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Intramolecular C-H trifluoromethoxylation of arenes and heteroarenes proceeds through a reaction mechanism of radical O-

trifluoromethoxylation and ionic OCF3-migration. 
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Mechanistic Studies on Intramolecular C-H 
Trifluoromethoxylation of (Hetero)arenes via OCF3-Migration 

Katarzyna N. Lee,ab Zhen Lei,ab Cristian A. Morales-Rivera,c Peng Liu,c and Ming-Yu Ngai*ab

The one-pot two-step intramolecular aryl and heteroaryl C-H 

trifluoromethoxylation recently reported by our group has 

provided a general, scable, and operationally simple approach to 

access a wide range of unprecedented and valuable OCF3-

containing building blocks. Herein we describe our investigations to 

elucidate its reaction mechanism. Experimental data indicates that 

the O-trifluoromethylation of N-(hetero)aryl-N-hydroxylamine 

derivatives is a radical process, whereas the OCF3-migration step 

proceeds via a heterolytic cleavage of the N–OCF3 bond followed by 

rapid recombination of a short-lived ion pair. Computational 

studies further support the proposed ion pair reaction pathway for 

the OCF3-migration process.  We hope that the current study would 

provide useful insights for the development of new 

transformations using versatile N-(hetero)aryl-N-hydroxylamine 

synthons. 

Introduction 

 Addition of fluorine atoms into organic molecules has a 

profound influence on their chemical, physical and biological 

properties. As a consequence, fluorine is frequently 

incorporated into drug molecules to enhance their lipophilicity, 

bioavailability, and metabolic stability.1 In recent years, there 

has been a significant progress towards development of 

synthetic methodologies that allow introduction of fluorine-

containing functional groups into arenes and heteroarenes. 

Among fluorinated substituents, the trifluoromethoxy group 

(OCF3) has attracted increasing attention owing to its unique 

structural and electronic properties. In contrast to 

methoxybenzenes, which favor a planar conformation, 

trifluoromethoxybenzenes prefer to adopt a conformation in 

which the O–CF3 bond lies in a plane orthogonal to the aryl ring 

(Fig. 1a).2 This unique orientation, which results from the nO → 

σ*C–F hyperconjugative interaction (Fig. 1b) and the steric bulk 

of the CF3 group, provides additional conformational flexibility 

and renders the OCF3 group an electron–withdrawing 

substituent [ (F) = 4.0, OCF3 = 3.7].3 In addition, the OCF3 

group has excellent lipophilicity as indicated by its Hansch-Leo 

parameter  [πx (SF5) = +1.23, πx (OCF3) = +1.04, πx (CF3) = +0.88, 

πx (F) = +0.14, πx (OCH3) = −0.02].4 These properties of the OCF3 

group are particularly beneficial in drug discovery and 

development as introduction of the OCF3 group into drug 

candidates may enhance their binding affinity, improve their 

metabolic stability and efficacy, promote their in vivo uptake 

and transport in biological systems, and minimize their side  

 

Fig. 1. Properties and applications of OCF3-containing arenes. 

aDepartment of Chemistry, Stony Brook University, Stony Brook, New York, 11794-
3400, USA; Email: ming-yu.ngai@stonybrook.edu  
bInstitute of Chemical Biology and Drug Discovery, Stony Brook University, Stony 
Brook, New York 11794-3400, USA.  
cDepartment of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 
15260, USA. 
† Footnotes relating to the title and/or authors should appear here.  
Electronic Supplementary Information (ESI) available: [details of any supplementary 
information available should be included here]. See DOI: 10.1039/x0xx00000x 

Page 2 of 7Organic & Biomolecular Chemistry

O
rg

an
ic

&
B

io
m

ol
ec

ul
ar

C
he

m
is

tr
y

A
cc

ep
te

d
M

an
us

cr
ip

t

mailto:ming-yu.ngai@stonybrook.edu


COMMUNICATION Journal Name 

2 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 20xx 

Please do not adjust margins 

Please do not adjust margins 

 

 
Fig. 2. Synthesis of (hetero)aryl trifluoromethyl ethers via O-trifluoromethylation of N-(hetero)aryl-N-hydroxylamine derivatives followed by OCF3-migration.19  

effects.5 Trifluoromethoxylated arenes are thus of great 

importance in medicinal chemistry and agrochemicals (Fig. 

