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Three different types of experiments, quiescent stress relaxation, delayed rate-switching 

during stress relaxation, and elastic recovery after step strain, are carried out in this work to 

elucidate the existence of a finite cohesion barrier against free chain retraction in entangled 

polymers.  Our experiments show that there is little hastened stress relaxation from step-wise 

shear up to γ = 0.7 and step-wise extension up to stretching ratio λ = 1.5 at any time before or 
after the Rouse time.  On the contrary, a noticeable stress drop stemming from the built-in 

barrier-free chain retraction is predicted by the GLaMM model.  In other words, the 

experiment reveals a threshold magnitude of step-wise deformation below which the stress 

relaxation follow identical dynamics whereas the GLaMM or Doi-Edwards model indicates a 

monotonic acceleration of the stress relaxation dynamics as a function of the magnitude of the 

step-wise deformation.  Furthermore, a sudden application of startup extension during 

different stages of the stress relaxation after a step-wise extension, i.e., the delayed rate-

switching experiment, shows that the geometric condensation of entanglement strands in the 

cross-section area survives beyond the reptation time τd that is over 100 times the Rouse time 
τR.  Our results point to the existence of a cohesion barrier that can prevent free chain 
retraction upon moderate deformation in well-entangled polymer melts. 
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Introduction 

Entangled polymers as a leading class of soft matter exhibit a rich variety of phenomena, 

some of which are common to other forms of soft matter while others are unique.  When the 

basic building units are chain-like molecules, unique physics emerges to dictate rheological 

behavior.  In particular, chain entanglement controls both linear and nonlinear rheological 

responses of high molecular-weight polymers.
1, 2
  Extensive studies of this subject have been 

made since de Gennes' reptation idea
3
 over 40 years ago.  Doi and Edwards treated 

intermolecular interactions in terms of a confining smooth tube in order to develop a microscopic 

model for polymer chain dynamics based on the reptation mechanism.
4-8
  Today, the Doi-

Edwards tube model is widely used as the standard model to not only depict the quiescent 

polymer dynamics
9, 10
 but also explore nonlinear rheological behavior of entangled polymer 

melts and solutions.
11-19
  By construction, the confining tube represents the intermolecular 

interactions in the sense that a test chain in the tube undergoes initial affine deformation before 

barrier-less chain retraction on the Rouse time scale (τR) restores equilibrium contour length.  

Such barrier-free chain retraction has two consequences:  (a) an appreciable stress decline owing 

to the chain retraction at a time around τR;  (b) the affine elastic deformation is negligibly low 

when the Rouse-Weissenberg number WiR = γ& τR or ε& τR << 1. 

Recently, particle tracking velocimetry (PTV)
20
 has become available to complement the 

conventional rheometric characterization of nonlinear behavior of entangled polymer solutions 

and melts.  For well-entangled polymers, large deformation produces remarkable strain 

localization such as shear banding
21
 and non-quiescent relaxation.

22
  Although constitutive 

continuum model can also show the emergence of shear banding upon startup shear
23-26

 such 

calculations do not produce a molecular picture for shear banding.  On the other hand,  questions 
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have emerged from recent molecular dynamics simulations concerning
27-31

 whether the tube 

model's smoothed-out treatment of intermolecular interactions
32, 33

 may have oversimplified the 

essential (physical network) picture of entangled polymers undergoing large deformation.
 

Many studies of stress relaxation after large step strain has been carried out to validate the 

tube model
34-56

 under the assumption that quiescent relaxation prevails.  Slip-link models have 

also been applied to describe strain softening from step shear under the assumption of quiescent 

relaxation.
57-61

  Unaware of any wall slip
62 
 and localized elastic yielding

22
 that give rise to 

excessive strain softening, many experiments applied magnitudes of step strain that are too high 

to assure quiescent relaxation.
63
  At the end of interfacial yielding

62
 (i.e., wall slip) or elastic 

yielding
64
 in the bulk, the sample heals, recovering its linear-response relaxation dynamics, 

coinciding with the tube model prediction beyond τR when the reptation dynamics dominate.  

When the magnitude of the step strain is low enough or the entangled polymers are inherently 

incapable of undergoing strain localization,
65, 66

 stress relaxation can take place quiescently.  

In the present paper, we perform both step-wise simple-shear and uniaxial-extension of 

moderate magnitude so that the stress relaxation is guaranteed to occur quiescently.  By avoiding 

strain localization, we can compare experimental observations with the GLaMM model.
15
  In 

Figure 7a-b of a previous paper
33
 we only briefly mentioned the discrepancy between the shear 

stress relaxation and the DE tube model.  Here we provide the missing details.  More 

importantly, new experiments of step-wise extension have been carried out to examine the 

universality of the comparison.    Both shear and extension tests show that there is no accelerated 

stress decline after a sizable step-wise strain, contrary to the prediction of the tube model.  

Recently Graham et al. also acknowledged this discrepancy.
67
  In the second part of this paper, 

we carry out uniaxial extension experiments to discuss the effect of geometric condensation and 
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show that the effect survives for a longer period than the reptation time, rather than for a 

transient moment shorter than the Rouse time τR. 

