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Abstract 

Mixed-oxide fuels containing uranium with thorium and/or plutonium may play an 

important part in future nuclear fuel cycles. There are, however, significantly fewer 

data available for these materials than conventional uranium dioxide fuel. In the 

present study, we employ molecular dynamics calculations to simulate the elastic 

properties and thermal expansivity of a range of mixed oxide compositions. These are 

then used to support equations of state and oxygen self-diffusion models to provide a 

self-consistent prediction of the behaviour of these mixed oxide fuels at arbitrary 

compositions.  
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1. Introduction 

Uranium, plutonium and thorium dioxides are all of considerable interest to the 

nuclear industry owing to their use as nuclear fuels [1–4] either in isolation or in 

mixed-oxide fuels (MOx). These materials are important for the sustainability of the 

nuclear industry both in alternative fuel cycles for traditional light-water reactors or 

for advanced fuels in support of the Generation IV reactor designs.  Mixed thorium 

and uranium based fuels benefit from higher melting points and thermal conductivity 

relative to pure UO2 fuels; the mixture also provides a source of fissile isotopes which 

are lacking from pure ThO2. Thorium is also greatly more abundant than uranium [1]. 

The use of PuO2, directly or as a mixed fuel form, would enable a route to dispose of 

legacy stockpiles of plutonium-rich material. 

 The three stoichiometric oxides, UO2, ThO2 and PuO2, and their solid 

solutions all share the same parent fluorite crystal structure. The diffusion of oxygen 

within this lattice is of fundamental importance in determining the physical properties 

of the fuel and is linked to the solubility and migration of fission products [5], and the 

recovery rate and relative tolerance of the oxides to radiation damage [6]. The 

accretion of oxygen point defects into planar clusters may also drive the formation of 

high-burn-up microstructures during reactor operation [7].  

The shared symmetry and solid solubility that exists between UO2, PuO2 and 

ThO2 crystals allows a wide range of nominal fuel compositions to be fabricated. This 

flexibility presents a challenge for fuel performance codes as many of the important 

physical and mechanical parameters will vary with metal-ion content. On a 

microstructural level, the fuel is even more complex as significant compositional 

heterogeneities exist at start of life (owing to the fabrication route) and subsequently 

evolve during operation due to both temperature- and irradiation-induced segregation 

 2 

Page 2 of 29RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



[8,9]. Consequently, there is a need to provide a self-consistent estimate of the effect 

of metal-ion content on both the elastic and defect properties of these materials.  

 Thermodynamic models can correlate atomic defect properties with bulk 

properties [10–12]. In the cBΩ model introduced by Varotsos and Alexopoulos 

[11,12] the defect Gibbs energy (gi) is proportional to the isothermal bulk modulus 

(B) and the mean volume per atom (Ω) through a constant c.  The cBΩ model has 

been previously employed to describe point defect processes including self-diffusion 

in a number of systems including oxides, semiconductors, and metals [13–21].  

 Oxygen self-diffusion in stoichiometric fluorite oxides is vacancy-mediated, in 

which the oxygen atoms exchange positions with adjacent oxygen vacancies. As a 

single diffusion mechanism is dominant over a wide temperature range, the cBΩ 

model is well suited to understanding self-diffusion in these materials.  We use the 

model in this case to separate out the contribution to diffusion from changes in the 

elastic properties of the lattice between the different materials from the intrinsic defect 

processes that are common to all of the considered compositions. This allows us to 

parameterise the models for better predictive capabilities, without the need to perform 

many separate simulations, and also to understand the effect of mixed metal 

compositions upon lattice diffusion. The combination of these should enable 

improved predictions of the behaviour of new fuel forms and a more complete 

understanding of the effect of compositional heterogeneities within current fuels.  

2. Methodology 

2.1 Molecular dynamics  

Molecular dynamics (MD) simulations have often been used to provide data on the 

diffusion properties of energy related materials such as MOx [3,22,23]. The recent 

Cooper-Rushton-Grimes (CRG) potential set [24] has been used for numerous fluorite 
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structured oxides and reproduces their thermomechanical and thermophysical properties 

and the Cauchy violation over a wide temperature range [22,25,26]. The CRG 

potential’s fidelity in describing these properties arises from the introduction of many-

body interactions to the model’s description of interatomic forces. This is achieved using 

the embedded atom method [27]. The CRG model was successfully used in the 

calculation of diffusion properties in CeO2, U1-xThxO2 and Pu1-xUxO2 [22,23,28].  