1c).5c, 5d, 6, 7 Moreover, incorporation of the OCF3 group into 

organic molecules increases their melting point and boiling 

point difference under ambient pressure, and lowers their 

surface tension, dielectric constant, and pour point.5e, 8 These 

properties are particularly useful in designing electronic devices 

and materials.9  

 Despite the prevalence of the OCF3 moiety in different areas 

of science, facile synthesis of (hetero)aryl trifluoromethyl ethers 

remains an unmet challenge in organic synthesis.10 Over the 

past few decades, there have been a number of synthetic routes 

towards trifluoromethoxylated (hetero)arenes: (i) chlorine-

fluorine exchange on (hetero)aryl trichloromethyl ethers;11 (ii) 

deoxyfluorination of phenol fluoroformates;12 (iii) oxidative 

desulfurization-fluorination of aryl dithiocarbonates 

(xanthogenates);13 (iv) electrophilic trifluoromethylation of 

phenols;14 (v) nucleophilic trifluoromethoxylation of benzyne;15 

(vi) silver-mediated trifluoromethoxylation of aryl stannanes 

and aryl boronic acids;16 (vii) radical trifluoromethoxylation;17 

and (viii) silver-mediated trifluoromethylation of phenols.18 

However, most of these approaches suffer from poor substrate 

scope and functional group tolerance, require the use of highly 

toxic, corrosive and/or temperature sensitive reagents, or 

impractical reaction conditions.  

 Our group has recently developed a new method for 

preparation of ortho-OCF3 (hetero)arylamine derivatives via a 

two-step process: O-trifluoromethylation of N-(hetero)aryl-N-

hydroxylamine derivatives followed by OCF3-migration step 

(Fig. 2).19 Our approach is operationally simple and amenable to 

one pot as well as gram-scale synthesis, features a broad 

substrate scope and high functional group compatibility, and 

provides a wide range of valuable ortho-trifluoromethoxylated 

(hetero)arylamine scaffolds that would otherwise be difficult to 

synthesize. In view of its potential synthetic utility, an in-depth 

understanding of its mechanism is desirable. Herein, we report 

our mechanistic investigations to provide insights for this two-

step transformation. Although the following studies were done 

using the N-aryl-N-hydroxylamine derivatives, the proposed 

mechanism is also applicable to the N-(hetero)aryl-N-

hydroxylamine derivatives. 

Results and discussion 

 O-Trifluoromethylation of N-aryl-N-hydroxylamine 

derivatives: Treatment of protected N-aryl-N-hydroxylamines 

(1) with 1-trifluoromethyl-1,2-benziodoxol-3(1H)-one (Togni 

reagent II, 1.2 equiv) in the presence of a catalytic amount of 

base (0.1 equiv Cs2CO3) in CHCl3 (0.1 M) at room temperature 

afforded the desired O-trifluoromethylation products (2) in high 

yields. These mild reaction conditions tolerate arenes with a 

wide variety of substitution patterns, electronic properties, and 

molecular complexities. To probe the nature of this reaction 

mechanism, we performed the O-trifluoromethylation reaction 

in the presence of radical traps: 2,6-di-tert-butyl-para-cresol 

(BHT) and 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) 

(Scheme 1a). It is known that Togni reagent II can be used to 

produce the CF3 radical in the presence of a one-electron donor 

through a single electron transfer (SET) process.20 If such a 

process takes place in our reaction, BHT and/or TEMPO would 

trap the CF3 radical and lower the reaction yields. Indeed, 

addition of a stoichiometric amount of either BHT or TEMPO to 

the reaction mixture under standard conditions had a 

detrimental effect on the formation of O-trifluoromethylated N-

hydroxylamine – the yield of the desired product dropped from 

97% to 28%, and 37%, respectively. The CF3 radical trapping 

products (BHT-CF3 and TEMPO-CF3) were detected by GC-MS 

and 19F NMR spectroscopy. We have also found that the O-

trifluoromethylation reaction is oxygen sensitive and requires 

use of strictly degassed solvent. These results corroborate the 

intermediacy of trifluoromethyl radical in the reaction pathway, 

which is in agreement with literature precedents.20-21  

 Based on these studies and experimental observations, a 

plausible mechanism for the O-trifluoromethylation is depicted 

in Scheme 1b. Deprotonation of protected N-aryl-N-

hydroxylamine (1) forms N-aryl-N-hydroxylamine anion I. 

Subsequent SET from I to Togni reagent II generates N-hydroxyl 

radical II and Togni II radical anion that collapses to liberate the 

electrophilic CF3 radical and 2-iodo-benzoate.22 Recombination 
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of N-hydroxyl radical II with trifluoromethyl radical gives the 

desired O-trifluoromethylated hydroxylamine derivative (2). 

 
Scheme 1. Radical trap experiments and proposed mechanism for the O-

trifluoromethylation of N-(hetero)aryl-N-hydroxylamine derivatives. [a] 1 equiv. 

