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SIGNIFICANCE STATEMENT 

 

Copper containing fungicides are used to protect vineyards from fungal 

infections, but their residues on grapes can affect microorganisms living in 

vineyards, such as Saccharomyces cerevisiae. Here, a new LC-MS based 

metabolomics approach combined with chemometrics is used to explore Cu(II) 

toxicity in S.cerevisiae cultures. Control and Cu(II)-treated yeast samples are 

compared to identify what intracellular metabolites change due to a dose-

response effect. The proposed untargeted metabolomics strategy revealed new 

Cu(II) targets for discovery and enabled biological interpretation of Cu(II) 

toxicological effects on S.cerevisiae metabolism.  
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LC-MS based metabolomics and chemometrics study of the toxic 
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a Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for 
Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain. 

 

Abstract 

Copper containing fungicides are used to protect vineyards from fungal infections. Higher residues 

of copper on grapes at toxic concentrations are a potentially toxic and affect the microorganisms 

living in vineyards, such as Saccharomyces cerevisiae. In this study, the response of metabolic 

profiles of S.cerevisiae at different concentrations of copper sulphate (control, 1 mM, 3 mM and 6 

mM) were analysed by liquid chromatography coupled to mass spectrometry (LC-MS) and 

multivariate curve resolution-alternating least squares (MCR-ALS) using an untargeted 

metabolomics approach. Peak areas of the MCR-ALS resolved elution profiles in control and in 

Cu(II)-treated samples were compared using partial least squares regression (PLSR) and PLS-

discriminant analysis (PLS-DA), and the intracellular metabolites best contributing to samples 

discrimination were selected and identified. Fourteen metabolites showed significant concentration 

changes upon Cu(II) exposure, following a dose-response effect. The observed changes were 

consistent with the expected effects of Cu(II) toxicity, including oxidative stress and DNA damage. 

This research confirmed that LC-MS based metabolomics coupled to chemometric methods are a 

powerful approach for discerning metabolomics changes in S.cerevisiae and for elucidating modes 

of toxicity of environmental stressors, including heavy metals like Cu(II).  
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1. Introduction 

Copper (Cu(II)) containing fungicides have been used for more than one century in Europe on 

agricultural soils, such as vineyard soils. These fungicides have been used to protect crops from 

fungal infections such as downy mildew by Plasmopara viticola since the end of the 19th century. 

Copper is a potentially toxic metal, which, at low concentrations, can act as an essential 

micronutrient for microbial growth. At toxic concentrations, Cu(II) interacts with cellular nucleic 

acids and enzyme active sites, although a principal initial site of Cu(II) action is considered to be at 

plasma membrane. Thus, exposure of fungi and yeasts to elevated Cu(II) concentrations can lead to 

a rapid decline in membrane integrity [1]. Total Cu(II) concentrations in such soils can affect 

toxicologically to microorganisms living in vineyards. Cooper-based agrochemicals should not be 

toxic, under normal circumstances, but intensive and long term use of these fungicides has 

increased Cu(II) concentrations in soils significantly [2]. The use of copper formulates in biological 

vineyards has caused high levels in copper residues on grapes causing in some causes slow or stuck 

fermentations [3]. Several studies have been published about Cu (II) toxicity microorganisms [4-7] 

and specifically the effects of copper on Saccharomyces cerevisiae (yeast) have been the focus of 

many of these studies   [1, 2, 8-11], although metabolomics studies have not been published yet.  

The development of new omic methodologies and technologies for environmental risk assessment 

may represent great opprotunities for the identification of emerging risks in the application of 

fungicides on vineyards. The recent availability of a range of omic technologies provide researchers 

enormous opportunities to uncover the effects of xenobiotics on many parmameters simultaneously 

[12]. Omic technologies are valuable tools to measure biochemical changes associated with mode of 

action at the level of DNA/RNA (transcriptomics), proteins (proteomics) and at the metabolome 

(metabolomics). They provide the means to identify biomarkers for dose response modelling. These 

omics repertories might not be sufficiently informative per se, since these data are highly 

multivariate in nature, therefore advanced multivariate data analytical techniques able to cope with 

the challenges inherent with these very complex analytical data sets should be used. Chemometric 

methods offer multiple efficient and robust methods for modeling and analysis of complicated 

chemical/biological data tables, with the goal to produce more interpretable and reliable models 

capable of handling incomplete, noisy and collinear data structures [13].  

