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Red-emitting protein-coated conjugated polymer nanoparticles. 
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Red emitting materials are desirable in biology due to the transparency of certain biological 

tissues at these wavelengths. Here, we report the synthesis of aqueous dispersions of 

amphiphilic protein (hydrophobin) capped red-emitting cyano-substituted poly(p-

phenylenevinylene) conjugated polymer nanoparticles (CPNs) and their use in labeling live 

mammalian (HeLa) cells.  

 

Conjugated polymers are a class of materials that have been widely studied, initially motivated 

by the excellent optical properties of such materials.
1-3

 In contrast to the extensive studies of 

conjugated polymers in bulk and thin films,
4-6

 conjugated polymer nanoparticles (CPNs) are at 

present a relatively new development and offer distinct advantages as potential nanometric 

fluorescent labels over their traditional quantum dot (QD) counterparts, due to their reduced 

cytotoxicity, high photostability and brightness, facile synthesis and bio-compatibility 
[7,8]

. 

Furthermore, multi-functional surface modification of CPNs enables in vitro and in vivo 

bioimaging with specificity according to the targeting surface-bound element.  

 

In order to successfully fulfil biological applications, it is essential that conjugated polymers 

disperse in aqueous solutions. One method involves modifying the polymeric side chains with 

charged moieties, increasing the solubility.
7
 Whilst such water-soluble conjugated polymers 

proved successful in drug delivery and fluorescence imaging,
9-10 

the availability of such 

materials is limited relative to the organically-soluble analogues. With this in mind, CPNs 

synonymous with simple preparation and purification have been proposed as an improvement. 

Ideally, whilst a range of emission wavelengths is desirable to allow a plurality of imaging 

functions, the majority of biological imaging applications favour the red end of the 

electromagnetic spectrum due to the transparency of certain biological tissues at these 

wavelengths. Whilst conjugated polymer particles have many positive attributes as biological 

imaging agents, few effective red emitters have been reported. Inspired by recent reports by the 

Chiu group of orange-emitting CPNs based on cyano-polymers,
11

 we report the use of a related 

commerically-available material, poly(2,5-di(hexyloxy)cyanoterephtalylidene), which has 

emission further towards the red end of the visible spectrum when prepared as nanoparticles. 

The polymer, in a standard organic solvent such as THF, had an emission maximum at ca. 570 

nm. By preparing the polymer in nanoparticulate form however, the emission was significantly 

redshifted to ca. 640 nm.  
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The solvatochromism of conjugated polymers is well-documented; the solubility of a given 

conjugated polymer in a particular organic solvent is dependent upon the atomic structure of 

both the solvent and solute and is directly related to the physical conformation of the solvated 

polymer. Consequently, solvents can be classified as either good or poor for a specific 

conjugated polymer based upon the favoured nanoscale conformation.
12

 Conjugated polymer 

chains in a good solvent are proposed to adopt an extended, uncoiled conformation due to the 

energetically favourable interactions between the solvent molecules and polymer side chains.
13

 

Conversely, when placed in a poor solvent, polymer chains possess a collapsed conformation in 

order to minimise the energetically unfavourable solvent-solute interactions.
13

 CPNs are 

proposed to possess a coiled polymer conformation and in this way, the spherical 

nanoparticulates - corresponding to the lowest free energy surface per unit volume - exist in a 

thermodynamically stable state, 
8
 regardless of the rigidity of the polymer chain. This 

morphology, suggesting an increase in chain folds and entanglements, can be inferred by the 

change in the optoelectrical properties of the nanoparticulates with respect to their behaviour in 

organic solvent, since the spectroscopic signatures of solvated polymers are heavily influenced 

by nanoscale chain organisation and chain interactions. For example, emission spectra of CN-

PPV derivatives dissolved in a poor solvent reportedly presented a pronounced red-shift, with 

respect to that of a good solvent solution.
13,14

 This may be attributed to the increased chain 

interactions that have a high affinity for enhanced energy transfer events as the delocalisation 

of the π-electrons increases.
8
 This inferred that as the conjugation length increased upon CPN 

formation, intermolecular interactions promoted aggregation and thus presented bathochromic 

shifts in the emission spectra. This phenomenon was exploited to engineer a red-emitting 

cyano-based polymer nanoparticle system. 

