of these
phases and identify the relationship of this theoretical description to experimental realizations and

other theoretical models of active nematics.

Introduction

Liquid crystals are anisotropic fluid mesophases that exhibit bro-
ken rotational symmetry and have been extensively studied for
many years !. The study of topological defects in the orientational
order in these systems, which typically occur under driving, has
had a central role in developing our understanding of the material
properties of these systems 2. Active liquid crystals are driven at
the scale of the microscopic nematogen, and the microscale in-
ternal forces give rise to spontaneous nucleation of defects and
novel defect dynamics*~7.

One system, composed of cytoskeletal filaments driven by mo-
tor proteins *° confined to a fluid interface, has inspired much
theoretical effort to understand its dynamics®®19, These theo-
ries show how fluid mediation, in the form of active and passive
backflow, can lead to the formation and propulsion of defects.
However, these nonequilibrium phenomena also arise in active
nematic systems in which fluid mediation plays little or no part,
such as vibrated monolayers of granular rods2°, epithelial cell
monolayers?!, and elongated fibroblasts®2. It must therefore be
possible to describe these systems with overdamped dynamics,
in which activity is transmitted directly, rather than through the
mediation of a fluid.

In this work we develop a phenomenological continuum theory
that describes the dynamics of an overdamped active nematic in
two dimensions, and is applicable to all systems in this symmetry
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class. This theory contains two mechanisms through which the
active forces give rise to instabilities in the homogeneous nematic
state in the dense regime. One is analogous to the instability
due to flow alignment in fluid-mediated theories 1323 in that
it arises due to reorientation of the director under shear. The
other is an instability that arises due to rotation of the director by
internal forces in an active nematic.

b}y = 105 0

Fig. 1 Heatmaps of the degree of order (S/Sy, colorbar on the right)
showing the nonequilibrium steady-states. (a) The defect-ordered state,
with a histogram inset showing the sharp polar ordering in the
orientation of +% defects. The lines, showing the direction of order,
highlight the extended trails left by the motion of these defects. (b) The
undulating nematic state is highly ordered (S ~ Sy) but the direction of
order undulates. Scale bars are in the top right corners.

We unfold the rich phenomenology that emerges due to the
active torque instability in the numerical investigation, focusing
on extensile systems in the dense regime. The nonequilibrium
steady-states that we find are (i) a defect-ordered nematic that
exhibits emergent polar ordering of +% defects, (ii) a defect-free
undulating nematic (see Fig. 1 and ESIT), and (iii) a defective,
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turbulent nematic (see Fig. 2).

The appearance of a defect-ordered state is of particular inter-
est, as defect-ordering was recently discovered in layers of active
cytoskeletal filaments and in simulations of overdamped exten-
sile rigid rods®. While the long-range ordering of defects in these
states is reminiscent of blue phases2* and twist-grain-boundary
phases?® in equilibrium liquid crystals, the defect-ordered states
in the active systems differ in that the defects themselves are
motile and transient rather than existing in a static lattice.

The defect ordering in the experiment had nematic symmetry,
while simulations displayed the same polar symmetry that we ob-
serve. We show that polar ordering of defects is a metastable
state that occurs below the threshold for any instability of the ho-
mogeneous nematic state and depends on the breaking of Galilean
invariance in the overdamped limit. Further, we identify the rela-
tionship of our approach to other theories in the literature.

Theoretical Framework

An equilibrium nematic is described by the well-known Landau-
de Gennes free energy .% that is a functional of the density p(7,7)
and the nematic order tensor, Q(7,7), associated with rotational
symmetry breaking 126, Its dynamics is given by gradient descent
on this free energy landscape: ‘Model A dynamics for the director,

oo, [ - "~ |1
3 - 1 i
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0

O

Fig. 2 Heatmaps of the degree of order (S/Sy, colorbar on the
upper-right} showing the defective states (a) at low activity (y < 1) and
(b) at high activity (y > 1). Insets on each heatmap include (1) a
heatmap of the vorticity (colorbar on the lower-right), and (2)
2x-magnified region with lines showing the direction of order. Scale
bars are in the top left corners.
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AQ(F) =
density field, d,p (F) = 7y~ 1v? 5‘;‘%
ever, microscopic forces exerted by the constituent particles can
give rise to dynamics that are not integrable, and are therefore
inherently nonequilibrium.