 MD calculations in this study were performed within the Large-scale 

Atomic/Molecular Massively Parallel Simulator (LAMMPS) code [29]. To produce 

equilibrium volume and diffusion constants, the following process was used: 

1. A 10×10×10 supercell of fluorite-structured MxN1-xO2 (M = U, N = Pu,Th) was 

generated. Metal ions were randomly allocated to each cation site. The starting 

lattice parameter is arbitrary provided it is sufficiently close to the final 

equilibrium value for each pressure, temperature and composition. It was set 

to be 5.47Å.  

2. Before commencing the dynamic part of the simulation, each ion was slightly 

displaced (by around 0.1Å) in a random direction from its lattice site. The 

initial velocities of all of the ions were set to a random value with the 

constraint that the overall velocity distribution conformed to a Maxwell 

Boltzmann distribution at an (arbitrary) temperature of 300K. Statistically-

independent random seeds were used in each simulation.  

3. A molecular dynamics simulation was performed in a constant pressure-

temperature (NPT) ensemble. For 10ps the temperature of the thermostat was 

ramped from the initial value of 300K to the final value of temperature T. A 

subsequent 20ps was calculated with the thermostat held at T. Control of the 

temperature and pressure in the simulation was through a Nosé-Hoover 
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thermostat and barostat with relaxation times of 0.1 and 0.5ps respectively.   

4. For calculation of the diffusion constant, the simulation box size was set to the 

average cell size over the previous 20ps. The ensemble was set to constant 

volume and energy (NVE) (no thermostat or barostat) and the positions and 

displacements of the ions were recorded over a subsequent 1ns.  

This process allowed us to establish the equilibrium volume at a given composition, 

temperature and pressure of the system. We assume that the random selection of 

cation positions, and initiation of random velocities and displacements mean that 

these data are independent and statistically representative of the bulk crystal 

behaviour of the compositions at a given pressure and temperature.  

 To calculate the diffusivity D, we use a linear fit to the mean squared 

displacement: 

〈(𝒓𝒓𝒊𝒊(𝑡𝑡) − 𝒓𝒓𝒊𝒊(0))2〉 = 6𝐷𝐷𝐷𝐷   (1) 

Where ri(t) denotes the position of ion i at a time t and 〈… 〉 denotes a mean over all of 

the atoms of a single ion species within the simulation cell. A single value of D for 

each composition was fitted to data from ten statistically independent simulations 

under the same pressure and temperature set points in order to capture a representative 

average.  

 In order to investigate the bulk and diffusion properties of this system, we 

generated data at specific compositions of MxN1-xO2 for M=U, N=Pu,Th and x=0.0, 

0.25, 0.5, 0.75 and 1.0. To generate the thermoelastic properties, 100 simulations per 

compositions were run at a randomly selected set of temperatures and pressures in the 

range T={50,2500K} and P={–7.5, 7.5GPa}; in contrast to the diffusion calculations, 

only a single cation arrangement was used per P,T point, however we believe the 
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large number of total simulations is sufficient to provide appropriate averaging over 

the different cation distributions. 

2.2 Equation of State 

The pressure-volume-temperature data were used to fit a Rose-Vinet equation of state 

[30] in which a material of volume, V, at an equilibrium temperature, T, and pressure, 

P, are linked through an equation of the form: 

𝑃𝑃(𝑇𝑇, 𝑋𝑋) = 3𝐵𝐵0(𝑇𝑇)
𝑋𝑋2

(1 − 𝑋𝑋(𝑉𝑉))exp[ 𝜂𝜂0(𝑇𝑇)(1 − 𝑋𝑋(𝑉𝑉))]  (2) 

Where B0(T) is the zero pressure bulk modulus as a function of temperature and the 

normalised length, X(V), is given by: 

𝑋𝑋(𝑉𝑉) = � 𝑉𝑉
𝑉𝑉0(𝑇𝑇)

�
1/3

       (3) 

Where V is the material volume, V0(T) is the zero-pressure volume as a function of 

temperature, and finally, 

𝜂𝜂0(𝑇𝑇) = 3
2
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
0

(𝑇𝑇) − 1�      (4) 

Where 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
0

(𝑇𝑇) is the pressure derivative of the bulk modulus at zero pressure as a 

function of temperature.  

