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the fact that the individual dislocation cores in a two dimensional
membrane can buckle out of plane - a mode of relaxation that is
not available in their three dimensional counterparts. By buckling
out of plane, the dislocation can trade in-plane strain for out of
plane bending, thereby lowering its energy considerably38,52,53.
We use a generalized Read-Shockley theory for two dimensional
membranes, and combine it with the Frank-Bilby50,54–57 equa-
tion to elucidate the structure of the energy function of all possi-
ble graphene GBs. Further, we develop a theoretical understand-
ing of the salient structural features of graphene GBs. Our results
should be applicable to a large class of 2D materials, and will lead
to a better understanding of fundamental processes such as grain
growth, transport, and strength in these materials.

2 Modeling

2.1 Configuration Space of Graphene GBs

Figure 1a shows a general GB at the interface of two grain G and
G ′, with lattice vectors (v1, v2) and (v′1,v

′
2), respectively (the in-

set in Figure 1b shows the lattice vectors and the primitive unit
cell of graphene). GBs in graphene are characterized by two an-
gles, namely, the misorientation angle θM, and the line angle θL.
The misorientation angle characterizes the relative rotation of the
two grains, i.e., v′i = RθM

vi, where RθM
represents a positive rota-

tion by θM, whereas the line angle characterizes the deviation of
the GB from the line of symmetry between the two grains. For
any given (θM, θL) pair there is a third degree of freedom given
by the relative sliding of the grains along the GB, however, we
choose the sliding that gives the lowest GB energy, thereby effec-
tively eliminating this degree of freedom. Due to the symmetries
of the graphene lattice, the space of unique (θM, θL) pairs is re-
duced to a triangular area37, as shown in Figure 1b. Commensu-
rate GBs (CSL) exist at certain special values of (θM, θL), while
an approximately commensurate GB can be constructed at any
θM, θL

37,50,58. We simulate all commensurate GBs with a repeat
length less than 2000 Å37. Further, we grid the (θM, θL) space
in steps of 0.5◦ with approximately commensurate GBs. For each
unique (θM,θL) pair, several simulations have to be performed
to explore the relative sliding between the two grains; in all we
have simulated and evaluated the energy of over 79,000 GB con-
figurations corresponding to 4122 unique (θM, θL) pairs. The
details of the GB configurations and structures used in this study
can be found in Ref. 37. The excess energy per-unit-length of
a GB is calculated as γ(θM,θL) = (Etotal − natomsEbulk)/lGB, where
Etotal is the net energy of the configuration, natoms is the number
of atoms in the configuration, Ebulk is the energy per-atom in the
reference crystal (= -7.81 eV for the AIREBO potential), and lGB

is the length of the GB. We use the AIREBO potential59,60 as im-
plemented in the LAMMPS code61, and all our GB configurations
are thoroughly relaxed, and allow for out of plane deformations
(see the Methods Section for details). The GB structures used in
this study are available online62.

2.2 Dislocation Model For GBs

Before discussing the GB structures and energy in detail, we
present a dislocation based model for the GBs. This model will be

used to elucidate the structure of the GBs, and to derive functional
forms for the GB energy. The Frank-Bilby equation can be used to
calculate the interfacial Burger’s vector (per-unit-length) of the
geometrically necessary dislocations for a GB with misorienta-
tion θ 0

M and line angle θ 0
L . This is the Burger’s vector required to

close the Burger’s circuit shown in Figure 1a (the red arrow), and
is given by n

0 = 2sin(θ 0′

M/2)
(

cos(θ 0
L/2)e1 − sin(θ 0

L/2)e2

)

, where,
θ 0′

M = θ 0
M for 0< θ 0

M ≤ 30◦, while θ 0′

M = 60◦−θ 0
M for 30◦ < θ 0

M ≤ 60◦,
and, e1,2 are the unit vector parallel and perpendicular to v1, re-
spectively (Supporting Information Section S1). Let the energy
of this GB be γ0 = γ(θ 0

