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We present various exciting examples of synthetic biology as a means to distill biological systems to 
their essential features in order to make them theoretically tractable. This approach complements the 
use of synthetic biology as an engineering tool by making it possible to bend nature to understand it. We 
discuss various exciting experiments featuring this approach to turn cells into test tubes and uncover the 
theoretical basis of phenomena ranging from bacteriophage infection, to transcriptional regulation in 
bacteria and in developing embryos, to evolution.  
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Abstract 

The main tenet of physical biology is that biological phenomena can 
be subject to the same quantitative and predictive understanding that 
physics has afforded in the context of inanimate matter. However, the 
inherent complexity of many of these biological processes often leads to 
the derivation of complex theoretical descriptions containing a plethora 
of unknown parameters. Such complex descriptions pose a conceptual 
challenge to the establishment of a solid basis for predictive biology. 
In this article, we present various exciting examples of how synthetic 
biology can be used to simplify biological systems and distill these 
phenomena down to their essential features as a means to enable their 
theoretical description. Here, synthetic biology goes beyond previous 
efforts to engineer nature and becomes a tool to bend nature to under- 
stand it. We discuss various recent and classic experiments featuring 
applications of this synthetic approach to the elucidation of problems 
ranging from bacteriophage infection, to transcriptional regulation in 
bacteria and in developing embryos, to evolution. In all of these exam- 
ples, synthetic biology provides the opportunity to turn cells into the 
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equivalent of a test tube, where biological phenomena can be recon- 
stituted and our theoretical understanding put to test with the same 

ease that these same phenomena can be studied in the in vitro setting. 
 

Introduction 

In recent years we have witnessed a revolution in our ability to reprogram 

and control cellular behavior. From the creation of biofuels, medicines and 

food, to cells that can seek and target tumors, to tissues and organs grown 

in vitro, synthetic biology is rapidly developing as a modern engineering 

discipline that leverages our understanding of the inner workings of cells, 

rewiring them for a host of interesting and important tasks. [1] In paral- 

lel with these efforts at synthetic biology as bioengineering, an alternative 

view of the subject has emerged that goes beyond reprogramming cells to 

do our own bidding.Inspired by the dictum of biochemistry of in vitro re- 

constitution as a proof of understanding through synthesis, the objective of 

these alternative synthetic biology efforts is to construct simplified systems 

that allow us to test rigorous and quantitative hypotheses about biological 

processes.[2]These approaches strip biological phenomena down from their 

full and amazing complexity, leaving only the essential elements that are be- 

ing tested. In our view, such synthetic efforts make it possible to determine 

which biological details matter and which ones are of lesser relevance when 

trying to achieve a predictive understanding of biological processes. In this 

review we feature some of our favorite examples of how this synthetic biology 

toolbox has advanced our understanding of diverse phenomena ranging from 

cellular decisions in “simple” bacteria all the way to experimental evolution 

where entire ecosystems and evolutionary trajectories are contrived to make 

it possible to test specific hypotheses. Note that this article intends to pro- 

vide just a few of our favorite representative examples that reveal a different 

style of synthetic biology and thereby falls way short of giving a scholarly 

survey of the many exciting contributions from the recent literature. 

A central thesis of this article is that a predictive view of many pro- 

cesses in biology can be achieved in much the same way that approaches in 

physics have provided us with a predictive understanding of a wide range 

of phenomena in the inanimate world. In our view, the complexity of bio- 

logical phenomena does not render them inaccessible to such predictive ap- 

proaches. In fact, in many experiments only a few “knobs” are tuned with 

reproducible consequences, seeming to imply that the process of interest ad- 

mits of a reduced description controlled by those knobs.  We    hypothesize 
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that the roadblock to such predictive power stems from our ignorance about 

many of the molecular details underlying biological phenomena, not all of 

which actually matter.This is, of course, not a new discussion. Indeed, it  

was  not  until  Friedrich  Wöhler’s  synthesis  of  urea  that  the  influence  of a 

mysterious vital force in synthesizing organic compounds was disproved 

[3, 4] and it appears that approaches from synthetic biology now provide the 

opportunity to augment and complement in vitro approaches by turning the 

cell into what our friend Jon Widom liked to call “the test tube of the 21st 

century” [5, 6]. 