 

A further prerequisite for biomedical applications of CPNs is surface modification and 

functionalization. The physiochemical nature of CPNs can be effectively modified by capping 

the hydrophobic polymeric core with a surfactant shell.
7
 Introducing a capping agent enables 

surface functionalization of the polymer particle, thus leading to improved biocompatibility and 

the potential for targeted- controlled delivery. In addition, all CPNs are inherently unstable, 

thus without some form of encapsulation they tend to agglomerate or coalesce rapidly.
8,15

 In 

this way, the addition of capping agents to the CPN system is essential to provide surface 

passivation, improved colloidal stability and enhancement of the surface state, a fundamental 

parameter that influences the optoelectrical properties of CPNs.
8
 It has also been reported that 

the fluorescent efficiency of nanoparticles may be improved by the use of capping agents, 
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presumably since the coated nanoparticles are able to passivate surface defects.
16

 In this paper, 

we report the use of hydrophobins, small (~100 amino acids) amphiphilic, cysteine-rich 

proteins as capping agents, where the hydrophobic conjugated polymer interdigitates with the 

hydrophobic patch of the protein, leaving the hydrophilic, cysteine-rich structure pendant to 

solution inducing water solubility.  

 

Dependent upon the hydropathy pattern of their peptide sequence and biophysical attributes, 

hydrophobins can be classified into two groups: Class I and Class II.
17

 The increased β-sheet 

structure of Class I hydrophobins with respect the soluble state is suggested to account for 

their high stability. Conversely, membranes formed with Class II hydrophobins present 

significantly less stable structures, which are easily disassociated with organic solvents due to 

the lack of fibrillar rodlet morphology in the self-assembled monolayer.
17

 To this end, Class 

II hydrophobins appear to be less attractive for surface modification, 
18

 such that only 

commercially-available class I hydrophobin (H* protein B, HPB) was considered as a viable 

CPN capping agent for emulsion stabilisation. The use of a protein as a capping agent also 

has the added advantage of providing amino acid groups for further potential conjugation to 

allow targeted delivery. 

 

The HPB-capped CPNs were synthesised by a nanoprecipitation method. CN-PPV was 

dissolved in tetrahydrofuran (THF), added to an aqueous solution of the HPB and then sheared 

at 35 kW in an ultrasound bath. Particle dispersions were obtained after solvent evaporation 

and purified by centrifugation. The normalised absorption and photoluminescence spectra of 

the solvated polymer and concomitant uncapped and HPB-capped nanoparticulates were 

measured and are shown in Figure 1.  

 

The absorption profile of the CPNs only differed slightly from that of the precursor polymer 

solution (Figure 1A); the aqueous nanoparticle dispersion exhibited a wider absorption profile 

with a flattened maximum at 457 ± 0.5 nm, with respect to that of the solvated polymer. This 

suggested that the extent of conjugation length heterogeneities, due to polymer chain 

confinement, was enhanced in HPB-capped nanoparticle assemblies. Conversely, a significant 

bathochromic spectral shift ( 72 ± 0.7 nm) was observed in the emission spectrum of CN-PPV 

particles with respect to that of the precursor polymer solution, (Figure 1A) pushing the 

emission into the red region of the visible spectrum. We take full advantage of the redshift in 

emission, from 569 ±0.5 nm in the parent polymer solution, to 641 ± 0.5 nm in the aqueous 
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particle solution to obtain a true red emitter. We suggest that this was a direct result of the 

change in nanoscale chain organisation and morphology upon rapid change in solvent quality. 