 OCF3-Migration of N-(trifluoromethoxy)-N-aniline 

derivatives (2): Compounds 2 with an electron-deficient or -

neutral N-aryl ring are stable at room temperature and could be 

purified through column chromatography. However, heating 2 

in nitromethane (MeNO2, 1.0 M) cleaved the N–OCF3 bond and 

formed a new C–OCF3 bond to give ortho-OCF3 aniline 

derivatives (3) (Fig. 2). To gain mechanistic insights into the 

OCF3-migration step, we first examined whether the N–O bond 

is broken homo- or heterolytically. Homolytic cleavage of the N–

OCF3 bond would generate N-amidyl and trifluoromethoxyl 

(·OCF3) radicals; we envisioned that if these radicals are indeed 

being formed, the reaction yield should drop upon addition of a 

radical trap, which would disable radical recombination 

process. Thus, we performed the rearrangement reaction of 2b 

in the presence of a stoichiometric amount of BHT (Scheme 2). 

Similar yields were obtained regardless the presence or absence 

of BHT, which indicates that formation of long-lived radical 

species under the reaction conditions is unlikely. 

 

Scheme 2. OCF3-Migration in the presence of radical trap. [a] 1 equiv. 

 In order to further shed light to the nature of the N–O bond 

cleavage, we performed linear free energy relationship analysis 

using Hammett plot. Relative rate constants were determined 

for the OCF3-migration with seven para/meta-substituted O-

trifluoromethylated N-hydroxylamine derivatives, R-

C6H4N(OCF3)C(O)Me (R = H (2b), m-OMe (2c), p-I (2d), p-Br (2e), 

m-F (2f), m-CO2Me (2g), and m-CF3 (2h)). The rearrangement 

reaction was conducted at 80°C and its rate was monitored by 
19F NMR spectroscopy. For substrates with fast kinetics (R = H, 

m-OMe, p-I, and p-Br), the disappearance of the starting 

material peak was normalized against an internal standard 

(α,α,α-trifluorotoluene) and was measured for at least three 

half-lives. The kobs of each reaction was determined from a first-

order plot of –ln[SM] versus time. For substrates with slow 

kinetics (R = m-F, m-CO2Me, and m-CF3), the rate of the 

appearance of the first 10-15% of product was measured. The 

kobs of each reaction was determined from a first-order plot of 

[P] versus time. The Hammett plot of log (kR/kH) versus σ 

showed a highly negative linear slope (ρ = −11.86; R2 = 0.99) (Fig. 

3), which is commonly observed in organic reactions involving 

formation of a positive charge.23 Therefore, these results 

strongly suggest a heterolytic cleavage of the N–OCF3 bond, in 

which a nitrenium ion and trifluoromethoxide are generated.  

 
Fig. 3. Hammett plot for OCF3-migration of R-C6H4N(OCF3)C(O)Me (R = m-OMe, p-I, p-Br, 

m-F, m-CO2Me, and m-CF3. 

 The formation of an intermediate nitrenium ion, whose 

stability is dependent on the electronic properties of nitrogen 

substituents, is further evidenced by the fact that the OCF3-

migration is very slow at 80 °C for substrates bearing a strongly 

electron withdrawing group at the para-position of the N-aryl 

substituent (R = CO2Me (2a), σp = 0.45; COMe (2i), σp = 0.50).24 

These substrates (2a and 2i) require a temperature of 120 °C for 

the rearrangement reaction to go to completion within a 

reasonable timeframe (24 h). When R = CN (2j, σp = 0.56),24 an 

even higher reaction temperature (140 °C) is required to 

thermally cleave the N–O bond. In an extreme case, no desired 

product is formed upon attempted rearrangement of N-(3,5-

bis(trifluoromethyl)phenyl)-N-(trifluoromethoxy)acetamide 

(2k) due to the presence of two CF3 groups (σm = 0.43)24 on the 

aryl ring. In contrast, rearrangement takes place at room 

temperature when an electron-donating substituent, which can 

stabilize the positive charge, is present, e.g. R = Me (2l, σp = 

−0.17).24 While the presence of nitrenium ion was evidenced by 

the Hammett analysis, the intermediacy of trifluoromethoxide 

was corroborated by detection of fluorophosgene 

(decomposition product of trifluoromethoxide) and BF4
- by 19F 

NMR spectroscopy (see the SI for details).25 
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 Having investigated the N–OCF3 bond cleavage process, we 