 
A combinatorial explosion of biological  interactions 

Efforts to achieve a predictive understanding of biological phenomena are 

often met with resistance. One common argument is that biology is differ- 

ent from other branches of science in that it is inherently too complex to 

admit of predictive approaches. In this view, the plethora of combinatorial 

interactions between the different molecules mediating the phenomenon of 

interest present an insurmountable barrier to a description that captures all 

molecular detail. Hence, the argument goes, such lack of access to the details 

of all interactions makes it impossible to predict the outcome of biological 

processes. Yet, in other contexts we understand considerably complex phe- 

nomena that do not require access to all the microscopic degrees of freedom. 

Type into Google the words “cloud streets” and look at the beautiful pat- 

terns that emerge in the collective motions of the many molecules of different 

types that make up our atmosphere. Here, though we have no access (nor 

do we want it) to the underlying molecular details, this does not imply that 

one cannot construct predictive understanding of this phenomenon. Perhaps 

more compellingly, think about predicting what will happen when a given 

individual is driving a car. Will that person have an accident? Will their car 

stall at an intersection while waiting for a left turn? Who knows. And yet, 

like in the case of atmospheric patterns, we can say much about the number 

of accidents on a given stretch of highway with great confidence, belying 

the need for knowing the details of individual behavior. Similarly, in some 

cases, complex biological phenomena have been successfully described with 

reduced models that depend on only a few key parameters and ignore a vast 

majority of the complexity to predict a reproducible biological response. 

Biological complexity is indeed a fact of nature. As a toy example, we 

consider the case of a hypothetical DNA regulatory region bearing three 

binding sites for  an activator  as  shown  schematically in Fig. 1A.    When 
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bound, each activator interacts with the transcriptional machinery. In ad- 

dition, these activators interact with each other cooperatively. As a result, 

activator concentration will determine the output rate of mRNA production 

in a non-linear manner as shown schematically in Fig. 1B,[7, 8, 9] though 

we should emphasize that one of the biggest challenges to making predictive 

models of such regulatory motifs is that we don’t know the rules relating 

the occupancy of a particular constellation of binding sites and the level of 

transcription. The simplest theoretical model that describes how the con- 

centration of activator dictates mRNA production will need to account for 

the different configurations that activator molecules can adopt on the DNA. 

This exercise alone yields eight possible states (Fig. 1C), characterized by at 

least nine unique molecular parameters: three binding energies accounting 

for the interaction of activator with each binding site, three energies of inter- 

actions between bound activators, and three energies of interaction of each 

bound activator with the transcriptional machinery. A theoretical model 

that affords predictive power over this regulatory architecture thus has at 

least nine parameters. Inferring the parameters of such a nine-dimensional 

model by fitting to what is effectively one-dimensional data (Fig. 1B) is a 

challenge not only computationally, but even more importantly, conceptu- 

ally. This example already illustrates the limits of a theoretical approach 

aimed at predictively describing how wild-type DNA regulatory regions func- 

tion and really underlines the important role synthetic biology can play in 

allowing us to manipulate the system one parameter at a time to tease apart 

these complex systems. One strategy also highlighted in the figure is to sys- 

tematically reduce the number of binding sites. As shown in Fig. 1C, a 

decrease in binding site number leads to a decrease in the number of pos- 

sible states and in the number of parameters. Hence, this strategy can be 

used to attempt to determine parameters hierarchically. 

The large number of states and parameters is a reality of biology. To 

illustrate this complexity in the context of transcriptional regulation in E. 

coli we resort to the RegulonDB database [10]. This database reveals that 
the average annotated operon contains approximately 4 (3.6, to be more 

precise) transcription factor binding sites.[11] Hence, 24 = 16 unique states 
are required to describe all possible binding arrangements of activators and 
repressors in the average bacterial operon. Further, as shown in Fig. 2A, 

many E. coli operons have more than 100 unique binding states. Regulatory 
complexity goes well beyond the realm of transcriptional regulation and 

into other significant aspects of biological regulation such as signaling. To 

illustrate this point, in Fig. 2B we show a hypothetical “typical” protein and 

consider the number of residues on the surface of this protein that can  be 
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subject to phosphorylation. We estimate that this average protein contains 
14 such residues on its surface. Thus, this average protein can be found in 

any of the unique 214 ≈ 16, 000 signaling combinations! [12] 