M, θ 0
L). Now consider a GB near this

configuration, with the perturbed misorientation and line angle
given by (θ 0

M + δθM, θ 0
L + δθL). The perturbation in the density

of interfacial Burger’s vector is given by δn = (∂n
0/∂θ 0

M)δθM +

(∂n
0/∂θ 0

L)δθL. We assume that this change in Burger’s vector
density is accommodated by well separated (1,0) dislocations in-
troduced along the boundary. There are three independent (1,0)
dislocations in the reference crystal, with Burgers vectors in the
directions R0◦,60◦,120◦e1; thus δn= δn1e1+δn2R60◦e1+δn3R120◦e1,
giving

δn1e1 +δn2R60◦e1 +δn3R120◦e1 =

(∂n
0/∂θ 0

M)δθM +(∂n
0/∂θ 0

L)δθL, (1)

where δn2 is the perturbation in the density of Burger’s vector due
to dislocations in the R60◦e1 direction, etc. The above vector equa-
tion provides two constraints on the perturbation of the density
of three independent (1,0) dislocations, thus leaving the system
indeterminate. We obtain one more condition by writing a per-
turbed GB energy and minimizing it with the above constraints.
Since the perturbation is small, the new dislocations introduced
into the GB are well separated and do not interact. In the tra-
ditional Read-Shockley theory, the energy of an isolated disloca-
tion has a divergent logarithmic term49,56. This term is due to
the fact that, in a bulk material, the long range strain field of
an isolated dislocation decays with distance as 1/r. However, it
is known that in a two dimensional membrane the bending stiff-
ness is small, and it is energetically favorable to trade long range
strain for out of plane deformation, thereby removing the loga-
rithmic term from the energy of the isolated dislocation core52,53.
It can be shown that for two dimensional membranes, each iso-
lated dislocation costs a finite (constant for a given GB) amount
of energy52,53. Thus, we can write the following minimization
problem for the perturbation δn

Min. γ(θ 0
M +δθM,θ 0

L +δθL) = γ(θ 0
M,θ 0

L)+

+
Gb

4π(1−µ)
Σci|δni|, subject to constraints 1, (2)

where G is the shear modulus, µ is the Poisson’s ratio, b is the
Burger’s vector, and ci’s are dimensionless constants for a given
configuration (θ 0

M,θ 0
L) representing the energy required to embed

the (1,0) dislocations into the GB. The validity of such a pertur-
bational form for the GB energy has been tested numerically and
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Fig. 1 (Color Online) (a) Two grains G , G ′ and the GB interface (black line) between them. The half line angle, θL/2, measures the deviation of the
interface from the symmetric GB (dashed black line). The Burger’s vector needed to complete the interfacial Burgers circuit is shown by the red arrow.
(b) The space of unique GBs in graphene. The colored (yellow) triangular region contains all unique (θM, θL) pairs (up to symmetry). The red circles
and the black dots show all commensurate, and approximately commensurate GBs, respectively, with a repeat distance smaller than 2000 Å that were
simulated in this study. The inset shows the lattice vectors and the primitive unit cell of graphene.

Fig. 2 (Color Online) The structure and crystallography of graphene GBs. (a), (b) show the dislocation core of isolated (1,0) and (1,0)+(0,1)
dislocations, respectively. The color indicates the excess energy per atom in units of eV. (c), (d) show isolated dislocations at a low angle (θM = 10◦)
and high angle (θM = 50◦) symmetric GB. The shortest interfacial Burger’s vector is indicated by n. (e)-(i) show sections of the lowest energy GBs at
θM = 10◦,20◦,30◦,40◦,50◦; color scheme same as (a), (b).

1–10 | 3

Page 3 of 10 RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



experimentally51,63. If ci’s are known, then the minimization of
the perturbed energy in Equation 2 with respect to the disloca-
tion density δni can be performed analytically. However, the co-
efficients ci’s are unknown functions of (θ 0

M,θ 0
L), and thus a close

form solution to the minimization problem is infeasible. Yet, we
will show that considerable insight can be gained from this for-
mulation.