77/*15‘2)—%), and ‘Model B’ dynamics for the conserved

. For an active nematic, how-

We shall consider the dynamics of systems of extensile particles,
which push along their long axes, acting as force dipoles. The
forces exerted by the particles cause a stress ¢ = fQ 3. In a flat
nematic these forces are locally balanced and the stress is exerted
only on the boundary. When there is a local distortion of the
order, however, there is a net force F o V. Q from this stress.
This force can lead to a flow of particles pii = —F /& (where & is
a friction coefficient). We postulate that an active liquid crystal
undergoes gradient descent dynamics in the local rest frame of a
self-generated flow arising from the activity.

The flows which we consider are the motions of particles which
reside near some surface, and in which neighboring particles are
pushing on each other. We will therefore use a generalized form
of the Beris-Edwards equations2®
ifies the gradient descent dynamics of particles which are sus-
pended in fluid when they interact solely through stresses in the
fluid.

, which describe how flow mod-

_ 12 0F o
- 1 0F
AQ+AcV-iQ=—y! 50 +Ar(QQ—QQ)
+ME7 + A (QE+EQ)” 2

where Q;; = %(%”J —

%W) is the strain-rate tensor associated with the flow, A; and
g

Ay are the first and second-order flow-alignment parameters, and

(A)7 denotes the traceless version of A (e.g. A— 1Tr(A)).

The dynamical equations above are a generalization of the
Beris-Edwards dynamical equations in that the equations above
are not coupled to the flow of an incompressible medium, and in
that these equations allow for broken Galilean invariance through
the inclusion of coefficients in front of the convective and rota-
tional terms, - and Ay respectively. It is relevant to consider
an effectively compressible flow on a two-dimensional surface, as
fluid can be pushed out into the third dimension. Also, in an over-
damped system which is moving with respect to a fixed substrate,
Galilean invariance may be broken, as that surface provides a ref-
erence frame. This generalization is also logical in the case of
particles which are in direct contact, rather than suspended and
interacting purely through a fluid. Broken Galilean invariance
has been shown to make a significant difference in the dynam-
ics of active polar fluids27-31, but its consequence for a fluid of

ij”i) is the vorticity tensor, E;j = 5 (T;ci”f +

nematic symmetry has not been considered in existing literature.

When the flow from the active forces pii = ,g V-Qis replaced
in Egs. 1 and 2, the dynamical equations for an active nematic

§ f is positive (negative) if the particles are extensile (contractile)

This journal is © The Royal Society of Chemistry [year]
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take the form

3:P = DVZP +DQVV :Q (3)
1 6F  Ac, o = As
_ Y M ) A )
aQ=-vy 50 + ) [VQ]-VQ sz(VV,Q)
AR o P "
_;(Q'VV'Q—V(VQ)-Q) —AV2Q )
where A : B=A;;B;;, and .# denotes symmetrization (i.c. (A)” =

J(A+AT)

The self-generated flow enters through the curvature induced
density flux (CIDF), controlled by Dy in the dynamics of the den-
sity, and through the coefficients A, in the dynamics of the order
parameter. Ac = %ﬁc, Ar = %/_IR, and Ag = %(QLZ —A¢) control
the strength of active convection and active torque, and flow-
alignment due to active shearing respectively. The term with coef-
ficient Az = £ A, also comes from the flow-alignment, and appears
as the Laplacian of the nematic order tensor. This term, therefore,
acts as a negative Frank elasticity in the dynamics.

Before we proceed with the analysis of our theory, we make the
following observations in order to place this model in the context
of other the existing literature in this field:

(1) The CIDF, introduced by Ramaswamy et. al.3%33  is the only
active contribution to the dynamics which is first order in Q and
therefore gives a universal description of the behavior of active
nematics near the critical density, where Q is small. This term
gives rise to striking phenomena, such as giant number fluctua-
tions, phase separation, and band formation near the critical den-
sity20:34-45_In this work we will focus on the dynamics of a sys-
tem which is well above the critical density and highly ordered,
away from this well-studied regime.