 

Experimental section 

A. Material 

All the present experiments in both shear and extension modes are based on one 

monodisperse entangled styrene-butadiene copolymer rubber (SBR153K).  It has an averaged 

molecular weight Mw = 161 kg/mol and contains 25.6 % styrene and 74.4 % butadiene, out 

of which 70 % is vinyl.  The SBR153K has PDI = 1.05. 

B. Apparatus and Methods 

Linear viscoelastic properties of this sample are determined from small amplitude 

oscillatory shear measurements (SAOS) by a second-generation Advanced Rheometric 

Expansion System (ARES-G2).  Figure 1 shows the SAOS curves at a reference temperature 

of 30 
o
C.  A terminal relaxation time or reptation time, τd = 1340 s, is estimated from the 

crossover frequency in the G' and G" curves, and elastic plateau modulus Gpl = 0.49 MPa can 

be read from Figure 1, corresponding to Me = 4.8 kg/mol.  The number of entanglements per 

chain is estimated as Z = Mw/Me ~ 33. The Rouse relaxation time τR can be estimated by the 

different methods.
68
  In particular, 

2.5

R 2

6
12.3cM M

RT M
η

 η  τ = =  π ρ   
s and 

2

R 13
1.111

aM

RT
ω

 
τ = = ρ 

, where η is the zero-shear viscosity, ρ is the mass density taken as 

0.93× 103 kg/m3, Mc = 2Me, and a is the prefactor at higher frequencies for G'(ω)=aω1/2.  

These values happen to be close to τR = τd/3Z = 13.5 s.  All the experiments were done at 30 
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o
C except for the elastic recovery experiments that were done at 25 

o
C where τd = 2578 s. 

For the shear stress relaxation experiments, we modified the surfaces of 8 mm (in 

diameter) parallel steel plates to assure adhesion of the SBR melt on the shearing surfaces.  

Specifically, sand papers (Grit 240 Aluminum Oxide, Virginia Abrasives, Petersburg, VA) 

were adhered to the steel plates first.  Then the sand-paper covered plates were heated to 70 

o
C with the SBR melt with thickness of 1.0 mm between the two plates at a pressure of 

around 100 g for about five minutes.  Subsequently, the sample was removed from the shear 

cell, and a thin layer of superglue (Loctite 498) was applied onto the sand paper before 

reloading with the surface-roughened sample.  A period of at least 20 minutes was allowed to 

achieve good adhesion.  Different strain rates from 0.1 s
-1
 to 10 s

-1
 were applied to examine 

the rate effect on the stress relaxation process. To mimic an ideal step strain experiment, we 

use arbitrary wave (AW) mode to program the machine to reach to the setup strain within 

0.04 - 0.06 s.  For extensional experiments, a first generation of Sentmanat Extensional 

Rheometer (SER) is mounted onto the ARES-G2 rotational rheometer.  To avoid any slip, a 

thin layer of the superglue (Loctite 498) is used between the sample and the double drums on 

the SER.  Different strain rates from 0.3 s
-1
 to 10 s

-1
 were applied to examine the rate effect.   

Since the axial and torsion transducer compliance is KA = 10
7
 N/m and KT = 1418 

(m*N)/rad respectively for ARES-G2, the axial response time (ΤΑ) and torsion response time 

(ΤΤ) can be estimated by: )/(6 3

AA KRT απη=  and )3/(20 3

TT KRT απη= , where η is the zero 

shear viscosity of the testing sample, R is the radius of the plate and α is the angular 

displacement. In our tests, R = 4 mm, η ~ Gplτd.  For γ = 1.0, TA/τd ~ 0.2 < 1.0 and TT/ τd ~ 

0.001 << 1.0.  Thus, the transducer compliance should not affect our step strain 

measurements according to Venerus
52
 and Vrentas and Grassley

69
. 
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Figure 1 Small amplitude oscillatory shear measurements of SBR153K at 30 
o
C.  The reptation time 

is τd = 1340 s.  The inset shows the Williams-Landel-Ferry (WLF) shift for this sample for a 
temperature range from 0 

o
C to 60 

o
C.   

 

In a delayed rate-switching experiment, at the various stages during the stress relaxation 

from a step-wise extension, the relaxing specimen is suddenly stretched again at a rate that 

produces a maximum in the engineering stress.  In the elastic recovery experiments, SER is 

mounted on to a controlled-torque rheometer (Physica MCR-301, Anton Paar).  After 

reaching a certain strain the sample is set stress free.  The elastic recovery of the sample after 

deformation is captured, using a video camera connected to a digital video recorder, up to at 

least τd under the stress-free condition on the SER.  

Theoretical background 

In order to explain the objectives and implications of our experiments, it is useful to review 

the prevailing theoretical description for stress relaxation of entangled polymer melts at moderate 

magnitude.  By modeling the entanglement network in terms of a single chain in a tube, the tube 

model
8
 has postulated that a test chain in the tube would actually retract on the Rouse time τR in 

a barrier-free manner upon a sudden startup deformation.  Such chain retraction is to occur at any 

step strain, i.e., any value of γ or λ, to result in a dip in the relaxing stress.  Sensitive rheometric 
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instruments should be able to detect the tiny dip and allow the envisioned chain retraction to be 

identified by experiment. 