Metabolomics enables the detection of possible alterations in the metabolome of organisms as a 

result of their exposure to bioactive compounds. However, the development of robust metabolomics 
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models for the study of the mode of action (MoA) of bioactive compounds is a complex procedure. 

The application of bioactive compounds at sublethal doses under experimental conditions is the 

preferable option for metabolomics thus enabling the detection of their primary effects on the 

metabolism of the biological system, while excluding undesirable secondary effects [14].  

Untargeted analytical methods can detect  hundreds of metabolites with no or with only a limited 

prior knowledge of  the metabolite composition of samples. Liquid chromatography – mass 

spectrometry (LC-MS) - based  approaches have been shown to be  particularly useful for 

untargeted metabolomics [15]. Recently, several untargeted approaches have been proposed to 

analyse metabolomic profiles of S.cerevisiae using different analytical techniques coupled to 

chemometric evaluation [16-19].  In the present work, we propose and use an untargeted approach 

to study the metabolomic profiles of a laboratory S.cerevisiae strain (BY4741) exposed to different 

sublethal concentrations of copper sulfate (CuSO4). The goal of this approach is to observe what are 

the main changes in the yeast metabolic profiles and to tentatively identify what metabolites had 

their concentrations changing more in relation to copper (Cu(II)) exposition. A similar 

chemometrics strategy to the one previously described in [19] is proposed in this work for the 

analysis of the LC-MS data and for the resolution of the metabolic profiles with the help of the 

multivariate curve resolution-alternating least squares (MCR-ALS) method [20-23].  Determination 

of biomarkes is performed using Student’s t-test and by variable selection methods, like the variable 

importance in projection (VIP) [24] and selectivity ratio (SR) methods [25, 26], in  partial least 

squares regression (PLSR) and PLS-discriminant analysis (PLS-DA) [24, 27, 28].    

LC-MS analysis generates large data sets, due to the huge size of MS spectra and storage 

requirements, especially in full scan high m/z resolution LC-MS acquisition modes, different data 

analysis strategies have been proposed. One of them is data binning, which reduces storage and 

facilitates data analysis steps. However, in this case the resolution power of the raw measurements 

is lost and several steps are required for its recovery (see for instance strategies used in previous 

works [16, 19, 29, 30]. Another sounder strategy, is the one based on the use of the regions of 

interest (ROI), already proposed in some open source software packages for metabolomics such as 

the XCMS software [31]. These strategies take advantage of the sparse nature of the raw MS data 

and consider only intensity data values higher than a preselected threshold value and having peak 

elution profile features. They have been recently adapted to the MATLAB environment (see [32]) 

for chemometric data analysis. 
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2. Materials and Methods 

2.1 S.cerevisiae culturing and exposure to sublethal concentrations of Cu(II) 

Saccharomyces cerevisiae samples were exposed to copper (added as CuSO4) at sublethal 

concentrations. BY4741(MATa his3∆1 leu2∆0 met15∆0 ura3∆0) yeast strain cells were pre-cultured 

in non-selective YPD (yeast peptone dextrose) medium on an orbital shaker (150 rpm) at 30 ºC 

overnight to obtain the initial culture (pre-culture). Four flasks of 250 ml of YPD medium were 

inoculated with the yeast pre-culture   to an optical density at 600 nm (OD600) of 0.1. These cultures 

were then grown for 6h to an OD600 of 0.8.  Volumes of 75 ml of the yeast culture samples were 

exposed to increasing concentrations of CuSO4 of 1 mM, 3 mM and 6 mM to for 3.5 hours to an 

OD600 of 2.5, with three replicates at each concentration.  Three additional replicates were prepared 

as control samples without any addition of Cu(II).  