 The physical origin of the Rose-Vinet Equation of State is based on splitting 

the volume derivative of the Helmholtz free energy, F(V,T) into two terms: 

𝑃𝑃(𝑉𝑉, 𝑇𝑇) = −�𝜕𝜕𝜕𝜕(𝑇𝑇,𝑉𝑉)
𝜕𝜕𝜕𝜕

�
𝑇𝑇

= −𝑑𝑑𝑑𝑑(𝑉𝑉)
𝑑𝑑𝑑𝑑

+ 𝑃𝑃them.(𝑇𝑇, 𝑉𝑉)   (5) 

Where E(V) is the energy of the system of atoms at zero temperature and Pthem. 

is a thermal pressure which tends to zero as 𝑇𝑇 → 0 and is observed to be only weakly 

dependent upon volume [30–33]. This assumption allows the pressure at a given 

volume and temperature to be written as two terms, one which has a common 

dependence on the volume of the system at a given reference temperature, TR, and a 
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second that is independent of the system volume and linearly dependent upon 

temperature: 

𝑃𝑃(𝑇𝑇, 𝑉𝑉) = 𝑃𝑃(𝑇𝑇𝑅𝑅, 𝑉𝑉) + 𝛼𝛼0(𝑇𝑇𝑅𝑅)𝐵𝐵0(𝑇𝑇𝑅𝑅)(𝑇𝑇 − 𝑇𝑇𝑅𝑅)   (6) 

This expression is valid above a material’s Debye temperature (300-400K for the 

mixed oxides considered here [34,35]) and in the absence of any structural phase 

transformations that would alter E(V).  

Vinet et al [36] have considered analytical functions that may represent the 

pressure isotherm P(TR,V) at a non-zero temperature and have noted that, for a wide 

range of solids, the following relationship holds: 

𝐻𝐻( 𝑇𝑇𝑅𝑅, 𝑋𝑋) ≡ 𝑋𝑋2

3(1−𝑋𝑋) 𝑃𝑃(𝑇𝑇𝑅𝑅, 𝑋𝑋) = 𝐵𝐵0(𝑇𝑇𝑅𝑅)𝑒𝑒𝜂𝜂0(𝑇𝑇𝑅𝑅)(1−𝑋𝑋)  (7) 

Where the definition of H(TR, X) was motivated by the work of Rose et al [31] on the 

scaling laws of the cohesive energy of materials as a function of their lattice 

parameter and the remaining parameters are obtained from the empricial observation 

that a plot of ln(𝐻𝐻) against (1-X) has an intercept of 𝐵𝐵0(𝑇𝑇𝑅𝑅) and a gradient of 𝜂𝜂0(𝑇𝑇𝑅𝑅) 

for many different types of materials [30].  

 To provide parameters for the Rose-Vinet equation of state it is necessary to 

select an (arbitrary) reference temperature, TR, taken here to be 300K. It follows that 

the pressure can then be calculation at a point (T,V) by substitution of the pressure 

isotherm P(TR, X) from Equation 7 into Equation 6 to obtain: 

𝑃𝑃(𝑇𝑇, 𝑋𝑋𝑅𝑅) = 3𝐵𝐵0(𝑇𝑇𝑅𝑅)
𝑋𝑋𝑅𝑅
2 (1 − 𝑋𝑋𝑅𝑅)exp[ 𝜂𝜂0(𝑇𝑇𝑅𝑅)(1 − 𝑋𝑋𝑅𝑅)] + 𝛼𝛼0(𝑇𝑇𝑅𝑅)𝐵𝐵0(𝑇𝑇𝑅𝑅)(𝑇𝑇 − 𝑇𝑇𝑅𝑅)  (8) 

The isothermal bulk modulus then follows from: 

𝐵𝐵(𝑇𝑇, 𝑋𝑋𝑅𝑅) = 𝐵𝐵0(𝑇𝑇𝑅𝑅)
𝑋𝑋𝑅𝑅
2 {2 + [𝜂𝜂0(𝑇𝑇𝑅𝑅) − 1]𝑋𝑋𝑅𝑅 − 𝜂𝜂0(𝑇𝑇𝑅𝑅)𝑋𝑋𝑅𝑅2}exp[ 𝜂𝜂0(𝑇𝑇𝑅𝑅)(1 − 𝑋𝑋𝑅𝑅)]   (9) 

And its pressure derivative,  

�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� (𝑇𝑇, 𝑋𝑋𝑅𝑅) = 4+[3𝜂𝜂0(𝑇𝑇𝑅𝑅)−1]𝑋𝑋𝑅𝑅+𝜂𝜂0(𝑇𝑇𝑅𝑅)[𝜂𝜂0(𝑇𝑇𝑅𝑅)−1]𝑋𝑋𝑅𝑅