1
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Figure 2 The chain stretching factor α2 versus the imposed strain for either shear or extension according 
to tube model.  The chain stretching would elevate the shear stress by 13 % for γ = 0.7 and extensional 
stress by 15% for λ = 1.5. 
Figure 3 Linear stress relaxation behavior comparisons of shear and extension. The relaxation moduli 

show identical time dependence throughout the relaxation.  Here the prescribed strains of  γ = 0.1 and λ = 
1.2 was applied in the arbitrary wave mode and was reached within 0.03 s. 

 

According to the Doi-Edwards (DE) tube model, the stress relaxation takes place in two 

steps: (a) contour length retracts back to its equilibrium value on τR, and (b) chain orientation 

relaxes toward the isotropic distribution through the reptation on τd.  The time-strain separability 

occurs when τR << τd.  Specifically, for a large step-wise simple shear, the effective relaxation 

modulus is given by
8
  

2

eq( , ) / G( , t) ( ){1 [ ( ) 1]exp( / )} G (t)Rt h tσ γ γ = γ = γ + α γ − − τ ,    (1) 

where Geq is the equilibrium relaxation modulus, and [α(γ) – 1] is the chain stretching 

contribution to the shear stress. The damping function h(γ) is given in terms of the orientation 

function Qxy as h(γ) = Qxy(γ)/γ ~ 1/(1+γ2/5).  Similarly, for a large step-wise uniaxial extension, 

we have 

2 ext 2

eq( , ) /( 1/ ) G ( , t) ( ){1 [ ( ) 1]exp( / )} G (t)Rt g tσ λ λ − λ = λ = λ + α λ − − τ ,  (2) 
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where g(λ) is given by f(λ)/(λ2 − 1/λ), with f(λ) given in eq 7.140 and 7.141 of Ref. 8.  An 

analytical approximation of α(γ) and α(λ) are given in the inset of Fig.2.   As shown in Figure 2, 

the stretching factor α varies with the shear strain γ and stretching ratio λ respectively, where 

~13% stress drop for a step-wise shear of γ = 0.7 and ~15% stress drop for a step-wise extension 

of λ = 1.5 can be found around τR.  Such a stress decline should be readily observable in 

experiment if it occurs. 

In this work, we compare our results with the original DE tube model and the latest version 

of the tube model, the GLaMM model.  For the calculations of the original DE tube model (Figs. 

6a and 6b), we measured Geq(t) from the linear-response experiments as shown in Fig. 3 and 

insert it into eqn 1 and 2.  For the calculations of the GLaMM model (Fig. 6c and 6d), we choose 

the standard parameters 
13,67
 i.e., αd = 1.15, cυ = 0.1 and Rs = 2.0 for the contour length 

fluctuations, constraint release and retraction terms respectively, and impose the same strain 

histories as those of the experiments to assure a direct comparison. 

 

Results and Discussions 

A. Linear responses in shear and extension 

We first carried out small step-wise strain in both shear and extension to determine the 

linear-response characteristics.  Defining the equilibrium relaxation modulus as Geq(t) = 

σ(t)/γ(t) for simple shear and ext

eqG (t) = σ/(λ2 − 1/λ) for uniaxial extension, we can present the 

stress relaxation as a function of time as shown in Figure 3.  The fact that the two curves 

overlap confirms that in this linear-response regime the preceding two formulas hold 

respectively for the small strains.  In both experiments, it takes ca. 0.03 s to reach the 

prescribed strains of γ = 0.1 and λ = 1.2 respectively.  The actual time dependence of Geq(t) 
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and 
ext

eqG (t)  is the same as expected. 

B. Beyond linear response: large step-wise deformation 

B.1 Experimental protocol 

An ideal step strain involves application of a prescribed strain within an infinitesimal 

amount of time.  However, in experiment a step strain always takes a finite amount of time.  

Figures 4a-d examine the rate effect in both step-wise shear and extension and show that the 

long-time stress relaxation behavior is insensitive to the rate used (and the corresponding 

elapsed time) to produce the step-wise strain.  If it takes t1 to produce the step-wise strain, 

then as long as we are interested in the stress relaxation characteristics on time scales much 

longer than t1, no information is lost.  Since we are interested in the stress relaxation on time 

scales shorter than the Rouse time τR ~ 13 s at 30 
o
C, for step shear we elect to use the 

arbitrary wave (AW) mode on the ARES-G2 that allows the preset strain to be applied within 

the shortest time, i.e., around 0.02 to 0.04 s.  For step extension, we apply a high Hencky rate 

ε& = 10 s-1.   
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Figure 4  Relaxation modulus obtained under different modes to impose the prescribed step strain for 

both simple shear (a)-(b) and uniaxial extension (c)-(d).  Here AW designates the arbitrary wave mode 

where preset strain is produced in a rate as fast as the machine can achieve.  For a strain of 0.1 and 

0.6, it takes less than 0.04 s to reach.  The other rates are clearly labeled inside each figure. Rouse 

Weissenberg number is defined as WiR = γ& τR for shear and WiR = ε& τR for extension.  The 
arrows indicate the time when the applied deformation terminates for each deformation rate. 