 

2.2 Quenching and S.cerevisiae metabolites extraction 

Metabolism of yeast culture was rapidly inactivated cooling down the samples on ice. Once cooled 

down, cells from the late exponential growth phase were harvested by centrifugation (4000 rpm for 

15 min at 4 ºC) discarding the supernatant and washed twice with phosphate buffered saline (PBS) 

to adjust their pH to 7.4. Final cell pellets were kept cold until the extraction.  

Intracellular metabolites were extracted from the S.cerevisiae culture using the boiling ethanol 

protocol as described previously [33]. Metabolites extraction was performed into 15 mL Falcon 

tubes, adding 5 mL of solvent (75 % ethanol) to the cell pellet and further incubation of the 

suspension for 3 min. at 80 ºC. After cooling down the mixture on ice, sample volume was 

concentrated and dried by evaporation using nitrogen gas (N2). The residue was re-suspended to a 

final volume of 0.4 mL with the LC mobile phase (75 % acetonitrile). Prior to pouring the final 

volume to a vial, the solution was filtered through 0.2 µm GHP membranes (GHP, Acrodisc 

Syringe Filters) to further ensure removal of any residual protein/debris before LC analysis.  

 

2.3 LC-MS analysis 

A Waters Acquity UPLC system (Waters) and a TSKgel Amide-80 5-µm, (250 x 2.0 mm) HILIC 

(Hydrophilic Interaction LIquid Chromatography) column purchased from Tosoh Bioscience were 
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used. LC solvents were 0.5 mM ammonium acetate in 90 % acetonitrile at pH 5.5 (solvent A) and 

2.5 mM ammonium acetate in 90 % acetonitrile in 60 % acetonitrile at pH 5.5 (solvent B). The 

gradient elution was as follows: t = 0, 25 % B; t = 8, 30 % B; t = 12, 60 % B; t = 17, 60 % B; t = 20, 

25 % B; t = 27, 25 % B. Injection volume was 5 µL and flow rate was 0.15 mL/min.   

A Waters LCT Premier orthogonal accelerated time of flight (TOF) mass spectrometer (Waters), 

operated in negative electrospray ionization (ESI) mode was used to acquire mass spectra profiles in 

full scan mode from 100 to 800 Da. The mass spectrometer was interfaced to computer workstation 

running MassLynx V 4.1 software for data acquisition and processing. 

Since the aim was to separate highly polar molecules, such as the metabolites more abundant in 

yeast metabolome, the use of HILIC columns was specially adequate for their analysis. HILIC 

columns have grown popularity in recent years due to their high compatibility with mass 

spectrometry and to their detection capabilities improvement for polar metabolites [34]. In a 

previous work, this approach was already shown to be adequate for yeast growth metabolome 

analysis stressed by increasing temperatures [19]. In this work, the same analytical methodology 

has been extended to the analysis of yeast metabolome stressed by Cu(II) treatment.  

 

2.4 LC-MS data pretreatment 

Full scan MS spectra of the different chromatographic runs were saved in raw mode and were then 

converted to cdf format by MassLynx V4.1 software and imported to MATLAB R20012b 

(Mathworks Inc. Natick, MA, USA) computational environment using mzcdfread.m and 

mzcdf2peak.m functions from the Bioinformatics Toolbox.   

Regions of interest (ROI) strategy has been used in this work to reduce size of MS spectra . The 

implementation of ROI approach requires the input of a signal-to-noise (SNR) threshold value, the 

mass accuracy of the mass spectrometer expressed in ppm, and the minimum number of retention 

times these signals were repeatedly obtained.  In the present work, the values of these parameters 

were 250 (0.15% of maximum MS signal intensity), 0.05 (m/z resolution), and 10 retention times 

respectively. Each region of interest contained masses with significant intensity with no loss of the 

original spectral resolution. In this way, every MS spectra provided a data matrix with a number of 

rows equal to the number of measured retention times (ranging from 0 to 27 min.) in the 

chromatogram and a number of columns equal to the number of finally selected  m/z ROI values 

considering all  simultaneously analysed chromatographic runs.  
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2.5 LC-MS data analysis by MCR-ALS 

As stated in previous work [19], due to the high number of highly overlapped peaks generated in 

LC-MS metabolomics analysis of yeast samples, the application of MCR-ALS is proposed and used 

to facilitate their resolution and identification. The goal of MCR-ALS analysis was to resolve 

directly the maximum number of individual elution profiles and pure mass spectral profiles of all 

possible metabolites extracted from the investigated yeast samples and to investigate the effect of 

Cu(II) exposure on them. 