2−𝜂𝜂02(𝑇𝑇𝑅𝑅)𝑋𝑋𝑅𝑅
3

3�2+[𝜂𝜂0(𝑇𝑇𝑅𝑅)−1]𝑋𝑋𝑅𝑅−𝜂𝜂0(𝑇𝑇𝑅𝑅)𝑋𝑋𝑅𝑅
2�

   (10) 

 7 

Page 7 of 29 RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



Where η0(TR) is as defined in Equation 4, α0(TR) is the zero pressure instantaneous 

thermal expansion at the reference temperature and XR is given by Equation 3 but 

evaluated at T=TR: 

𝑋𝑋𝑅𝑅 = � 𝑉𝑉
𝑉𝑉0(𝑇𝑇𝑅𝑅)

�
1/3

       (11) 

The functional form of this equation of state is more complex than the more 

widely used isothermal Birch-Murnaghan equation of state [37,38], however it has the 

significant advantage that it allows predictions of the volume of a material at an 

arbitrary temperature and pressure from only four parameters: the thermal expansion 

coefficient, volume, bulk modulus and pressure derivative of bulk modulus evaluated 

at zero pressure and a single reference temperature TR.  

In order to predict the thermodynamic properties at an arbitrary pressure and 

temperature we use a Levenberg–Marquardt least-squares algorithm [39,40] to fit the 

four parameters, V0(TR), B0(TR), 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
0

(𝑇𝑇𝑅𝑅) and α0(TR) to the sets of P, V, T data 

generated by the simulations. From these fitted values, we can use Equations 8, 9 and 

10 to predict volume, bulk modulus and the pressure derivative of the bulk modulus; 

thermal expansivity at temperature (instantaneous or averaged) may then be 

numerically calculated from the appropriate temperature derivatives of Equation 4.  

2.3 Diffusion model 

The vacancy-mediated oxygen self-diffusion is controlled by the Gibbs activation 

energy, 𝑔𝑔act. Consequently, the diffusivity, D, is defined by the following relation 

[19]: 

𝐷𝐷 = 𝑓𝑓𝑎𝑎02𝜈𝜈𝑒𝑒
−𝑔𝑔

𝑎𝑎𝑎𝑎𝑎𝑎

𝑘𝑘𝐵𝐵𝑇𝑇        (12) 

Where  𝑓𝑓 is the diffusion correlation factor, 𝑎𝑎0 is the lattice constant, 𝜈𝜈 is the attempt 

frequency and 𝑘𝑘𝐵𝐵 is Boltzmann’s constant.  
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 In order to link the bulk and defect properties of the lattice to the resultant 

oxygen diffusivity we have employed the cBΩ model. In this the Gibbs defect energy gi 

for oxygen defect formation is associated with the bulk properties of the material through 

[18,19]: 

𝑔𝑔i = 𝑐𝑐iBΩ                                                                      (13) 

Where ci is a scaling coefficient which is independent of temperature and pressure. 

Combining Eqs. (6) and (7): 

  𝐷𝐷 = 𝑓𝑓𝑎𝑎02𝜈𝜈𝑒𝑒
−𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎𝐵𝐵Ω𝑘𝑘𝐵𝐵𝑇𝑇                                                           (14) 

Where 𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎  is equivalent to ci in the event that only a single defect process 

contributes to the overall diffusivity. The pre-exponential factor (𝑓𝑓𝑎𝑎02𝜈𝜈) is dependent 

upon the diffusion mechanism, the crystal structure and the attempt frequency. The 

cBΩ model is appropriate when considering pressure and temperature variations as it 

encapsulates anharmonic effects exhibited by the expansion of the lattice and decrease in 

bulk modulus with temperature.   

3. Results and Discussion 

3.1 Equation of State 

 The Rose-Vinet equation of state was fitted to the MD data generated at each 

of the three end members and three intermediate compositions UxTh1-xO2 and UxPu1-

xO2 (x=0.25, 0.5, 0.75). The fitted results for the bulk modulus, derivative of the bulk 

modulus and thermal expansivity are reported in Table 1. The use of these values, in 

association with the equations given in Section 2, allows the thermoelastic properties 

of each composition to be estimated at temperatures and pressures below the 

superionic transition. The empirical potentials used in the present study are designed 

to accurately reproduce the elastic properties of the matrix, so it is unsurprising that 

the data agree well with previous studies for the binary oxides. However the use of 
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statistically-averaged ternary compositions (e.g. UxPu1-xO2), and the simultaneous 

treatment of volume and temperature in the Rose-Vinet equation of state, allow 

predictions of volume at an arbitrary composition, pressure and temperature. 