 

B.2 Stress relaxation from large step strains 

We examine the stress relaxation behavior at moderate magnitude of strain in both shear 

and extension respectively.  Specifically, discrete step-wise shear tests were carried out 

involving the magnitude ranging from γ = 0.1 to 1.1, as shown in Figure 5a.  The inset of 

Figure 5a shows that the prescribed strains were reached around 0.04 s and there are inherent 

overshoots of the applied strain.  The tiny vertical displacement of the stress curves relative 

to one another indicates that the shear stress σ(t) does not increase exactly linearly with the 

applied strain γ.  For the step-wise extension, the normalized Gext(t, λ) in Figure 5b shows a 

significant vertical spread.  This simply means that the tensile stress growth is weaker than 

the formula of σ = G(λ2 − 1/λ) from the rubber elasticity theory, which has been observed 

before in both entangled polymer melt
70
 and crosslinked rubber.

71
  The strain softening 

factors are summarized as 1.0 - G(t = 1 s,γ)/G(t = 1 s,γ = 0.1) for shear and 1.0 - Gext(t = 1 

s,λ)/G(t = 1 s,λ = 1.2) for uniaxial extension in Figure 5c.  Recently, similar strain softening 
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was described in terms of  tube dilation and chain retraction.
72
 It will be interesting to 

compare the theoretical prediction with the strain softening observed in crosslinked rubbers, 

i.e., the Mooney-Rivlin effect,
71
  where chain retraction cannot take place.  Any further 

discussion of the origin of this softening is beyond the scope of the present study.  
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Figure 5 (a) Relaxation modulus as a function of time for different magnitudes of the step-wise shear, 

ranging from γ = 0.1 to 1.1, imposed within 0.04~0.06 s.  (b) Relaxation modulus as a function of 
time for different stretching ratio λ ranging from 1.2 to 1.7, imposed with a Hencky rate of 10 s-1.  (c) 
The amount of vertical shift due to strain softening.  (d) and (e) replots of (a) and (b) after the vertical 

shifts according to (c). 
 

To see more clearly how the stress relaxation varies with the magnitude of the step strain, 

i.e., to compare the "shapes" of the relaxation modulus, we vertically shift the curves by 

normalize the strain softening effect in Figures 5a and 5b according to Figure 5c to match at 

the initial times so that an effective relaxation modulus Geff(t) can be compared for different 

magnitudes as shown in Figures 5d and 5e.  Over the explored range, the Geff(t) shows little 

magnitude dependence, for shear strain from 0.1 to 0.7 (Fig.5d) and for stretching ratio from 

1.2 to 1.7 (Fig.5e).  The lack of any strain dependence of the relaxation modulus Geff up to γ 

= 0.6 as shown in Fig. 5d has justified the employment of parallel-disc for the stress 

relaxation measurements that involve imposition of varying strains radially across the 

sample.  In other words, the parallel-plate measurements is rigorously valid for comparison 

with theoretical prediction for γ < 0.7. 

C. Comparison with theoretical prediction: a cohesive barrier against barrier-free retraction 

According to the DE tube model, the relaxation modulus G(t) in eqs 1 and 2 drops below 

the equilibrium relaxation modulus Geq around the Rouse time scale because the barrier-free 
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chain retraction occurs.  The magnitude of the decrease, as a function of the magnitude of the 

step strain, is determined by the α factor of Figure 2.  Specifically, based on Geq available 

from the experimental data in Figure 3, we can plot the theoretical estimate (DE) for different 

magnitudes as shown in Figures 6a and 6b.  We also present the calculations of the GLaMM 

model in Figures 6c and 6d.  
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Figure 6 DE tube model calculation of shear modulus for a range of γ from 0.1 to 1.1 (a), and 
extensional relaxation modulus for stretching ratio λ ranging from 1.2 to 1.7 (b). The GLaMM model 
calculation of shear relaxation modulus for a range of γ from 0.1 to 1.1 (c), and extensional relaxation 
modulus for the stretching ratio λ ranging from 1.2 to 1.7 (d). 
 

To quantify the difference between Figures 5d-e and 6a-d at relatively long times, we plot 

the ratios Geff(t, γ)/Geff(t, γ=0.1) and ext

effG (t, λ)/ ext

effG (t, λ=1.2) as a function of γ and λ 

respectively for t = 5τR, 10τR, 20τR, 50τR, as shown in  Figures 7a and 7b.  On one hand, the 
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normalized relaxation modulus remains constant up to γ = 0.6 for step shear and up to λ = 1.5 

for step extension, as indicated by the horizontal dashed lines in Figures 7a and 7b.  On the 

other hand, the tube model predicts a notable systematic downward deviation from the 

horizontal lines as shown by the red half-filled squares (the DE tube model) and green half- 

filled squares (the GLaMM model) respectively.  The noticeable difference in Fig. 7a 

between the DE tube model and the GLaMM model may be expected.  The chain stretching 

was incorporated into the DE model as an independent contribution to stress whereas the 