3 Results and Discussions

3.1 Structure And Energy of Symmetric GBs

Graphene GBs are known to be composed of rings of five
and seven carbon atoms (apart from the usual hexagonal
rings)12,37,38. These pentagon-heptagon pairs form the cores
of the dislocations with the shortest Burger’s vector. Fig-
ure 2a,b show the dislocation core with Burger’s vector (1,0) and
(1,0)+(0,1)38. Figure 2e-i show segments of symmetric GBs with
θM = 10◦,20◦,30◦,40◦, and 50◦. It can be seen that the GBs are
composed of (1,0) or (1,0)+(0,1) dislocation cores. The GBs with
low misorientation (θM = 10◦,20◦) are composed of (1,0) dislo-
cations whose Burger’s vectors are aligned in a single direction.
Analogously, the GBs with large misorientation (θM = 50◦) are
composed of (1,0) dislocations whose Burger’s vectors alternate
by 60◦ in their orientation. As mentioned previously, the graphene
lattice has three independent (1,0) dislocations whose Burger’s
vectors are rotated by 60◦ with respect to each other (the sys-
tem b1,2,3 in Figure 2c,d, for example). Thus, while in principle a
general symmetric GB can have (1,0) dislocations with three dif-
ferent orientations, the energy minimizing configurations of low
angle symmetric GBs have their (1,0) dislocations aligned along
just one direction; furthermore, the high angle symmetric GBs
have dislocations aligned with two of the three possible direc-
tions. These structural features can be explained by considering
the symmetric low and high angle GBs as perturbations about
the pristine crystal (obtained at θM = 0◦,60◦), and solving the
minimization problem given by Equation 2 (details in Support-
ing Information Section S2). The essential insight is that for low
angle GBs the perturbed interfacial Burger’s vector is almost par-
allel to the lattice vector v1 (or equivalently to the lattice Burger’s
vector b1, see Figure 2c). Thus, the energy minimizing configu-
ration results when all the (1,0) cores are aligned with v1 (equiv-
alently, b1). Aligning the core with R60◦e1 instead, for example,
would need twice the number of dislocations, and hence would
cost twice the amount of energy, and thus would be suboptimal.
Similarly as it can be seen that for high angle GBs the perturbed
interfacial Burger’s vector is almost perpendicular to v1 (equiva-
lently b1, Figure 2d), it is energetically not beneficial to have a
dislocation Burger’s vector aligned with v1 (or b1) . Hence, the
high angle GBs have dislocations with Burger’s vectors aligned
with b2 and b3 only.

Figure 3a shows the numerically measured energy function for
symmetric GBs, i.e., γ(θM,0). It is well known that the GB energy
has cusps at special high symmetry (low Σ CSL, where CSL stands
for the ‘Coincident Site Lattice’, and Σ denotes the ratio of the vol-
ume of the unit cell of the CSL to that of the regular lattice, see
Ref. 50 for a detailed discussion of CSL) boundaries50,64–67, and

these can be seen clearly in Figures 3a, 4a. There are two promi-
nent cusps for graphene39: first at the Σ7(θM = 21.78◦, θL = 0◦)