 In Figure 1, data are shown for the thermal expansion and compressibility of 

two example systems, UO2 and a mixture U0.5Th0.5O2. These data are not included in 

the original fit dataset but it can be seen that the equation of state does an excellent 

job of describing the variation in volume within the range of the fitted data. At high 

temperatures (greater than 2500K) there is evidence in Figure 1 of the onset of the 

superionic transition, which marks the beginning of significant anion disorder in the 

lattice. The equation of state is not fitted to data greater than 2500K, and if it were, it 

is not capable of capturing the discontinuous change in thermal expansion that occurs 

at this transition.  

 The bulk modulus of a theoretical mixed oxide system MxN1-xO2 with complete 

solid solubility is given by [19],  

𝐵𝐵(𝑥𝑥) = 𝐵𝐵𝑁𝑁
𝑓𝑓(𝑥𝑥)
𝑔𝑔(𝑥𝑥)

                                                    (15) 

Where, 

𝑓𝑓(𝑥𝑥) = 1 + 𝑥𝑥 ��𝑉𝑉𝑀𝑀
𝑉𝑉𝑁𝑁
� − 1�                                          (16) 

𝑔𝑔(𝑥𝑥) = 1 + 𝑥𝑥 ��𝐵𝐵𝑁𝑁𝑉𝑉𝑀𝑀
𝐵𝐵𝑀𝑀𝑉𝑉𝑁𝑁

� − 1�                                      (17) 

And BM,N and VM,N refer to the bulk moduli and equilibrium volumes of the end members 

MO2 and NO2. Figure 2 shows a plot of the values of bulk modulus calculated from the 

Rose-Vinet equation of state and those predicted from the theoretical expression. The 

agreement is excellent, indicating that simple expressions such as the above are suitable 

for accounting for the variation in properties as a function of composition in these 

systems. 
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 The pressure derivative of the bulk modulus as a function of composition can 

then be found from Equation 9 as: 

d𝐵𝐵(𝑥𝑥)
d𝑃𝑃

= 𝐵𝐵𝑁𝑁′
𝑓𝑓(𝑥𝑥)
𝑔𝑔(𝑥𝑥)

+ 𝐵𝐵𝑁𝑁
𝑓𝑓′(𝑥𝑥)𝑔𝑔(𝑥𝑥)−𝑓𝑓(𝑥𝑥)𝑔𝑔′(𝑥𝑥)

𝑔𝑔(𝑥𝑥)2
           (18) 

Where 𝑓𝑓′(𝑥𝑥) and 𝑔𝑔′(𝑥𝑥) are the pressure derivatives of 𝑓𝑓(𝑥𝑥) and 𝑔𝑔(𝑥𝑥) given by,  

𝑓𝑓′(𝑥𝑥) = 𝑥𝑥 𝑉𝑉𝑀𝑀
𝑉𝑉𝑁𝑁
� 1
𝐵𝐵𝑀𝑀

− 1
𝐵𝐵𝑁𝑁
�        (19) 

𝑔𝑔′(𝑥𝑥) = 𝑥𝑥 𝑉𝑉𝑀𝑀𝐵𝐵𝑁𝑁
𝑉𝑉𝑁𝑁𝐵𝐵𝑀𝑀

�1−𝐵𝐵𝑀𝑀
′

𝐵𝐵𝑀𝑀
− 1−𝐵𝐵𝑁𝑁

′

𝐵𝐵𝑁𝑁
�   (20) 

And 𝐵𝐵𝑀𝑀,𝑁𝑁
′  are the pressure derivatives of the bulk modulus of the end members MO2 and 

NO2. Again the fitted derivative of the isothermal pressure derivative of bulk modulus is 

shown in Figure 2 against the theoretical expression for �𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕�𝑇𝑇(𝑥𝑥) given above. The 

agreement is reasonable and therefore we argue that the elastic properties at an arbitrary 

composition are well-represented by Equations 9 and 12.  