GLaMM treat chain stretching and orientation as coupled.  Since the tube model anticipates a 

stress drop from barrier-free chain retraction at time scale around τR, we regard such 

differences to be qualitative, revealing the inadequacy of the basic premise of barrier-free 

chain retraction, upon which any version of the tube model was built.  In other words, the 

experiment uncovers a new concept that we term "finite cohesion": The entanglement 

network would remain intact after fast external deformation unless the magnitude of the 

stepwise deformation exceeds a sizable magnitude.  Our present work focuses on the 

identification of such a threshold since the elastic yielding behavior at higher magnitude 

(leading to strain localization) has been investigated previously for both stepwise shear
22
 and 

extension.
73
  As shown in Fig. 7a, the stress relaxation is independent of the strain up to γ = 

0.6 in contradiction to the depictions by the GLaMM and DE models presented in Fig. 6a and 

6c as well as in Fig. 7a.  At higher strains, i.e., for γ > 0.7, the cone-plate based measurements 

would be necessary.  Alternatively, for the parallel-disk measurements, the GLaMM 

calculations of the stress relaxation can be carried out for the parallel-disk configuration.  

Given the sufficiently large discrepancy between the experiment and theory in Fig. 7a up to γ 

= 0.6, we deem it beyond the scope of the study to make such GLaMM calculations.  
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Moreover, it is remarkable that the idea of finite cohesion associated with the entanglement 

network bears out for both shear and extension, illustrating the universality of the observed 

behavior.  
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Figure 7 Normalized relaxation moduli based on experiment, the original Doi-Edwards tube model 

and the GLaMM model at "long time" from 5 τR to 50 τR for both (a) shear and (b) extension.  The 
results from both the DE tube model calculation and the GLaMM model calculation are identical at 

different times from 5 to 50 τR. 
 

To better understand the qualitative differences observed between experiments and the 

predictions of the tube model, we seek a more detailed analysis of the nature of the stress.  

According to the GLaMM model, both chain orientation and stretching contribute to the 

stress, which separate after the barrier-free chain retraction at τR.  The orientational portion of 

the stress can be calculated by following a previous procedure
30
 within the frame of the 

GLaMM model.  As shown in Figures 8a-b, the contributions of chain stretching to the shear 

stress quickly vanish around τR in all cases, with σor/σ converging to unity after t/τR = 1.  The 

convergence involves as much as 25 % drop in the relaxing stress for γ = 1.1, and nearly 

10 % for γ = 0.6.  It is this diminishing stretching component of the stress that causes the 

overall stress in the GLaMM model to show discernible dependence on the magnitude of the 

stepwise deformation.  
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However, the lack of accelerated stress relaxation in the experimental data upto a strain of 

around γ = 0.6 and an elongation ratio of around λ = 1.5 implies that chain retraction did not 

really take place after stepwise deformation at the low magnitude.  Then, the essential 

question is why chain retraction could not occur at moderate strain magnitude.  Since the 

chain retraction cannot take place on time scales much shorter than the reptation without 

either dragging the surrounding chains with it or altering its conformation, our experiments 

suggest that entanglement strands in the deformed network remain stretched at moderate 

magnitude of stepwise deformation, i.e., chain retraction does not occur in a barrier-less 

fashion, which is consistent with the recent molecular dynamics simulations.
29-31

  Therefore, 

we propose that there is a barrier due to interchain uncrossability to resist spontaneous chain 

retraction, of which the nature requires further investigation in the future.  At higher 

magnitude, e.g., beyond γ = 0.6 and λ = 1.5, when the stress relaxation quickens, the 

deformed strands still need to fight against the barrier.  As a consequence, the stress 

relaxation is only moderately faster with increasing magnitude as shown in Figs. 7a and 7b, 

unlike the predictions of GLaMM that assumes barrier-less chain retraction. 
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Figure 8 Orientational contribution σor to the total stress σ for both (a) shear and (b) extension 
calculated by the GLaMM model.  Note that insets are the total stress σ, the orientational stress σor, 
and excess stress (σ - σor) at γ = 0.8 for shear and λ = 1.5 for extension, respectively. 
 

Page 16 of 29Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



17 
 

D. Probing the state of chain entanglement during stress relaxation 

To learn more about the stress relaxation process, we follow the same protocol previously 

applied to study the relaxation behavior after a step-wise shear of entangled solutions.
66
  

Namely, we carried out delayed rate-switching experiments to probe the change of the state 

of chain entanglement during the stress relaxation from a step-wise extension.  Specifically, 

after a step-wise extension to the various magnitude given by the stretching ratio λ1 = 1.2, 

1.5, 1.8 and 2.2 respectively, involving a Hencky rate ε& =1.0 s-1, the specimen is allowed to 

relax for a period tw starting from the end of the tensile deformation before another startup 

extension with ε& = 0.3 s-1 is imposed on the relaxing sample.  Here the different waiting time 

tw ranges from τR/2 to several τd. 