MCR-ALS is a powerful chemometrics method able to analyse multicomponent systems with 

strongly overlapping contributions from complex chemical systems, including chromatographic 

ones. The mathematical basis of the bilinear model used by MCR in the case of the particular case 

of the analysis of a single yeast sample (k) is shown in equation 1: 

�� = 	���� +	
�    for   k = 1, 2, …, 12 samples                                                              Equation 1 

In this equation, the rows of the data matrices ��	(I x J) have the MS spectra at all retention times 

(i= 1,…I) in the chromatographic analysis of this yeast sample, and the columns have the 

corresponding elution profiles at all the measured mass spectra m/z channels (j=1,…J). ��	is the 

matrix of MCR-ALS resolved elution profiles in yeast sample k, and �� is the matrix of their 

corresponding resolved pure mass spectra. 
� contains the unexplained variance related to 

background and noise contributions not modelled by �� and ��. 

MCR-ALS can be extended to the simultaneous analysis of multiple yeast samples analysed by LC-

MS as it is shown in next equation 2: 

���
 =
��
��
�������⋮����

��
�
=
��
��
�������⋮����
��
�
�� +

��
��
�
�
�
�⋮
���
��
�
                                                                                           Equation 2 

or briefly: 

���
 =	���
�� + 
��
                                                                                                       Equation 3 

In the particular case under study, the augmented data matrix (���
) has a number of 22662 rows, 

equal to the total number of recorded elution times in the simultaneous analysis of the different 

yeast samples and corresponding chromatographic runs (k = 1, 2, …, 12 samples, three control 
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samples, and three 1mM Cu(II), three 3mM Cu(II) and three 6mM Cu(II) exposed samples). The 

number of columns of ���
	is 1076, which is equal to the number of m/z ROI values finally 

considered.  ���
 is the augmented matrix of the resolved elution profiles in the different 

chromatographic runs, ��	 is the matrix of pure MS spectra of them and 
��
 matrix is the noise and 

background signal not explained by the model [20]. One clear advantage of the MCR-ALS of 

column-wise augmented data matrices as shown in Equations 2 and 3 is that chromatographic peak 

alignment among chromatographic runs is not necessary because MCR-ALS allows for a complete 

freedom in the modelling of elution profiles [35] in the different runs. 

Although the number of MCR-ALS components is usually estimated by singular value 

decomposition (SVD) [36], in this work an arbitrary sufficient large number of components was 

initially proposed. The criterion used to select this number is that it should explain a significant 

amount of variance and that it should give information about all possible detected chromatographic 

peaks in the system. In LC-MS data, due to the high selectivity of MS signals, chromatographic 

peak shape features are rather easily distinguished. Usually, apart from resolving chromatographic 

elution profiles of the extracted metabolites, other additional components describing solvent and 

background contributions were also considered. 

Once the number of components and the initial estimates have been selected, the bilinear models 

described by Equations 2 and 3 were solved using a constrained ALS (Alternating Least Squares) 

iterative approach.  In the present study, the applied constraints have been non-negativity for the 

elution profiles in,	���
, and for the MS spectra in	�� as well as their normalization. [20, 22]. 

MCR-ALS model quality was evaluated by the percent of explained variance (R2) and the lack of fit 

(lof) values [37], see Equations 4 and 5 respectively: 

lof	% = 100 ∑ "#$%#,$∑ '#$%#,$      (),* =	+),* − +-),*                                                                             Equation 4 

R� = 100 ∑ '#$%#,$ /∑ "#$%#,$∑ '#$%#,$                                                                                                        Equation 5 

where 	+),* are the experimental values for variable j and sample i; +-),* are the corresponding  

calculated MCR-ALS values (Equation 1). 
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2.6 Detecting metabolite concentration changes due to Cu(II) treatment 

To discover what yeast intracellular metabolites concentrations changed because of the Cu(II) 

exposition, peak areas of the MCR-ALS resolved elution profiles (���
) were statistically 

evaluated. For this purpose, a Student’s t-test (p < 0.05) was applied to compare the areas of MCR-

ALS resolved compounds of control samples with those of the samples exposed to 6 mM of Cu(II). 