GB, and the second at Σ13(θM = 32.2◦, θL = 0◦) GB. Apart from
these, there are the obvious families of cusp singularities at
θM = 0◦, 60◦. The Σ7, 13 GBs are strong local energy minima of
the GB energy. These minima arise due to favorable interactions
between the dislocation cores. For intermediate values of mis-
orentation (15◦ . θM . 45◦), the density of required dislocations
is high, and the individual cores cannot be well separated. We
note that for isolated (1,0) as well as (1,0)+(0,1) cores, there is
compression at the tip of the leading pentagonal ring and dila-
tion at the tail of the trailing heptagonal ring (seen by the rela-
tive shortening and stretching of the bonds, most clearly visible
in Figure 2a,b)23. This local straining leads to significant out
of plane buckling near the dislocation, as seen in Figure 3d38.
However, as the dislocation density increases with increasing θM,
and two (1,0) or (1,0)+(0,1) approach each other, their strain
fields cancel, and there is a reduction in the elastic energy of the
system. This cancellation of strain fields can be inferred from Fig-
ures 3b,c, where it can be seen that the Σ7, 13 GBs have almost
no out of plane buckling, because the strain fields cancel out very
effectively in these GBs with tightly arranged dislocations. On the
other hand, at higher θM (note that the dislocation density peaks
at θM = 30◦), the increased density of the dislocations leads to
higher energy per-unit-length. Thus, there is a competition be-
tween the energy increase due to higher dislocation density, and
energy decrease due to dislocation interaction. It can be seen that
initially the GB energy increases with θM, thus the energy increase
dominates over the energy reduction. However, the reduction be-
comes significant, and the net energy starts to decrease at about
θM = 18◦. This reduction in energy reaches a first optimum for
the Σ7(θM = 21.78◦) CSL GB (Figure 3b,e) where all (1,0) dis-
location pairs are aligned, and there is a separation of exactly
1 carbon-carbon bond between them. At this optimal configura-
tion there is significant reduction in the elastic energy, resulting
in the first cusp in the GB energy (Figure 3a). Increasing the
misorientation θM further initially leads to an increase in the GB
energy. This is due to the fact that a higher dislocation density
pushes dislocations closer; however, geometrically it is still favor-
able to have all dislocations aligned in the same direction. Thus,
creating a (1,0)+(0,1) pair incurs an energy penalty. However,
with further increase in θM, it becomes progressively more favor-
able for the individual dislocations to stagger and merge to form
(1,0)+(0,1) cores. This process leads to a reduction in energy
starting at about θM = 24◦. An optimal configuration is reached
at the Σ13(θM = 32.2◦) CSL GB where all (1,0)+(0,1) line up per-
fectly (Figure 3c,f), and leads to a large reduction in the elastic
energy, resulting in the second, deeper cusp in the GB energy. On
increasing θM further, the net dislocation density decreases and
the (1,0)+(0,1) cores separate, ultimately resulting in the behav-
ior for large misorientations discussed previously.

Having understood the most salient features of the GB struc-
ture, we now turn our attention to the GB energy. A simple analy-
sis of Equation 2 shows that for 2D materials the GB energy func-
tion has a absolute value (| · |) type singularity at the cusps (Sup-
porting Information section S2). Thus, we propose the following
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Fig. 3 (Color Online) (a) The energy of all simulated symmetric GBs in units of eV/Å. The filled black circles show the simulation data, while the solid
line is a fit to Equation 3. The filled red circles show the magnitude of the fitting error, which is smaller than 0.06 eV/Å everywhere. (b), (c) show the
Σ7, 13 GBs, and (d) shows a symmetric GB with θM = 10◦, colored by the net out of plane displacement in unit of Å. (e)-(g) show the same GBs colored
by excess energy per-atom in units of eV.

functional form for the energy of the symmetric GBs:

γsym(θM) =
Gb

4π(1−µ)

∣

∣sin3θM

∣

∣

(

Σ
n
i=2 pi cos3iθM+

+Σ
nc

i=1ai

∣

∣cos3θM − cos3θ ci

M

∣

∣

)

, (3)

where pi, ai are dimensionless fitting parameters. The overall
factor of |sin3θM| gives the correct asymptotic form at the cusps
at θM = 0◦, 60◦. The first term (pi’s) fits the smooth variation in
the energy function. The second term (ai’s) fits the cusps at an-
gles θ ci

M. Although any desired number of cusps can be included,
we include the two prominent cusps at the Σ7, 13 CSL GBs, thus
nc = 2, and θ

c1,2

M = 21.78◦, 32.2◦. Note that this form satisfies all
symmetry requirements, namely a period of 120◦, and even re-
flection symmetries about θM = 0◦ (i.e., γsym(θM) = γsym(−θM)