 The final term in the Rose-Vinet equation of state is the thermal expansivity. In 

Figure 3 we show the variation in linear thermal expansion at zero pressure defined as: 

∆𝐿𝐿(𝑇𝑇)
𝐿𝐿(𝑇𝑇𝑅𝑅)

= 𝑉𝑉(𝑇𝑇)1/3−𝑉𝑉(𝑇𝑇𝑅𝑅)1/3

𝑉𝑉(𝑇𝑇𝑅𝑅)1/3    (21) 

This is shown across the different compositions indicating that the compositional 

variation is relatively minor for the PuO2-UO2 system but greater for ThO2-UO2. The 

difference also becomes progressively greater when considering the higher temperature 

data in agreement with experimental reports [41].  

 In order to better compare with literature data on the thermal behaviour, we have 

also calculated the average change in linear thermal expansivity as:  

  〈𝛼𝛼𝐿𝐿(𝑇𝑇, 𝑇𝑇𝑅𝑅)〉 = ∆𝐿𝐿(𝑇𝑇)
𝐿𝐿(𝑇𝑇𝑅𝑅)

× 1
𝑇𝑇−𝑇𝑇𝑅𝑅

     (22) 

This is plotted for T=1600K in Figure 3(b).   
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Experimental data showing the changes in thermal expansivity with composition 

are compared with the model predictions in Figure 3(a) and (b). We have selected the 

data from Reference [41] for comparison with the change in thermal expansivity at 873K 

and 1173K and the data from Reference [42] and originally reported by Anthonysamy et 

al [43] Tyagi et al [44,45] and Lynch and Beals [46] for comparison with the average 

linear thermal expansivity between 293K and 1600K.  

The experimental data for thermal expansivity of the mixed ThO2-UO2 system is 

scattered, particularly when averaged over large temperature ranges as seen in Figure 

3(b); this is likely due to either heterogeneities in material microstructure or significant 

deviations from stoichiometry as a function of temperature. The absolute values of 

average thermal expansivity are however consistent with the models and the trends are 

similar within each dataset. In particular, both the models and experimental data support 

a non-linear increase in thermal expansivity with the addition of uranium into ThO2 

which is not mirrored in the PuO2-UO2 system.   

 The fitted value of (volumetric) thermal expansivity at the reference temperature 

of 300K is also shown in Figure 3(c). The change mimics the trends of thermal 

expansion, although the differences in absolute values of expansion are only evident at 

high temperatures.  

In the case of thermal expansivity, no general theory of variation with 

composition was apparent and so we fit these data using a polynomial function of the 

form: 

   𝛼𝛼(𝑥𝑥, 𝑇𝑇R) = ∑ 𝑎𝑎𝑛𝑛𝑥𝑥𝑛𝑛𝑁𝑁
𝑛𝑛=0     (23) 

Where we use a second-order polynomial (N=2) for the Th1-xUxO2 system and a first-

order (i.e. linear) polynomial (N=1) for the Pu1-xUxO2 system, with the added constraint 

that the two sets of polynomials should be equal at x=0 (i.e. the common UO2 end 
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member). The orders of the polynomial functions were chosen to be the simplest 

possible curves that adequately captured the variability in the data and trial functions 

with higher order coefficients did not markedly improve the fit. Fitting parameters are 

reported in Table 2.  

3.2 Oxygen Self-Diffusion 

 In previous studies, the link between atomic parameters and the diffusivity of 

UO2, PuO2 and ThO2 end-members was established [13,14] using the mean value 

method [47–49]. In principle, further equations could be determined for each U-Th-Pu 

composition. However, to avoid a proliferation of different terms, we fit the data 

using a universal value for the pre-exponential and making the activation coefficient 

compositionally dependent, i.e. fitting an equation of the form,  

             𝐷𝐷𝑐𝑐𝑐𝑐Ω(𝑀𝑀𝑥𝑥𝑁𝑁1−𝑥𝑥O2) = 𝐷𝐷0𝑒𝑒
−𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎(𝑥𝑥)𝐵𝐵Ω

𝑘𝑘𝐵𝐵𝑇𝑇                    (24) 

Where cact is allowed to vary depending on the composition of the oxide and B and Ω 

are calculated from the Rose-Vinet equation of state.  

Similarly to the case of thermal expansion, there is no general expression for 

the variability of activation coefficient with composition and so we fit the data using a 

second set of polynomial expressions of the form: 

𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎(𝑥𝑥) = ∑ 𝑎𝑎𝑛𝑛𝑥𝑥𝑛𝑛𝑁𝑁
𝑛𝑛=0        (25) 

 We apply the same logic to the fitting of the thermal expansivity data, 

however because of the greater variability of the cact parameter and the increased 

sensitivity of the final diffusion coefficient, a fourth-order polynomial (N=4) is used 

for the ThO2-UO2 system and a third-order (N=3) polynomial for the PuO2-UO2 

system. Fitted values are reported in Table 2.   