(2) Existing theories of active nematics that account for the novel
defect dynamics seen in these systems consider nematohydrody-
namic equations coupled to a Stokes equation for the activity-
induced flow (such as81%18). In the presence of a screening
mechanism such as confinement to 2D, the flow field can be
eliminated in terms of the active stress yields Egs. (3-4), but

with Dy = A¢c = Az i.e., a Galilean invariant version of our the-
ory 18:46-48,

(3) The approach taken here is one which can be generalized
to other active systems. We consider gradient descent on a free
energy, in an imposed flow, and allow for broken Galilean invari-
ance. We then replace the general flow with one which depends
on the local order parameter, and arises due to the active forces.
The same prescription can be applied to polar systems to get the
dynamical equations of Toner and Tu27-29, The difference being
that, in a polar system, the flow from the active forces is & o< P
where P is the polar order parameter. In both cases the gradient
descent dynamics are purely smoothing and allow for a homoge-
neous solution, but the flow which arises due to the motion of
those particles, or the forces that they exert, can lead to instabil-
ities in that homogeneous solution, and inhomogeneous dynami-
cal steady states.

This journal is © The Royal Society of Chemistry [year]
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Parameters of the Theory

The relaxational contributions to the dynamics of the order pa-
rameter arising from a free energy take the form

(0,0i]Eq = Dr[o — BTrQ?]Qij +2DE V2 Q)
D 5
+76 (204(Qu Qi) — ([9:Qu9;01)”)
+Dp(3,9;)7 p—KV*Q;j

where o = (p—1) and f = 5 (p+1), D, is the rotational diffusion

36,37,41

1
oz
constant and D, is a kinetic term also seen in prior works
There are three elastic terms. Dg is the mean elasticity, and it
competes with the active term with coefficient Ag. We will there-
fore work with an effective mean-elastic relaxation term with co-
efficient Dp = Dg — Ag. Dyg is a differential elasticity, measur-
ing the difference between bend and splay energies. Finally, a
fourth-order gradient term (with coefficient K) is included to en-
sure smoothness and numerical stability.

The relevant parameters for the phenomenology discussed are:
the active force and torque (Acr) and the effective mean and
the differential elastic constants Dr and Dg. The active shear
(with coefficient Ag) does not affect the linear stability or the
phenomenology considered here. In the following, we non-
dimensionalize our equations by setting our time scale to be the
rotational diffusion time, DL/_, and our length-scale to be the dif-
fusion length, ¢p = \/D/D;. In all of the subsequent sections we
will work in these dimensionless variables.

Instabilities of the Nematic State

In the homogeneous limit, Eqs. (4) and (3) admit a uni-axial
nematic solution with average density py > 1, and the order pa-
2(po—1)

rameter Q = poSo(££— %I), with degree of ordering Sy = TESEE

Let us consider spatial fluctuations about this state.

Phase Separation Instability

There is an instability which occurs near the critical density for
the onset of ordering, and leads to phase separation.
curs when fluctuations perpendicular to the director cause an
instability in the degree of ordering, which occurs for Dy >

It oc-

2(p3 — 1)(1,%’10;]1, 1). This instability causes phase separation
into bands of dense ordered regions coexisting with dilute dis-
ordered regions when the material is near the critical density
(pe = 1). This has been discussed in previous work by us*> and
others39-41,43:44:49,50 The nonlinear active terms (A¢, Az and Ag)
do not significantly alter the phenomenology discussed in previ-
ous work.

Splay and Bend Instabilities

Let us also consider fluctuations in the direction of order §Qx,.
The Fourier transform (X = [ drex (7,1)) of the linearized equa-
tion for this mode can be expressed as

~ A ~
0,80y = —k* (2DE ?So(TR —Dg) +k2K>5QXy
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where we consider only pure bend fluctuations which are paral-
lel to the director (k = k%, upper sign) or pure splay fluctuations
which are perpendicular (k-2 =0, lower sign). Pure bend and
splay decouple fluctuations in the direction of order from those in
the degree of order (6Qxy) and the density (6p) which enables a
clear identification of mechanisms at play. This equation reveals
two instabilities in the direction of order which come from the
activity. Both grow as k2, and the fourth-order gradient term with
coefficient K guarantees that, when there is an instability in this
mode, the ordered solution will restabilize at finite wavelength.