= γsym(120◦+θM)), and has the correct asymptotic form near the
cusp singularities. We do not include the n = 0,1 terms because
the corresponding harmonics are included in the expression for
the cusps. The solid line in Figure 3a shows a fit of Equation 3
to the simulation data with n = 4, giving a total of just 5 fit-
ting parameters. The values of these parameters at the best fit
are p2 = −3.70× 10−2, p3 = 6.18× 10−3, p4 = 1.99× 10−2, a1 =

8.91 × 10−2, a2 = 2.00 × 10−1, while G, µ are measured to be
325.68 GPa, and 0.318, respectively, from separate MD simula-
tions (Methods Section). The maximum absolute error for the fit
is 0.026 eV/Å. It is clear that the theory provides an excellent fit to
the data with a minimal number of fitting parameters. Including
the higher harmonics (bigger n) does not result in a significant
improvement in the results (Supporting Information Figure S1).
We find that fitting a Fourier series without including the correct
asymptotic form of the cusps results in very poor performance;

fits with as many as 50 free Fourier components are needed for
an accuracy similar to our fit with 5 parameters (Supporting In-
formation Figure S2). Finally, we note that our functional form
is reminiscent of the form used by Sethna and Coffmann58, how-
ever, their form, while more pedagogical, had several redundant
parameters (a total of 16 parameters, as opposed to our 5), and
thus did not provide a minimal description of the GB energy.

3.2 Energy of Asymmetric GBs

Figure 4a shows the numerically measured energy function
γ(θM,θL). It can be seen that the variation of γ(θM,θL) in the
θL direction is significantly smaller than that in the θM direction.
This is a direct consequence of the fact that the magnitude of the
interfacial Burger’s vector, n, is given by 2sin(θM/2) and is inde-
pendent of θL. Since the energy is largely a function of the mag-
nitude of the interfacial Burger’s vector, it follows that the energy
variation in the θL direction is smaller. However, the cusps in the
symmetric energy function γsym(θM,0◦) become ridges in the full
energy function γ(θM,θL). Thus, even though the energy function
varies slowly in the θL direction, its structure is made interesting
by the presence of these ridges, particularly due to the symmetry
requirement γ(θM,θL) = γ(60◦ − θM,60◦ − θL) which makes the
ridges turn (or vanish). The numerical data suggest that there are
two kinds of ridges: one that join cusps at (θ 0

M,0) to its periodic
counterpart at (60◦−θ 0

M,60◦), and another that continues almost
straight in the θL direction without bending. Based on an analy-
sis of Equation 2, we propose the following form for the general
GB energy to captures these features (see Supporting Information
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Fig. 4 (Color Online) (a) Energy of all simulated symmetric and asymmetric GBs in units of eV/Å. The surface shows data from simulation, while the
grid is a fit to Equation 4. (b) The error in fit shown in units of eV/Å. (c), (d) The basis functions, |h1(θM,θL,θ

c
M)+h2(θM,θL,θ

c
M)|, |h1(θM,θL,θ

c
M)|+

|h2(θM,θL,θ
c
M)| used to fit the cusp singularity at θ c

M = 21.78◦ in Equation 4.

Section S2 for details)

γ(θM,θL) =
Gb

4π(1−µ)

∣

∣sin3θM

∣

∣

(

Σ
n
i=0Σ

m
j=0 pi jIi j cos3iθM cos3 jθL

+Σ
k
i=1

(

at
i |h1(θM,θL,θ

ci

M)+h2(θM,θL,θ
ci

M)|

+as
i

(

|h1(θM,θL,θ
ci

M)|+ |h2(θM,θL,θ
ci

M)|
)

))

, (4)

where pi j, at
i , as

i are fitting parameters, Ii j ≡ (1+ (−1)i+ j)/2 is
an indicator function that is 1 if both i, j are even or odd, and
zero otherwise, h1(θM,θL,θ

ci

M) ≡ (cos3θM − cos3θ ci

M)cos2 1.5θL,
and h2(θM,θL,θ

ci

M) ≡ (cos3θM + cos3θ ci

M)sin2 1.5θL. The indica-
tor function is needed to make sure that the symmetry require-
ment γ(θM,θL) = γ(θM + 60◦,θL + 60◦) is satisfied. Note that the
functional form satisfies all other symmetry requirements as well
(overall period of 120◦ in θM, θL, even mirrors at θM,θL = 0◦ and
60◦, i.e., γ(θM,θL) = γ(−θM,θL) = γ(θM,−θL) = γ(120◦+θM,θL)