Furthermore, differences between two groups of samples were also analysed by partial least squares 

– discriminant analysis (PLS-DA). PLS-DA [38] is a PLS regression (PLSR) method [27, 28, 39] 

where the set of predictor variables, 0 (yeast metabolites), are correlated to a set of binary variables, 

1 (controls and Cu(II) exposed),  describing the categories of X. In this work, PLS-DA analysis was 

performed using the data matrix 0 of the peak areas of the MCR-ALS resolved components, and the 

1 data-vector where control samples were categorized as class 0 and 6 mM exposed samples were 

categorized as class 1. Prior to PLS-DA model calculation, the peak areas were autoscaled to give 

equal relevance to their possible change due to the exposure to Cu(II). PLS-DA model was assessed 

using leave-one-out cross-validation due to the small number of samples. PLS-DA model is 

assessed with the sensitivity parameter which measures the proportion of samples which are 

correctly identified as exposed to Cu(II), and with the specificity parameter which measures the 

proportion of controls which are correctly identified as not being exposed to Cu(II). In this work, 

PLSR was also applied to correlate the 0 –matrix (12 x 100) with the peak areas of the elution 

profiles (metabolites concentration) resolved by MCR-ALS and the 1-vector of Cu(II) 

concentrations (0, 1, 3 and 6mM).  Both, PLSR and PLS-DA methods have been described in detail 

elsewhere [28, 38, 39].  

To further investigate the more influent variables (metabolites) in the PLSR and PLS-DA models, 

the variables importance in projection (VIP) method was used [24, 28]. VIP scores are defined as a 

weighted sum of squares of PLS weights which take into account the amount of explained 1 

variance in each extracted LV. This method is frequently used as a parameter for variable selection 

[40, 41]. Since the average of the squared VIP scores equals 1, ‘greater than one rule’ is generally 

used as a criterion for variable selection [42]. This is not a statistically justified limit, and it can be 

shown that is very sensitive to the presence of non-relevant information pertaining to 0 [41, 43]. 

The selectivity Ratio (SR) is another variable selection method frequently used to detect the more 

important variables of a multivariate data set. The SR value for a variable in particular is defined as 

the ratio between its explained residual variances of the spectral variables on the target-projected 

component. In order to ascertain which variables have higher discriminatory abilities, a F-value 
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statistic is calculated for every variable to check whether exceeds the critical value from a F-

distribution assumption [25].  

 

 

2.7 Tentative identification of metabolites whose concentration change due to Cu(II) exposure 

Results from the MCR-ALS optimization are given as resolved eluted profiles in ���
, and pure 

mass spectra, �� factor matrices (Equation 3). Changes in peak areas of the resolved elution profiles 

in Cu(II) exposed samples compared to those of control samples were used to investigate the 

possible effects of Cu(II) in yeast metabolism. A first evaluation is performed from fold changes 

using a t-test. Additionally, all peak areas resolved by MCR-ALS were autoscaled, and PLS-DA 

was then applied to identify the most important metabolites responsible for the discrimination of 

Cu(II) treated and controls samples according to VIP and SR scores. Final selection of metabolites 

more affected by Cu(II) treatment was done taking into account the three approaches: t-test, VIPs 

and SR.  

Pure mass spectra of those components having their concentrations changing considerably by Cu(II) 

treatment were used for their putative metabolite identification. Since the ROI m/z selection 

procedure (see above) did not lose m/z accuracy from raw measured data, metabolite identification 

was carried out directly from MCR-ALS resolved pure mass spectra in ��. Since the observed 

signals in ��	included the molecular ion and the corresponding charged molecular ion adducts of 

neutral metabolites, the masses of the most significative negative ion adducts were also considered 

in the elemental composition calculator searching engine. The calculation was conducted 8 different 

times for each negative ion peak (i.e., allowing for [M-H], [M-2H], [M-3H], [M-H2O-H], [M+Na-

2H, [M+HAc-H], [2M-H], [2M+HAc-H], [3M-H], where HAc = acetic acid. These metabolites 

were searched in two on-line databases resources, the Yeast Metabolome Database (YMDB) [44] 

and  the Kyoto Encyclopedia of Genes and Genomes (KEGG) database [45, 46]. The final list of the 

tentatively identified metabolites was then used to investigate and interpret the most probable 

metabolic pathways and mechanisms affected by the addition of Cu(II) to yeast culture samples. 
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3. Results and discussion 

3.1 Yeast growth 

Addition of Cu up to 6mM only resulted in a decrease on growth rate below 5% (data not shown). 