The evolution of the photoluminescence intensity of the HPB-capped CPNs as a function of 

time was measured, to investigate possible degradation. Over a 21-day period, the 

photoluminescent signal remained stable, dropping to a maximum of 80% of its initial (t=0) 

intensity, (Figure 1B). The emission quantum yield  (QY) of the uncapped and protein-capped 

particles were both found to be 28 %, when excited at 480nm using an integrating sphere 

employing the photoluminescence method.  

 

When the conjugated polymers assembled into nanoparticulate form, this process was 

accompanied by an increase in chain interactions that have a high affinity for enhanced energy 

transfer processes, as the delocalisation of the π-electrons increased. Upon CPN formation, 

unfavourable solvent-solute interactions promoted twisting of the polymer backbone, which in 

turn increased the spacing between adjacent atomic energy levels. The increase in polymer fold 

and entanglements was followed by a change in polymer conjugation length, which serves as 

an explanation of the observed bathochromic shift in the CPN emission spectra.  

 

Furthermore, a slight broadening of the emission spectra for CPNs with respect to their 

precursor solutions was also observed. This may be attributed to the broad size distribution of 

the formed nanospheres. For example, it has been reported that for CPNs prepared by a self-

assembly synthesis, the emission spectra were sharper since this energy-minimization 

procedure favoured a narrow size distribution [8]. The full-width at half-maximum (FWHM) 

values for the solvated polymer and CPNs, 88 ± 0.5 nm and 110 ± 0.5 nm respectively, were 

both relatively broad, attributable to vibronic coupling in the chromophore, the extent of which 

was most pronounced in the nanoparticulate form. For fluorescence-based techniques, the 

resulting large Stokes shift is a desirable attribute, as this corresponds to a minimal overlap of 

absorption and emission profiles, which in turn limits self-absorption.  

 

An average particle core size of 35 ± 7 nm and 78  ± 16 nm was obtained for the uncapped and 

capped particles respectively as measured by TEM, (Figure 2A, 2B). The polymer 

nanoparticles were spherical, in agreement with prior work. 
19,8,7

 TEM size distribution 

histograms are presented with overlaid standard deviation. For both the uncapped and capped 

particle dispersions, the mean and modal particle diameter agree to within 12% error. An 

average hydrodynamic diameter of 110 + 35 nm and 147 ± 50 nm  was obtained for the 

Page 5 of 13 Photochemical & Photobiological Sciences

P
ho

to
ch

em
ic

al
&

P
ho

to
bi

ol
og

ic
al

S
ci

en
ce

s
A

cc
ep

te
d

M
an

us
cr

ip
t



uncapped and capped CPNs respectively, by nanosight tracking analysis (NTA), (Figure 2E, 

2F). Size distributions demonstrate FWHM of ca. 70 nm and 100 nm for the uncapped and 

protein-capped CPNs respectively. The CN-PPV particle and protein-capped dispersions have a 

relative standard deviation (RSD) of 32% and 34% respectively indicating that the capping 

shell did not greatly influence the polydispersity of the nanoparticluate solutions. Both particle 

assemblies present a moderate width distribution. The hydrodynamic diameter of the CPNs 

calculated by NTA was significantly larger than the size estimated by TEM due to the protein 

surfactant, the hydration shell and electric dipole layer of the surrounding solvent.  