= γ(θM,120◦ + θL) = γ(60◦ − θM,60◦ − θL)). We also set p00 =

p10 = p01 = p11 = 0 because the constant term is not needed, and
the other harmonics are contained in h′is. The at

i terms model
ridges that turn, while as

i terms model the ridges that remain
straight. Taking n, m = 4, 4 and k = 2 as before, gives a fit with
15 free parameters, which is presented in Figure 4a. The values
of the parameters for the best fit can be found in the Supporting
Information Section S3. The maximum absolute error of fitting is
0.07 eV/Å, indicating a good quality fit. Figure 4b shows the fit-
ting error. As before, adding further harmonics does not improve
the quality of the fit significantly.

4 Conclusion

We find that the Read-Shockley type dislocation model provides
an accurate description of the structure and energy of graphene
GBs. The functional forms for energy derived on the basis of this
formulation are numerically efficient, containing just 5 fitting pa-
rameters for the symmetric GB energy, and 15 fitting parameters

for the entire GB space. The absolute error in our fits is smaller
than 0.07 eV/Å everywhere. We find that main source of this
error is the limited size of our simulation cells (due to compu-
tational limitations). It can be seen in Figure 4b that the largest
error is concentrated in narrow bands around θM = 0◦, 60◦, 32.2◦.
These are high symmetry configurations, with θM = 0◦, 60◦ being
perfect crystals, and θM = 32.2◦ being the Σ13 GB. The GBs vic-
inal to these high symmetry configurations have structures that
are nominally the same as the high symmetry configuration, plus
additional (or missing) dislocations separated by large distances
(∼ |b|/δθM). These well separated ‘perturbations’ produce out of
plane distortions that need a very large cell to relax completely.
Our simulations use a 1000 Å wide cell (in the direction perpen-
dicular to the GB), and while we see significant decrease in energy
over small cells (we have studied cells with widths of 50-1000 Å)
due to relaxation, even the 1000 Å wide cell is not sufficiently
large enough to fully relax the GB energy and obtain the infinite
cell size limit. Note that this problem exists mostly for GBs that
are vicinal to high symmetry configurations.

Our model for GB energy is based on a ‘small perturbation’
approach; however, all the evidence presented so far provides
only indirect validation of the perturbation idea. The perturba-
tion model can be supported by inspecting GBs in the vicinity of
the high symmetry Σ7, 13 boundaries. We consider both symmet-
ric and asymmetric perturbations, as shown in Figure 5. This
figure (plots a-d) shows that GBs in the vicinity of the Σ7 GB have
basically the same structure as Σ7, plus an occasional extra (or
missing) dislocation, as the case might be. The asymmetric per-
turbation (δθL 6= 0) sometimes results in a faceted boundary (Fig-
ures 5d, h), with the facet locally following the high symmetry
GB. The kinks joining the facets are composed of extra disloca-
tions that are not present in the high symmetry GB. The same
observations are true for the GBs vicinal to the Σ13 GB. It is re-
markable that the GB generation algorithm is able to capture all
the features expected from well annealed graphene GBs.

We have found that all of the approximately 79,000 lowest-
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Fig. 5 (Color Online) Perturbations about the symmetric Σ7, 13 GBs. The top panel shows a zoom-in of the atoms in the white box in the panel directly
below. Color shows the excess energy per-atom in units of eV. (a) Several repeats of the coincident site lattice (CSL) unit cell of the Σ7 GB. (b)-(d)
Perturbations about the Σ7 GB with (δθM, δθL) = (−0.78◦,0◦), = (0.72◦,0◦), and = (0◦,4.84◦), respectively. (e) Several repeats of the CSL unit cell of
the Σ13 GB. (f)-(h) Perturbations about the Σ7 GB with (δθM, δθL) = (−2.2◦,0◦), = (1.8◦,0◦), and = (0◦,6.4◦), respectively.