The generic instability.

This instability occurs when Dg = Dg — Ag < 0, and it comes from
the first order flow-alignment term Ag = %/11. This instability
in the homogeneous nematic occurs for suspensions of extensile
rods (f,A; > 0), which we consider herel. It is a bend (splay)
instability when Az > 2Ds (Ag < 2Dj). The analogous instability
has been identified and discussed in detail (in the Dg = 0 limit)
in existing active nematic theories for suspensions !1.13,23,51
for flows with damping 8.

This instability has also been discussed in the overdamped
limit, where it results in a Swift-Hohenberg-type dynamical equa-
tion, which can lead to pattern formation, or a turbulent steady-
state!”. The systems with a negative effective elastic constant
form steady-state patterns in the modulation of the director for
the case of active systems 1819, This result is reminiscent of the
patterns seen in equilibrium phases of liquid crystals which have a
negative elastic constant due to their shape >>->4. As this instabil-
ity and its consequences have been the topic of previous theoreti-
cal and numerical investigation, we shall forgo further discussion
of them here.

and

Active Torque Instability.

Of primary interest here is a bend instability which arises from
the active torque. This occurs when a ‘bend instability parameter’
= gngz(gf) > 1 where A(py) =4 253;11)
eter reflects a competition between the active torque Az and the
differential elasticity Dg, which is positive if bend distortions are
more energetically expensive than splay. This bend instability is
also a mechanism for defect generation and formation of inho-
mogeneous steady states in this active system. Note that if the
nematic was contractile, Ag is negative and hence there exists a
splay instability, which occurs when y < —1. We have, however,
focused on extensile systems for this study of the overdamped
dynamics, and left the study of the contractile, overdamped dy-
namics to future work.

(Fig. 3). This param-

Consequences of the Active Torque

In order to elucidate the consequence of the active torque insta-
bility, we numerically explored the dynamics using a semi-implicit
finite difference method, with periodic boundary conditions . In-
tegrating from nematic initial conditions with small amplitude

Q[ The generic instability can also occur for contractile discs (f,A1 < 0)
|| The spatial resolutions (&, units of £p) used were 0.1 < £ < 0.4, temporal resolutions
were 0.1 < h% < 0.4 diffusion times, and system sizes were between 400 and 1200 ¢,
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Fig. 3 Plots showing the end state which forms from nematic initial
conditions. (a) At Ds = 1.0, the homogeneous nematic state transitions
into a defective nematic above the instability boundary. (b) At

Ds = —0.50 we find an undulating state at intermediate activities.
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Fig. 4 Plots of the defect density (defects per (100£p)?) as a function of
y, for py = 2.0. (a) Curves with fixed Dg = 1.0, for a range of A¢/Ag,
show that when the sirength of active convection is comparable to active
torque, defects vanish near the bend instability. When A¢ < Ax the defect
density can be nonzero for y < 1, in which case it increases sharply
when y crosses 1, and then saturates. (b) Fixed Ac = 1.0 (less than Ag),
and arange of Dg, for y < 1. Defect density is greater for larger D, and
it vanishes as Dg goes to 0. The shaded region indicates where there
was statistically significant polar ordering of +% defects.

Gaussian noise, two states were found above the threshold for
the bend instability (y > 1). These were (I) an undulating ne-
matic state where the system is strongly ordered but the director
undulates along the broken symmetry direction (see Fig. 1, and
(II) a turbulent state (see Fig. 3,2) in which charge i% discli-
nations continually form and annihilate and the +% defects are
self-propelled as seen in#-6-8-10,10-15,51,55

The structure of the undulating nematic state is reminiscent of
twist-bend and splay-bend modulated structures found in equilib-
rium nematics 525657, This state present when active convection
was large (¢ > 1.0) or and it was small (4 << 1) and Ds <0
(see ESIT for details). In other regions of parameter space the
system transitioned directly into the defective nematic state.