To obtain a crosslinked protein shell, the amine functional groups at the N-terminus of each 

amino acid sequence in the side chains of lysine residues were reacted with glutaraldehyde. The 

hydrophobin coating was proposed to decrease surface hydrophobicity and suppress 

aggregation, thus leading to improved colloidal stability, a prerequisite for most biological 

applications. To investigate their potential use in biological imaging, laser scanning confocal 

microscopy was used to visualize whether the crosslinked hydrophobin-coated CPNs were 

internalized by HeLa cells. Z-stack images were collected with 25 slices covering a sample 

depth of ~12 µm, indicating that CPNs were localised inside live HeLa cells, (Figure 3), ~1hr 

post incubation. This cell line (human cervical carcinoma) was specifically chosen due to its 

association with nanodiagnostics. Orthogonal projections were reconstructed from z-scan 

images, confirming that the crosslinked nanoparticles were restricted to within cell boundaries, 

rather than extracellular components. Intracellular uptake of colloidally stable polymer 

nanoparticles, without the use of transfection agents, is attractive due to its simplicity and 

reproducibility.  

 

In conclusion, protein-capped conjugated polymer nanoparticles have been prepared that are 

useful in cellular imaging. The synthesis was simple and reproducible, and the resultant CPNs 

presented strong emission in the red region (ca. 640 nm) of the electromagnetic spectrum. As a 

result of this exploratory cellular experiment, it is proposed that HPB polymer labels are 

attractive contenders towards non-toxic, photostable, fluorescent probes. We acknowledge Dr. 

Wendel Wohlleben and Dr. Thomas Subkowski (Material Physics Research, BASF) for 

supplying the proteins and for useful disucssions.  

 

Experimental 

 

Preperation of CN-PPV nanoparticles 
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All chemicals were obtained from Sigma-Aldrich, UK and used as received. Poly(2,5-

di(hexyloxy)cyanoterephthalylidene) (CN-PPV)  (3 mg) was dissolved in 0.96 mL THF to 

make a 3.125 mg/mL polymer solution. The solution was sonicated in a 35 kHz ultrasound bath 

at 7-9 °C, in 30 second bursts. In a separate flask, 250 µL of a hydrophobin H star protein® B 

stock solution (50 mg/mL) was added to 5 mL deionised water, sonicated at ambient 

temperature (ca. 20 °C) for 15 minutes, and then left for approximately 1 hour at room 

temperature. Then, 160 µL of the polymer solution was added to the aqueous HBP solution in a 

sealed flask. The mixture was sonicated at 7-9 °C in three 60 second bursts. The mixture was 

then left stirring in an unsealed flask for ∼24 h at 400 rpm to allow solvent evaporation. The 

nanosuspension (~100 µg/mL CN-PPV) was subsequently filtered through filter paper and a 

0.2 µm cellulose acetate syringe filter. The filtrate was washed with deionised H2O via 

centrifugation at 4000 rpm for 2 minutes, a total of 5 times.  

 

Chemical crosslinking of HPB  

HPB-coated CPNs (125 µL) was diluted in 1 mL 10 mM sodium phosphate buffer (pH 7.0-7.2) 

and centrifuged in a 100 kDa Vivaspin® tube at 3000 rpm for 1 minute, for a total of 3 times. 

500 µL of particle solution was added to 10 µL glutaraldehyde (50 wt. % in H2O), and stirred in 

a sealed vial at 450 rpm for 1 hour. A disposable PD-10 desalting column was equilibrated with 

50 mL of previously prepared buffer solution. The resultant crosslinked particle solution was 

passed through the column and 0.5 mL fractions were collected. 

 

CN-PPV association with HeLa cells 

HeLa cells were cultured as adherent monolayers in Dulbecco’s Modified Eagle Medium 

(DMEM) supplemented with 10% heat inactivated fetal calf serum (FCS), on a sterilised 8 

square well microplate. Cell cultures were kept at physiological temperature ~37◦, 5% CO2 

in a humidified incubator. 250 µL of the crosslinked CN-PPV nanoparticle suspension was 

added to 100 µL of the aforementioned media and incubated for 1 hour. The cells were 

washed with phosphate-buffered saline (pH 7.0) six times. All images were acquired on a 

Nikon A1R+ confocal using a ×20 air-immersion objective lens of numerical aperture 0.75, 

with 488 nm excitation. Emission from the CN-PPV nanoparticles was collected in two 

channels, 570 - 620 nm and 663 - 738 nm with 2x line averaging. The brightest emission was 

observed in the 570 - 620 nm channel. Z-stack images were collected every 0.5 µm, with 12.5 