1–10 | 7

Page 7 of 10 RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



energy configuration GBs that we have simulated consist of only
pentagon-heptagon pairs, and the usual hexagonal rings. No
other geometric configurations were observed for the lowest en-
ergy boundaries. For example, the 5-8-5 configurations that
have been previously observed experimentally at grain bound-
aries28,68,69 were not found in our structures. From an energy
point of view, the 5-8-5 defects are vacancy defects and thus
should be precluded from the ground state structures. However,
non-equilibrium structures, such as the 5-8-5 defects, can indeed
be captured by our algorithm if the Hamiltonian (Equation 2 in
Ref. 37) is not driven to its minima (the convergence criteria
could be suitably relaxed, or Metropolis sampling could be per-
formed at a suitably defined “temperature”). Further, the absence
of such defects from our GBs is consistend with the fact that, to
the best of our knowledge, such defects have not been observed
in free-standing graphene films. Rather, they have been observed
either in films on substrate or in free-standing graphene films af-
ter electron beam irradiation has modified their structure70. The
ubiquity of pentagon-heptagon pairs in graphene grain bound-
aries is consistent with our our HRTEM study of 176 bound-
aries37, the majority of which did not contain any rings of more
than 7 or less than 5 carbon atoms. Further, the GB generation
algorithm is able to capture faceting where appropriate.

To conclude, the main contribution of this work is to develop
a fundamental understanding of the structure and energy of the
entire space of graphene GBs. We have developed analytical ex-
pressions for GB energy as functions of the misorientation and
line angle that can be readily used in future calculations of grain
growth or other GB related phenomena32. We hope that our anal-
ysis will pave the way for a deeper understanding of GB interfaces
in graphene and other 2D materials.
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Methods

The GB structures used in this study were generated by using the
algorithm introduced in Ref. 37, and are available online62. In
order to minimize boundary effects, we used GB structures that
were 1000 Å wide, thus the GB was 500 Å from the boundaries.
All GB structures used in this study are periodic in the direction
parallel to the GB, and had a maximum length of 2000 Å. The
atoms were allowed to relax in the out of plane direction with-
out any constraint; a plot of the maximum out of plane displace-
ment as a function of the misorientation and the line angle can
be found in Supporting Information Section S4. The simulations

were done in the LAMMPS61 code with the AIREBO interatomic
potential59,60. Atoms in a strip of width 10 Å on the edges of
the sample were held fixed at their ideal lattice positions during
the simulations in order to reduce the boundary effects. Each
sample was prepared by first relaxing the atoms with the conju-
gate gradient (CG) algorithm so that the force on each atom was
less than 0.01 eV/Å. The sample was then held at 300 K for 10
picoseconds by simulating the NVT ensemble (fixed Number of
atoms, Volume, and Temperature). This step was used to intro-
duce any out of plane deformation that might have been missed
by the CG algorithm. Finally, the atoms were again relaxed to
within a residual force of 0.01 eV/Å with the CG algorithm. The
atoms at the strips on the edges were held fixed throughout these
steps. As mentioned previously, the energy of the GB was mea-
sured as γ(θM,θL) = (Etotal − natomsEbulk)/lGB, where Etotal is the
net energy of the configuration, natoms is the number of atoms
in the configuration, Ebulk is the energy per-atom in the refer-
ence crystal (= -7.81 eV for the AIREBO potential), and lGB is
the length of the GB. The atoms that were held fixed and not al-
lowed to relax were not included in the energy calculations. The
linear elastic constants G and µ were calculated with the widely
used technique of imposing small deformations on a relaxed bi-
periodic graphene crystal, measuring the energy, and fitting the
measured energy to the energy expression from linear elastic the-
ory. This method yields G = 325.68 GPa, and µ = 0.318. The fits
of the measured GB energy to Equations 3, 4 were done with a
standard least-squares algorithm.
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