To a lesser extent, the slow growth of S. cerevisiae was also observed at 3 mM of Cu(II).  

 

3.2 Metabolomic chemometric analysis 

A large number of components, such as 100, were proposed in the MCR-ALS analysis to allow for 

a sufficient large number of eluted metabolites plus a number of extra components describing 

background, solvent and other non-well defined chromatographic contributions (systematic noise 

sources). With this high number of components, MCR-ALS explained a total variance (R2) higher 

than 99%, and a lack of fit (lof) lower than 9% (Equations 4 and 5). In Figure 1, an example of a 

small chromatographic region with three resolved components, out of the set of the 100 components 

included in the global MCR model, is given. Elution profiles of these three components for control 

and treated samples are shown above the figure, their corresponding pure spectra are shown left 

below and resolution of the three elution profiles for one of the replicates of the Cu(II) 3 mM 

treated sample are shown right below. 

 

The PLS-DA discrimination model with one latent variable (LV), already explained 41.05 % of the 

total 0 variance (peak areas of MCR-ALS resolved elution profiles) and 96.02 % of the total class 

variance (1), with specificity and sensitivity values equal to 1 for each class. The PLSR model with 

one-latent variable already captured a large part of the 1 variance (around 94%).  Figure 2 displays 

the resulting scores of this PLSR model; as it can be seen, the four sample groups (control and 

Cu(II) at 1mM, 2mM, and 6mM concentration) were separated according Cu(II) dose. These results 

suggested that the metabolic concentrations changed linearly according to exposure to increasing 

Cu(II) doses. Control and Cu(II) exposed samples to 1mM dose were closer, with the group of 

samples exposed to 3mM more separated from them. Samples exposed to 6mM Cu(II) give the 

group more isolated in Figure 2.  
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3.3 Time-course of concentration changes in specific metabolites 

Changes in metabolite concentrations (fold-change) are summarized along with their metabolite 

assignments in Table 1. VIP and SR values (see method section 2.6), calculated from PLS-DA 

model revealed what variables (metabolites) had the greatest influence on the discrimination 

between control and 6 mM Cu(II) exposed S. cerevisiae metabolic samples. 41 metabolites had VIP 

scores higher than one. When this threshold was increased to 2, 19 metabolites were selected. A 

total number of 14 metabolites were coincident using three different analyses (see Table 1): 

Student’s t-test (p < 0.05), VIP (greater than 2) and SR (F-test, 95%). These metabolites were 

identified as described in section 2.7. Table 1 also shows the tentative identification of these 

metabolites (compound name, molecular formula, adduct, error and KEGG number), their 

corresponding concentration fold change, and its concentration trend (up = increasing or down = 

decreasing).  Among the different changes observed, glutathione (GSH) concentration was reduced 

to less than 1% of the levels in control samples in the highest dose group (6mM Cu(II)). 

Nicotinamide D- ribonucleotide and Nicotinate D-ribonucleoside concentration showed a 

remarkable increase with a fold-change of 26.5 and 11.6 respectively. Furthermore, concentrations 

of trehalose and L-Glutamic acid also increased with a fold-change higher than 6.  

 

3.4 Biological interpretation 

The 14 metabolites whose concentrations varied between control and Cu(II) exposed samples 

(Table 1) felt into different functional categories according to KEGG (not mutually exclusive): 

glutathione metabolism (glutathione and L-glutamic acid), amino acid metabolism (L-

phenylalanine, 2-Isopropylmaleic  acid, L-leucine, L-isoleucine and L-aspartic acid), purine 

metabolism (guanosine and adenosine diphosphate ribose), nicotinate and nicotinamide metabolism 

(nicotinate D-ribonucleoside and nicotinamide D- ribonucleotide), starch and sugar metabolism 

(trehalose), pyrimidine metabolism (L-dihydroorotic acid) and lysine degradation (L-pipecolate).  