The results of these simulation data at each composition and the fitted 

polynomial functions are shown in Figure 4. The activation coefficient varies 
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smoothly and systematically with composition; this behaviour is monotonic in the 

PuO2-UO2 system representing an increase in oxygen diffusivity as Pu content is 

increased [22]. However, in the case of the ThO2-UO2 system there is a pronounced 

minimum in the activation coefficient coincident with the maximum in oxygen ion 

diffusivity from molecular dynamics simulations. This curious feature was previously 

discussed by Cooper et al [23] where it was attributed to the existence of Frenkel pair 

formation enthalpies in the mixed system that lay below those of either of the end 

members. Figure 4 of Reference 23 shows this splitting of the vacancy formation 

enthalpy demonstrating this effect.  

3.3 Combined Model 

Using the results of the activation coefficient fitting and the Rose-Vinet equation of 

state, we now summarise the model coefficients which can be used to predict the 

oxygen ion self-diffusion and elastic properties at an arbitrary composition in the Th1–

xUxO2 or Pu1–xUxO2 phase diagram. The Rose-Vinet Equation of State and cBΩ 

diffusion model parameters are as follows: 

• Volume, V0(TR, x), linear interpolation between end members. 

• Bulk Modulus, B0(TR, x), Equation 15.  

• Pressure Derivative of Bulk Modulus, 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
0

(𝑇𝑇𝑅𝑅, 𝑥𝑥),  Equation 18. 

• Thermal Expansivity, α0(TR, x), polynomial fit using coefficients in Table 2. 

• Activation Coefficient, cact(x) , polynomial fit using coefficients in Table 2.  

These values can then be used in association with Equations 8-10 in order to predict 

the elastic properties and oxygen ion self-diffusivity at an arbitrary pressure, 

temperature and volume. We show an example of this use of this model in Figure 5 
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which compares the volume and diffusivity values calculated from MD simulations 

for both the PuO2-UO2 and ThO2-UO2 systems with those predicted from the 

combined model. 

3.4 Application to Other Systems 

In addition to the properties at different temperatures, it is also of note that through 

the use of the cBΩ model the predictions of oxygen self-diffusion are equally 

applicable to a range of pressures. Therefore, these models should also account for the 

elastic properties and oxygen migration in mixed oxide regions subject to significant 

compressive or tensile stress. The stresses investigated in this paper are far above 

those encountered as a macroscopic stress in a nuclear fuel pin; however they would 

be useful in investigating diffusion around microstructural defects. For example, they 

may be help account for the enhanced diffusion close to dislocation cores (where 

elastic deformation in the surrounding lattice can lead to significant levels of strain) 

[50,51]. Equally, greatly enhanced diffusion has also been reported in similar fluorite-

structured materials in which compositionally distinct regions lead to the generation 

of significant interface strains [52–55].  

These results would also be applicable to modelling oxide corrosion layers 

formed on metallic uranium, plutonium or thorium. In these cases, the oxide layers are 

formed under significant compressive stresses due to the mismatch in lattice 

parameter between the oxide and the underlying metal substrate. Oxygen transport 

through these layers is one of the controlling factors that determine the overall 

oxidation rate.  

The validation of these models is problematic due to the difficulty and expense 

of obtaining experimental data on these systems; the scatter in experimental values in 

Figure 3(b) being a pertinent illustration. Whilst experimental data remains the sole 
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test of scientific truth, the use of ab initio methods coupled with molecular dynamics 

may in the future enable these calculations to be replicated with density functional 

theory. These would reduce the number of fitted parameters in the empirical 

potentials through an appeal to the sounder theoretical basis of non-relativistic 

quantum mechanics. Calculation on LiGe2(PO4)3 [56] have shown the use of these 

types of simulations in obtaining self-diffusion coefficients similar to those obtained 

here and these have also successfully replicated diffusion coefficients and relatively 

subtle chemistry effects in uranium-containing molten salt reactions [57]. These 

techniques are however computationally expensive, particularly for UO2 where subtle 

correlations between the uranium ion f-electrons can confound the identification of 

the true ground state electronic structure [58–60].  

Conclusions 

In this paper we have examined the link between the composition of mixed oxide 

fuels, their bulk elastic properties and the value of oxygen self-diffusion. This has 

provided a predictive model of the elastic properties for the mixed oxides together 

with an estimate of the oxygen ion self-diffusion.  