To provide the necessary background, we first present in Figure 9a the stress-strain 

curves at both ε& = 0.3 and 1.0 s-1, obtained from freshly loaded equilibrium samples.  At ε& = 

1.0 s
-1
, the engineering stress σengr only monotonically increase until rupture around λ = 14. 

At ε& = 0.3 s-1, there is a characteristic stress peak σengr0(max) at 1.0 MPa.  Here, we choose 

σengr = F/A0 instead of true stress because the engineering stress maximum σengr(max) is an 

effective macroscopic measure of the molecular events such as chain disentanglement.
74, 75

 

During startup extension, the loss of entanglement strands competes with the growing 

stretching of the surviving strands.  Thus, the peak of σengr signifies the global yielding of the 

entanglement network
74
 when further stretching of the surviving entanglement strands is 

offset by the massive chain disentanglement.  These features can be exploited to learn about 

the state of chain entanglement during stress relaxation.   
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Figure 9 (a) Engineering stress σengr versus the measure of extension, λ−1/λ2

, for the two applied 

Hencky rates of 0.3 and 1.0 s
-1
 respectively, plotted on double-X and double-Y axis.  Up to λ = 2.0, 

the stress growth is essentially linear at ε&  = 1.0 s-1.  Thus, up to the elongation ratio of λ = 2.0, the 
affine deformation condition holds well.  The inset illustrates the geometric condensation effect on 

the entanglement strands, where the dots represent the entanglement strands viewed in the transverse 

cross-section where the entanglement strand density is higher.  (b) The states of entanglement 

network at different stages before, during and after a step uniaxial extension.  If chain retraction 

would take place at τR, the geometric condensation effect would be absent during much of the stress 
relaxation.  Conversely, the geometric condensation effect will survive for moderate magnitude of the 

step extension if finite cohesion is present to prevent chain retraction. A0 denotes the initial cross-

section area and A0′represents the cross-section area after step strain. 

       

Since up to λ = 2.0 the stress-strain curve does not deviate much from the linearity at an 

elongation rate of ε&  = 1.0 s-1, the extension should be nearly affine.  In affine deformation, 

there is a geometric condensation effect as indicated by the inset in Figure 9a.  The same 

(load-bearing) entanglement strands condense into a smaller cross-sectional area because of 

the homogeneous uniaxial extension.  During the relaxation, the condensation of the 

entanglement strands will disappear over time by molecular diffusion.  Our delayed rate-

switching experiment can actually quantify such a change in the state of entanglement by 

determining when the step-extended sample returns to the "non-condensed" equilibrium state, 

having a smaller cross-sectional area than the initial by a factor of λ.  According to our 

understanding, the condensation effect may survive after step extension until the reptation 

time τd, as depicted in Figure 9b.  On the contrary, if chain retraction takes place on the time 
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scale of τR, the condensation should vanish for tw > τR as shown in Figure 9b by the cartoon 

below the stress relaxation curve. 
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Figure 10  (a)-(d) Delayed rate-switching (to ε& = 0.3 s-1) experiments during the stress relaxation from 
step extension (produced with ε& = 1.0 s-1) of magnitude corresponding to λ1 = 1.2, 1.5, 1.8 and 2.2 
respectively, where the subsequent startup extension after a period of relaxation tw produces a 

maximum in σengr as shown, along with the preceding stress build-up and relaxation data.  In each of 
(a) to (c), σengr(max) remains the constant close to σengr0(max) in the first 100 s.  Except for λ1 = 1.2, 
σengr(max) does not decrease to σengr0(max)/λ1 within the reptation time τd.  For λ1 = 2.2, the specimen 
underwent breakup at tw = 300 s due to localized elastic yielding.  The elastic yielding

64
 also causes 

σengr(max) to decrease momentarily. 
 
If affine deformation prevails in the preceding step-wise extension to a stretching ratio of 

λ1 and the same total number of the original entanglement strands would participate in 

resisting the subsequent startup extension even after a certain amount of waiting time tw at λ1, 

then we may see the same level of the tensile force although the cross-sectional area is now 
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lower by a factor of λ1.  In other words, before the effect of the geometric condensation 

vanishes through molecular diffusion, there is still the same number of load-bearing 

entanglement strands across the specimen in spite of the areal reduction by λ1.     

Therefore we probe the stress relaxation process after a step-wise extension by 

application of a startup extension with ε& = 0.3 s-1 at the different stages of the relaxation.  

Figures 10a-10d present these discrete delayed rate-switching experiments, where the 

engineering stress σengr at the various stages is defined as the total tensile force F divided by 

the initial total cross-section area A0: σengr = F/A0.  The fact that up to tw = 100 s the startup 

extension produces a similarstress peak level for λ1 = 1.2, 1.5 and 1.8 is an indication that (a) 

there is nearly affine deformation and (b) the corresponding effect of the geometric 

condensation persists up to tw = 100 s.  
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Figure 11 Engineering stress σengr2 as a function of time, resulting from the startup extension 
applied at the various stages (designated by tw) during the stress relaxation from three different step 

extension of (a) λ1 = 1.2 and (b) λ1 = 1.8 respectively.  The solid dots represent the stress vs. time 
curve from an equilibrium sample (i.e., λ1 = 0) in terms of σengr = F/A0. 
  