The above analysis focused on the instabilities of the homoge-
neous nematic state. Next we consider isotropic initial conditions
and vary parameters which control the bend instability (Az, Dg,
and py) and the strength of active convection (A¢) while keeping
the other parameters fixed.

Defect-ordered state

When the strength of active torque is dominant over the strength
of active convection (A > A¢), and Dg > 0 there is a steady-state
with finite defect density below the bend instability (y < 1). This
is where the defect-ordered state occurs (see Fig. 4). The proper-

This journal is © The Royal Society of Chemistry [year]
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ties of this state are as follows: (i) Defects are point-like and the
background is a (locally) well-ordered nematic (see Fig. 2). (ii)
Defining the orientation of +% defects to be opposite the “comet
tail” (along the direction of propulsion), we find that these de-
fects exhibit significant polar ordering. (iii) The degree of polar
ordering decreases as y increases. (iv) The high degree of polar
ordering corresponds with long splay distortions which are left by
+% defects as they travel (see Fig. 1). Other +% defects tend to
reorient rather than cross these distortion-trails, leading to long
parallel structures which are visible in the states with a large de-
gree of polar ordering.

Turbulent nematic state

The turbulent, defective nematic state occurs above the bend in-
stability when the defect density and vorticity increase sharply
(Fig 4 ). The defects, which were small and circular near
v = 1, become spatially extended and the average degree of
ordering decreases. This turbulent nematic state appears dis-
tinct from the one arising through the generic bend instability
through correlation function Cp(R) = (w(0)@(R))/{®?), where
PB = AgV x (V-Q). It scales with the bend instability parame-
ter v (see Fig. 5), which is linear in the strength of the active
torque Ag. This differs from what was found in a recent study 12
where vorticity scaled as the strength of the activity to the 1/4th
power. Further, if the length scale for defect separation ¢, scales
with the vorticity ({4 o< %), then the defect density should scale
as w2. This is compatible with the trend seen near the critical
value of the bend instability parameter, but the range is not large
enough for a conclusive comparison.

1 1
”

(Pos Ags Dg)
0.6 | (20,8005 —+
(20,100,0.5)
— (20,100,2.0) *
04 30,6005 &
— (30,80, 0.5)
03 02 | (30,100,0.5)
(3.0,100,2.0) -

08

.
(2.0,6.0,-0.5) &
0 (20,80,-05) &
(20,10.0,-0.5) <
0.2 | (20,7.0,05)
(20,12.0,05) ©
(20,12.0,2.0) -

1 2 4 8 16 32

-0.4

Fig. 5 Log-linear plot of vorticity correlation functions, C,, (R) for fixed
parameters (Az, Ds and py) above the bend instability (y > 1.10). The
length is scaled by y, which gives a data collapse for a large range of
parameters.

Summary

We have introduced a universal theory of an overdamped ac-
tive nematic in which activity enters through self-induced flows.
This theory encompasses the physics already identified in previ-
ous work and identifies additional phenomena particularly rel-
evant for rigid rod extensile systems. We have identified three
nonequilibrium steady states admitted by this theory. The first
is a defect-ordered nematic state where polar ordering of +1/2
disclinations emerges from the underlying apolar theory. The the-
ory provides robust predictions about when polar defect ordering

This journal is © The Royal Society of Chemistry [year]
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will be found. The ordering occurs below any bend instability ,
ie., y <1 and Dg > 0 and when Dg > 0 and Az > A¢. This result
implies that an polar ordered fluid phase of defects may not oc-
cur in theories which have Galilean invariance (A¢c = Ag). Other
steady states found include an undulating nematic state which
is reminiscent of the “walls” of distortion in the order parameter

1113 or the distortion
51,58

seen before the onset of defective states
of the director which happens during relaxation oscillations
Finally we find a turbulent nematic state similar to that which

occurs in theories of active nematic suspensions 14,
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