µm sample depth. Orthogonal projections were reconstructed using Imaris software. All 

images are displayed with 0.2% saturation pixel thresholding. 
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Nanoparticle Tracking Analysis 

The NanoSight® LM10 instrument employed a laser source (60 mW at 488 nm) to illuminate 

nanoparticles in suspension. CN-PPV CPN suspension (100 µL) was diluted in 5 mL deionised 

H20 and 300 µL was injected into the flow chamber of the NanoSight® unit. The C11440-5B 

scientific camera was set to ×20 capture magnification with 250 camera gain. NTA 2.3 analysis 

software was used to generate 3 × 30 second scripts, which provided the average and modal 

hydrodynamic diameter, standard deviation and total concentration of the CPN suspension. 

 

Transmission electron microscopy 

TEM images were obtained using a FEI Tecnai T20 instrument with a LaB6 filament electron 

source operating at 200 kV accelerating voltage. The system was equipped with a FEI 

supertwin objective lens capable of atomic resolution and a gatan image filter, GIF 2000, which 

enabled energy filtration of images. Image analysis was perfomed in ImageJ software.  

 

Quantum Yield measurements 

All absolute quantum efficiency measurements were obtained using a C9920-02G Hammatsu 

system employing the photoluminescence method. An integrating sphere system with nitrogen 

gas flow was used and the entire spectral range recorded simultaneously. All samples were 

excited at 480 nm with a bandwidth of 5-7 nm.  

 

Optical measurements 

Absorption spectroscopy measurements were taken using a Hitachi U-4100 UV-Visible-NIR 

spectrophotometer in a 1 cm path length quartz cuvette. Emission spectra were obtained 

using a Perkin Elmer LS 50B spectrometer. Quantum yields were measured using an 

integrating sphere by Hamamatsu Photonics. Ltd., UK. 
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Figure 1: A) Normalised absorption (dotted lines) and emission (solid lines) spectra of CN-PPV dissolved in 
THF (grey lines), CN-PPV particles (orange lines) and HPB-capped CN-PPV particles (black lines). The inset 
shows an aqueous dispersion of hydrophobin-capped particles in ambient conditions and under 365 nm UV 

excitation. B) PL spectra of HPB-capped CN-PPV CPNs (λem = 640 nm) at t=0 (solid line) and t=21 days 
(dashed line). The inset shows the normalised emission peak intensity of the HPB-capped aqueous 

disperions measured over a 21 day period, and standard deviation of the mean (blue dashed lines). All 
samples were excited at 470 nm.  
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Figure 2: A-D) Representative TEM images (scale = 0.5 µm) and particle size distributions of uncapped A, C) 
and HPB-capped B, D) CN-PPV particles. The mean core diameters (dotted red line) and standard deviation 
(solid black arrows) are shown. E) Distribution curve of the hydrodynamic diameters of uncapped and F) 

HPB-capped CN-PPV nanoparticles with standard error of the mean (red error bars). The FWHM (solid black 
arrow) of the uncapped and capped CN-PPV particles are ca. 70 nm and 100 nm respectively. Both 

assemblies demonstrate a moderate width distribution, with 32% and 34% relative standard deviation 
respectively.  
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Figure 3: A) The association of crosslinked HPB-capped CN-PPV particles with cultured HeLa cells; 
Fluorescence was detected in the 570 - 620 nm channel with 0.2% saturation pixel thresholding. Scale bar 
= 100 µm. B) Z-stack through a region of interest (highlighted yellow) from the bottom of the cells to the 
top (left to right) at 0.5 µm steps, indicating that HPB-capped nanoparticles were internalised by HeLa cells 

post 1hr incubation. Scale bar = 25 µm.  
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