We have used the value σengr(max) to assess whether the original entanglement strands are 

still present and participate to resist the applied startup extension after the various amount of 

relaxation.  The stress response eventually drops, consistent with the reduced cross-sectional 

Page 20 of 29Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



21 
 

area by λ1, after the full relaxation when the new entanglement strands are at the equilibrium 

density.    

Treating the step-extended specimen as a "fresh" sample with initial cross-sectional area 

of A0' = A0/λ1, we plot the engineering stress σengr2 = F/A0' arising from the startup extension 

as a function of time in Figures 11a-b, where σengr from the startup extension on an 

equilibrium sample is also plotted as reference (solid dots).  The fact that the curves 

represented by the open symbols systematically stay above the solid dots is consistent with 

the picture depicted in Fig. 9b.  For tw ~1500 s > τd at λ1 = 1.2, and tw = 7500 s = 5.6τd at λ1 = 

1.8, even though peak value of σengr2, i.e., σengr2(max), has returned to σengr0(max), the shape of 

these curves still deviates slightly from the original curve (solid dots), indicating that the 

relaxing sample has not fully returned to the equilibrium state.  This is consistent with the 

accumulating literature that reported longer recovery time than τd to the equilibrium state.
76
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Figure 12 (a) Engineering stress maximum from the startup extension applied during the stress 

relaxation from the step extension of four different magnitudes, defined as the total tensile force F 

divided by the actual cross-sectional area A0/λ1.  (b) Renormalized engineering stress maximum 
σengr(max) = Fmax/A0 = σengr2(max)/λ1 as a function of the duration of the stress relaxation tw.  Here the 
filled symbols on the right-hand-side Y axis indicate the equilibrium values σengr0(max)/λ1 that σengr(max) 
is expected to reduce to in the long time limit when the step-extended sample fully relaxes to the 

equilibrium state.  For λ1 = 1.5 and 1.8, it takes several τd to reach σengr0(max)/λ1. The dashed lines 
indicate the equilibirum state for each elongation ratio. 
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Plotting the "normalized" peak stress σengr2(max) read from such data as those in Figures 

11a and 11b as a function of tw, we can more clearly demonstrate, in Figure 12a, the effect of 

molecular relaxation on the geometric condensation.  There are several remarkable features 

in Figure 12a.  First, σengr2(max) remains essentially constant up to 100 s for λ1 = 1.2, 1.5 and 

1.8.  In other words, σengr2(max) stays higher than σengr0(max) by a factor close to λ1 for a period 

as long as eight times the Rouse time τR.  Second, for λ1 = 1.2, it takes about one reptation 

time τ (i.e., tw ~ τd = 1340 s) for σengr2(max) to return to σengr0(max), when the effect of the step 

extension completely disappears.  Third, for λ1 = 1.5 and 1.8, the peak stress remains higher 

than σengr0(max) for tw as long as (4~6)τd, which is hundreds times longer than the Rouse time. 

It is equally revealing to "renormalize" the peak stress level, i.e., to simply plot σengr(max) 

= σengr2(max)/λ1 versus the waiting time tw as shown in Figure 12b.  First, we see all the data up 

to λ1 =1.8 stay around σengr0(max) = 1.0 MPa for tw < 100 s although the relaxing tensile stress 

has decreased by a factor of two as shown in Figure 10a to 10c.  Had chain retraction 

occurred around the Rouse time τR = 13 s, the geometric condensation effect should have 

disappeared long before 100 s and σengr(max) would have dropped below σengr0(max) since the 

cross-sectional area is smaller by λ1.  Second, Figure 12b is consistent with the idea of finite 

cohesion of the entanglement network.  The initial overlapping of data for λ1 = 1.2, 1.5 and 

1.8 indicates that the entanglement network starts to return to its "non-condensed" state only 

after 100 s, independent of the value of λ1.  Third, except for λ1 = 1.2, it takes several 

reptation time τd for the effect of step extension to vanish.  In other words, the effect of the 

preceding extension remains strong even after a relaxation time of tw ~ τd.  When the 

equilibrium state is recovered, the startup extension should produce a peak stress that is 
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lower than σengr(max) = 1.0 MPa by a factor of λ1, i.e., equal to σengr0(max)/λ1 = (1/λ1) MPa 

because the specimen's cross-sectional area A0' is smaller than the original A0 by a factor of 

λ1.  The filled symbols on the right Y axis indicate these values. Lastly, there is a progressive 

decrease of the σengr2(max) when λ1 is as high as 2.2 as shown in Fig.10d and 12a, suggesting 

the a loss of load bearing strands or entanglements from the very beginning of the stress 

relaxation process.  Such observation is consistent with our observations in Fig. 7b and 

supports the idea of that the cohesion barrier is finite and can be overcome when the elastic 

stress of a chain is high enough.
64
  

E. Quantifying the elastic state during startup extension: elastic recovery 

When the Rouse-Weissenberg number WiR = ε& τR is below unity, the intermolecular 

griping force is negligible as suggested in a previous study of large extension behavior of 

entangled melt.
77
  When WiR < 1, startup extension ceases to be affine beyond a stretching 

ratio λ = exp(WiR).  According to the tube model, σengr exhibits a maximum because of the 

combination of saturated chain orientation and shrinkage of the cross-sectional area.  In other 

words, the non-monotonicity does not signify any breakdown of the entanglement network.  