Exposure to sublethal Cu(II) concentrations involved a complex response that led to yeast cell to 

acclimate to prevented cell death. Yeast responses to Cu(II) exposure promoted three major changes 

in the metabolism: defense against reactive oxygen species (ROS), cell protection and DNA repair. 

Glutathione was clearly downregulated when yeast was exposed to high concentration of Cu(II) (6 

mM). Since free Cu(II) ions are likely to participate in the formation of reactive oxygen species 
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(ROS), Cu(II) and Cu(I) ions will participate actively in oxidation and reduction biochemical 

reactions. In the presence of reducing agents such as glutathione (GSH), Cu(II) can be reduced to 

Cu(I), which is then able to catalyze the formation of hydroxyl radicals (OH·) from hydrogen 

peroxide (H2O2) via the Haber-Weiss reaction [47, 48], causing the depletion of glutathione 

concentrations [49, 50], in agreement with results reported in Table 1. Large amounts of ROS will 

led to protein denaturation, membrane order alteration and damage of intracellular enzyme activity 

and consequent reduced metabolism [51]. In S. cerevisiae, exposure to low doses of H2O2 or 

oxidative stress by glutathione depletion induces apoptosis [52]. In our case, we observed a near 

total depletion of glutathione without significant effects on yeast growth.  The proposed 

methodology allowed the detection of an early step of the oxidative stress process, and confirmed 

glutathione as the first line of defence against oxidants in the cell. The increase of concentration of 

L-Glutamic acid (see Table 1), a precursor of GSH, may reflect the activation of metabolic 

pathways leading to the restoration of physiological GSH levels.  

Trehalose is capable of reducing oxidant-induced modifications of proteins during exposure of yeast 

cells to H2O2, and it is considered a general stabilizer of starving or stressed yeast cells [53]. 

Therefore, its increased concentration at higher doses of Cu(II) (see Table 1) may be explained by 

its capacity to scavenge free radicals and therefore protecting cellular constituents from oxidative 

damage [54].  

The presence of reactive oxygen species (ROS) and of Cu(II) ions themselves in the presence of 

reducing agents such as glutathione may result in damage to DNA. ROS species and OH· radicals 

either oxidize bases, generate other radicals that result in crosslinks, or cleave the phosphoester 

bonds between specific nucleotides in the DNA [55]. DNA damage induces several cellular 

responses that enable the cell either to eliminate or cope with the damage. DNA ligase is an enzyme 

important for DNA repair and replication. The first step of DNA ligase-mediated DNA repair 

involves nucleophilic attack on the α phosphorous adenosine triphosphate (ATP) or nicotinamide 

adenine dinucleotide (NAD+), resulting in the release of pyrophosphate or nicotinamide D- 

ribonucleotide (NMN) (see Table 1) and formation of a covalent intermediate (ligase-adenylate), in 

which adenosine monophosphate (AMP) is linked via phosphoamide bond to lysine [56, 57]. This 

or a similar mechanism may account for the increase in NMN, nicotinamide D-ribonucleoside 

(NAR) and adenosine diphosphate ribose (ADP-ribose) concentrations observed in Table 1 upon 

exposure to high Cu(II) concentrations. NAD+ is a co-enzyme of pivotal importance in the redox 

balance of metabolism, as it is continuously interconverted between an oxidized (NAD+) and 

reduced (NADH) state. The increases of NAR and ADP-ribose concentrations (see Table 1) may be 

explained by the fact that NAD+ is synthetized from NAR [58] and consumption of NAD+ involves 
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release of nicotinamide and transfer of the remaining ADP-ribose moiety onto acceptor molecules 

[59].  