then sought to determine if the final carbon–OCF3 bond forming 

step is an intramolecular reaction. We performed a cross-over 

experiment using N-(4-bromophenyl)-N-

(trifluoromethoxy)acetamide (2e) and N-(4-chlorophenyl)-N-

(perfluoroethoxy)acetamide (6), which was synthesized by 

treatment of N-(4-chlorophenyl)-hydroxamic acid with 

pentafluoroethyl analog of Togni reagent II.26 Heating 2e and 6 

together either in MeNO2 or neat at 80 oC formed only non-

crossover products (3e and 7) as monitored by GC-MS and 19F 

NMR (Scheme 3a). The lack of cross-over products suggests that 

the OCF3-migration is likely an intramolecular process and that 

the rate of recombination of an ion pair is much faster than an 

intermolecular OCF3-group transfer (see the SI for possible 

intermolecular mechanisms of OCF3-migration), which would 

require dissociation of two ions of opposite charge. The 

intramolecular mechanism is further corroborated by formation 

of benzoxazole 3m’ during the rearrangement reaction of 

methyl 4-(N-(trifluoromethoxy)benzamido)benzoate (2m) 

(Scheme 3b). This side product results from a competing 

intramolecular trapping of the nitrenium ion by an internal 

nucleophile, and its isolation further confirms that the 

nitrenium ion intermediates are very reactive and thus short 

lived.  

 

Scheme 3. Crossover and trapping of carbocation intermediate experiments. 

 Computational Studies: Density functional theory (DFT) 

calculations were performed to investigate the mechanism of 

the OCF3 migration of compound 2b. The calculations were 

performed at the M06-2X/6-311++G(d,p)//M06-2X/6-31+G(d) 

level of theory with the SMD solvation model in MeNO2.27 The 

computed reaction energy profile of the stepwise OCF3 

migration is shown in Fig. 4a.28 The heterolytic cleavage of the 

N–OCF3 bond of 2b to form the ion pair intermediate (10) 

requires an activation free energy of 27.6 kcal/mol (TS1),29 

which is feasible under the experimental conditions (80 °C). The 

ion pair (10) is an anion-π complex30 between 

trifluoromethoxide and the highly electron-deficient phenyl 

ring. The relatively strong anion-π interaction is evidenced by 

the short O(OCF3)–C distances (Fig. 4b). The recombination of 

the ion pair (10) through O–C(ortho) bond formation to yield the 

dearomatized intermediate 11 requires a very low barrier and 

is highly exothermic. This indicates a very short lifetime of the 

ion pair intermediate, which is in agreement with the crossover 

experiments. The low barrier of the ion pair recombination is 

attributed to the structural similarity of 10 and TS2. The 

O(OCF3)–C(ortho) distance is only slightly shortened to 2.45 Å in 

the recombination transition state (TS2). The subsequent 1,3-

hydrogen shift from the dearomatized intermediate 11 to the 

final product 3b occurs through a stepwise mechanism involving 

the autoionization of 11 to form 12a and 12b followed by the 

highly exothermic proton transfer from 12a to 12b to form 3b.31 

 

Fig. 4. Computational investigations of the mechanism of OCF3-migration. 

 Altogether, these results are consistent with the proposed 

mechanism shown in Scheme 4. The N–O bond of 2 undergoes 

the thermally induced heterolytic cleavage to form a short-lived 

ion pair of a nitrenium ion and trifluoromethoxide. Rapid 

recombination of this ion pair affords intermediate IV, which 

then tautomerizes to restore aromaticity and generate the 

desired product 3. The ionic mechanism for the N–O bond 

cleavage of N-protected N-aryl-N-hydroxylamines is also well-

precedented in the literature.32 
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Scheme 4. Proposed mechanism for the OCF3-migration process. 

Conclusions 

In summary, the experimental results obtained in this work 

delineate the mechanism of the two-step synthesis of ortho-

OCF3 (hetero)arylamine derivatives. The radical trapping 

experiments with TEMPO and BHT indicate that O-

trifluoromethylated hydroxylamine derivatives are formed via 

radical recombination reaction between N-hydroxyl radical and 

trifluoromethyl radical (·CF3). The highly negative slope (ρ = 

−11.86) of the Hammett plot provides evidence for the 

generation of a positive charge in the course of the OCF3-

migration reaction and strongly suggests that the N–OCF3 bond 

undergoes heterolytic cleavage. The intermediacy of a 

nitrenium ion and trifluoromethoxide is further verified by 

isolation of a benzoxazole side product and detection of 

trifluoromethoxide decomposition products by 19F NMR 

spectroscopy. The lack of cross-over products in a cross-over 

experiment supports intramolecular transfer of the OCF3 group. 

Computational studies further support the reaction pathway of 

a heterolytic cleavage of the N–OCF3 bond followed by rapid 

recombination of a short-lived ion pair. It is hoped that the 

deeper mechanistic insights stemming from the current study 

will be useful for the development of new transformations using 

versatile N-(hetero)aryl-N-hydroxylamine synthons.  
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