We carry out elastic recovery experiment to further explore the concept of the cohesion 

associated with the chain entanglement as well as the concept of cohesive yielding at the 

maximum of the engineering stress σengr(max).   

Page 23 of 29 Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



24 
 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

4 8 12 16 20 24 28

σ
e
n

g
r (

M
P

a
)

λ

 Wi
R
 = 0.25

 Wi
R
 = 0.75

Wi
R
 = 1.5

Wi
R
 = 2.5 T = 25 

o
C

(a)

 

0.5

0.6

0.7

0.8

0.9

1

0.2 0.4 0.6 0.8 1 3 5

0.25         2.14         3.0
0.75         2.86         1.3
1.50         3.32         0.80
2.50         3.49         0.50

L
0
 /

 L
f

λ / λ
max

Wi
R

λ
max

t
max

/τ
R

T = 25 
o
C (b)

  

Figure 13  (a)  Engineering stress σengr versus stretching ratio λ for startup extension at four values of 
WiR at 25 

o
C.  (b) The ratio of the initial specimen length L0 to the final recovered length after it has 

been stretched to the various elongation ratio both before and after the engineering stress maximum at 

λmax, at four different Hencky rates of 0.01 to 0.1 at 25 
o
C where the Rouse time is 25 s.   

  
Following the same protocol as used in a previous study

66
 that elucidated the meaning of 

the stress overshoot in startup shear, we perform a set of elastic recovery experiments 

involving startup extension at different Hencky rates.  Figure 13a shows a series of startup 

extension and subsequent elastic recovery, covering a range of WiR from 0.25 to 2.5.  

Strikingly, there is nearly complete recovery before the engineering stress maximum σengr(max) 

even for WiR < 1.  For example, at ε& = 0.01 s-1, σengr(max) occurs at εmax = 0.76 (corresponding 

to an elongation ratio of λmax = 2.14), i.e., it takes 76 s (<< τd  = 2578 s at T = 25 
o
C) to reach 

the maximum as shown in Figure 13b.  Since the Rouse time τR at 25 
o
C is only 25 s, 2/3 of 

this extension should be taking place under non-affine deformation condition if chain 

retraction at τR actually took place.  The 95 % elastic recovery from a step extension of 

λ = 2.14 at WiR = 0.25 indicates that the extension of the entanglement network is well 

beyond a Hencky strain of 0.25, i.e., beyond λ = 1.28.  The lack of complete elastic recovery 

only occurs beyond λmax.  Thus, the data in Figures 13a-b also reveal the significance of the 

engineering stress maximum as a signature of yielding of the entanglement network.  Note 
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that for WiR = 2.5, there emerges a local maximum first at λmax = 4.1 as shown in Figure 13a 

before the specimen eventually shows monotonic rise until rupture.  Even in this case, there 

is lack of full elastic recovery beyond λmax = 4.1 to indicate that the nature of the process 

after the first peak is viscoelastic.  Future molecular dynamics (MD) simulation will clarify 

the molecular origin of the engineering stress non-monotonicity displayed in Figure 13a. 

 

Conclusions 

We carried out three different types of homogeneous-deformation experiments to explore the 

existence of finite cohesion associated with the chain entanglement.  None of our experiments 

involves strain localization and non-quiescent relaxation and therefore can be more readily 

compared with the prevailing theoretical description.  Specifically, step-wise shear and extension 

of moderate magnitude was performed to determine whether there is any sign of chain retraction 

to accelerate the stress relaxation.  The observed lack of any speed-up in the stress relaxation 

independent of the deformation is consistent with the picture
64
 that there is an cohesion barrier in 

the entanglement network.  In other words, the nearly identical stress relaxation dynamics for 

step-wise shear with magnitude from γ = 0.1 to 0.7 and for step-wise extension from λ = 1.2 to 

1.5 suggests that chain retraction did not occur.  This assertion was made because the tube theory 

predicts an appreciably faster stress relaxation after any magnitude of step-wise deformation. 

The state of chain entanglement after a step-wise extension is delineated during the stress 

relaxation by a sudden application of a startup extension.  The data analysis indicates that the 

geometric condensation associated with the affine extension still remains observable even after 

several reptation time τd let alone after merely one Rouse time τR, which is shorter than τd by a 

factor of 100.  Finally, the full elastic recovery from step-wise extension, produced with WiR < 1 
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at any magnitude before the engineering stress maximum σengr(max) is consistent with the idea that 

there is finite cohesion. 

The results of the present study are consistent with the recent MD simulations
29-31

 that have 

revealed significant chain stretching and lack of barrier-free chain retraction.  Thus, the previous 

message
29, 33, 78

 remains valid that there is merit to explore a more realistic conceptual framework 

for nonlinear rheology of entangled polymers. 
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