 

4. Conclusions 

In this study, a new LC-MS based metabolomics approach combined with chemometrics was used 

to explore Cu(II) toxicity in S. cerevisiae cultures . Exposure to sublethal concentrations of Cu(II) 

produced significant changes at the metabolic level, even at conditions where yeast growth was not 

significantly affected. Changes in chromatographic peak areas provided a useful insight about what 

potential metabolites changed their concentrations following the exposure to different Cu(II) doses. 

A new ROI data compression strategy allowed not losing spectral resolution nor m/z accuracy from 

LC-MS raw data and enabled the direct identification of the resolved chromatographic peaks. The 

intracellular metabolites best contributing to samples discrimination were selected by means of 

VIP-PLS and SR-PLS variable selection methodologies. Fourteen metabolites showed significant 

concentration changes upon Cu(II) exposure, following a dose-response effect. Observed metabolic 

changes were consistent with expected effects of Cu(II) intoxication and with the physiological 

responses to its presence.  

High concentrations of Cu(II) caused increased concentrations of ROS which led to reduced yeast 

metabolism and DNA damage. An early step of the oxidative stress process was detected, since 

there was a near total depletion of glutathione without significant effects on yeast growth. 

Therefore, glutathione was confirmed to act as a first line of defence against oxidants in the cell. 

The concentration increase of L-glutamic acid reflected the activation of metabolic pathways 

leading to the restoration of physiological glutathione levels. Yeast cells counteracted the resulting 

oxidative stress by protecting their cellular constituents by increasing trehalose concentration at 

higher Cu(II) doses. A DNA repair mechanism activation was observed and explained by the 

increase of nicotinamide D- ribonucleotide, nicotinamide D-ribonucleoside and adenosine 

diphosphate ribose concentrations when  the higher Cu(II) concentrations were used. 
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Table 1 Most relevant metabolites whose concentrations changed due to Cu(II) yeast culture exposition and their KEGG tentative identification. 

Met. 

ID 
Compound 

Molecular 

formula 
Adduct 

Error 

(ppm) 

KEGG  

C-number 

Fold-

change 
Trend p-value 

1 Gultathione C10H17N3O6S [M-H]
-
 20.48 C00051 105.2 DOWN 0.029 

2 L-Glutamic acid C5H9NO4 [M-H]- 0.22 C00025 5.1 UP 0.020 

3 L-Dihydroorotic acid C5H6N2O4 [M-H]- 7.13 C00337 6.2 DOWN 0.037 

4 L-Phenylalanine C9H11NO2 [M-H]- 9.89 C00079 1.8 UP 0.018 

5 2-Isopropylmaleic  acid C7H10O4 [3M-H]- 7.08 C02631 3.3 UP 0.022 

6 Nicotinate D-ribonucleoside C11H14NO6 [M+HAc-H]- 32.26 C05841 11.6 UP 0.024 

7 
Adenosine diphosphate 

ribose 
C15H23N5O14P2 [M-H2O-H]- 18.64 C00301 3.6 UP 0.009 

8 L-Leucine C6H13NO2 [M-H]
-
 10.16 C00123 3.1 UP 0.002 

9 L-Isoleucine C6H13NO2 [M-H]
-
 10.16 C00407 3.1 UP 0.013 

10 L-Aspartic acid C4H7NO4 [M-H]
-
 10.55 C00049 5.4 DOWN 0.006 

11 
Nicotinamide D- 

ribonucleotide 
C11H15N2O8P [M-H]

-
 42.18 C00455 26.5 UP 0.010 

12 Guanosine C10H13N5O5 [M-H]- 19.26 C00387 1.7 UP 0.037 

13 L-Pipecolate C6H11NO2 [M+HAc-H]- 10.21 C00408 2.8 UP 0.023 

14 Trehalose C12H22O11 [M+HAc-H]- 35.68 C01083 6.3 UP 0.004 
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Figure 1 Example of MCR-ALS results of one one chromatographic region with three coeluted 

components. a) Resolved elution profiles for these three components in the individual 

chromatographic runs. b) Expansion of the resolution of these three components in one of the yeast 

samples exposed at 6 mM Cu(II), and c) pure resolved mass spectra.  
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Figure 2. LV1 PLSR Scores plot in the analysis of yeast samples exposed to 0 mM (control), 1 

mM, 3 mM and 6 mM of Cu(II). 
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