 The addition of UO2 into PuO2 produces a mixed oxide which exhibits 

thermoelastic properties and oxygen self-diffusion values which are in-line with the 

average properties. In particular, the changes in elastic properties and thermal 

expansion are small, and captured by simple interpolation between the two end 

members. There is a noticeable non-linearity in the oxygen self-diffusion coefficient 

at high temperature; however this is bounded by the maximum value in PuO2. The 

behaviour of the ThO2-UO2 system is more interesting in that there is a substantial 

difference in properties between the two end members and the mixed oxide exhibits 

properties that are poorly predicted by linear interpolation between them. This is most 
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dramatic in the oxygen self-diffusion coefficients, but also evident in the thermal 

expansivity where a simple linear average between the two end-members may 

significantly under-predict the calculated values.  

 This combined model can be used to predict volume changes, elastic 

properties, thermal expansion and oxygen-ion self-diffusion as a function of stress, 

temperature and composition. As well as investigating the effect of heterogeneity in 

fuels, this may also offer insight into the behaviour of the material around 

microstructural features that impose significant lattice strain, for example edge 

dislocations, gas bubbles or metal-oxide interfaces.   
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Table 1. Fitted parameters for the Rose-Vinet equation of state. Data are presented at 
the reference temperature of 300K but can be used to estimate values at temperatures 
below the superionic transition.  
 
 Rose-Vinet Parameters (values at TR=300 K) 
Composition Volume per 

formula unit / Å3 
Bulk Modulus 
/ GPa 

Derivative 
Bulk 
Modulus 

Volume 
Expansivity / 
10–5

 K–1 
ThO2 43.75 184.33 6.20 2.66 
U0.25Th0.75O2 42.99 188.91 6.69 2.77 
U0.50Th0.50O2 42.25 194.54 7.00 2.85 
U0.75Th0.25O2 41.56 198.85 7.17 2.90 
UO2 40.87 207.36 7.46 2.90 
Pu0.25U0.75O2 40.46 207.80 7.31 2.95 
Pu0.50U0.50O2 40.06 207.83 7.43 2.95 
Pu0.75U0.25O2 39.64 210.33 7.43 2.95 
PuO2 39.24 211.91 7.42 2.93 
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Table 2: Values of fitted parameters for the activation volume and thermal 
expansivity as a function of composition.  

Th1-xUxO2 U1-xPuxO2 
 α(x,TR) cact(x) α(x,TR) cact(x) 
a0 2.6583 0.304 2.90715 0.292 
a1 0.5676 –0.102 0.04159 –0.0612 
a2 –0.3188 –0.0206 - 0.0327 
a3 - 0.245 - –0.0139 
a4 - –0.133 - - 
D0 - 0.45108 - 0.45108 
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(a)i (a)ii 

  

(b)i (b)ii 

Figure 1: Plots of the predicted volume per formula unit against temperature (i) and 
pressure (ii) for (a) UO2 and (b) U0.5Th0.5O2. The dashed lines represent the Rose-
Vinet fitted equation of state and the points are individual simulation results.  
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Figure 2: Plot of the value of bulk modulus calculated from the theoretical expression 
and fitting to the MD data.  
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Figure 3: Plots showing the thermal expansion across a range of compositions. A 
common set of Rose-Vinet equations of state is used in all cases. The top plot shows 
the predictions at a range of temperatures and compared with experimental data [41] 
at 873K (blue crosses) and 1173K (green crosses); the middle plot shows the average 
thermal expansion between 293K and 1600K compared with data from References 
[46], [44,45] and [43]. The bottom plot shows the value of α(TR) from Equation 4.   
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Figure 4: Plots showing the O-ion diffusivity and fitted values of the activation 
coefficient cact as a function of oxide composition. The dashed lines show a 
polynomial fit to the data which is fourth-order for the UxTh1-xO2 system and third-
order for the UxPu1-xO2 system.  
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Figure 5: Predicted and calculated values of the (a) volume per formula unit and (b) 

oxygen ion diffusivity for a range of different compositions.  
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Graphical Abstract 

We have employed molecular dynamics calculations to simulate the elastic properties and thermal 
expansivity of a range of mixed oxide nuclear fuel compositions. These are then used to support 
equations of state and oxygen self-diffusion models to provide a self-consistent prediction of the 
behaviour of these fuels at arbitrary compositions. 
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