All of these examples illustrate the challenges associated with reaching 

a predictive description of signaling and regulation. However, we are hope- 

ful that such challenges are not insurmountable. Instead, we argue that 

the road to predictive understanding necessitates a fundamentally different 

approach. In particular, we believe there is much to be gained by moving 

away from the “real” biology to model situations in which the system is 

sufficiently simple to permit a rigorous interplay between theory and exper- 

iments. Perhaps an analogy from the emergence of mechanical engineering 

can make our thinking more clear. Hardly anyone fails to be impressed by 

the great cathedrals of Europe, adorned as they are with their magnificent 

flying buttresses. These structures, though beautiful, serve an important 

mechanical function as well. Their emergence was based upon empirical 

observations. But to go beyond such enlightened empiricism to get to the 

architectural structures of the modern world required a step back away from 

the “real” architecture to consider instead highly simplified geometries such 

as slender rods subjected to point loads on their ends. Though one could 

denigrate such efforts by noting that they are not the real structures one 

“really cares about”, over the long haul, by mastering such simple systems, 

our understanding of the real systems passed to a much higher level. Similar 

analogies apply in the emergence of the digital revolution. Before developing 

sophisticated modern integrated circuits, one has to first establish the intel- 

lectual infrastructure associated with seemingly trivial RC circuits. Perhaps 

this philosophy can be more useful in the biological setting than has been 

considered thus far. 

 
Bending nature to understand it 

At first cut, one might think that biological complexity requires us, as de- 

scribed above, to develop theoretical efforts that involve complex models 

with many unknown parameters. In this article we emphasize an alterna- 

tive approach: rather than bending our models to fit nature, we argue that 

we should bend nature such that we can have a direct dialogue between our 

models and experiments. In this kind of approach, as our predictive under- 

standing of natural phenomena increases so too can the complexity of the 

experimental situations we explore, where steps forward are built confidently 

upon rigorous foundations. 
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To illustrate the concept of bending nature to understand it, we draw an 

example from what could be called “synthetic quantum mechanics”. One of 

the challenges that defined the early days of trying to understand the world 

of atoms and molecules was to predict the different energy levels of these 

systems. These energy levels in turn determine the atomic and molecular 

spectra which are accessible experimentally. However, these calculations 

are very complex, even in the case of the simplest atoms such as hydrogen. 

There are many layers of complexity coming from various interactions that 

the electrons and nuclei are subjected to. For example, a precise calculation 

of atomic energy levels needs to account not only for the electrostatic interac- 

tion of the electron with the proton in the nucleus, but also for the coupling 

of the electron spin to its orbital angular momentum. [13] An alternative 

route to a first understanding of the energy levels of quantum particles in 

nuclei, atoms, molecules and even solids is the so-called particle in a box. 

The idea of such a model is to pretend that the electron feels no potential 

when it is within the confines of the box and it meets an infinite barrier 

when it reaches the walls. Of course, the energy levels of the particle in a 

box are not considered a precise representation of atomic or molecular en- 

ergy levels. However, this “quantum corral” serves the purpose of providing 

an initial, tractable system with which to put our most basic understanding 

of quantum mechanics to a test. Interestingly, these oversimplified models 

went a long way towards interpreting the spectra of dye molecules that are 

central to the process of photosynthesis, long before computer power was 

sufficient to make it possible to do more realistic calculations. [14, 15] 

The surprising feat of experimentally creating a quantum corral was ac- 

complished by using a scanning tunneling microscope to arrange iron atoms 

on a copper surface to form a circle as shown in Fig. 3A. [16] The result- 

ing circular structure serves as a “box” that electrons cannot escape from. 

Using a scanning tunneling microscope, it is possible to measure the en- 

ergy levels of electrons confined within this corral. The wave function of 

the electrons is shown in Fig. 3B and the energy levels for such an electron 

can be found in Fig. 3C. As shown in Fig. 3C, these measured energy lev- 

els coincide to a large degree with those expected from a simple textbook 

calculation. This interplay between theory and experiment in the context 

of the quantum corral is just one synthetic step along the way to a precise 

description of complicated molecules. In the following sections we explore 

how a similar synthetic approach in the context of biology can lead to a 

predictive understanding of cellular  decision-making. 
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The knobs of the synthetic biology toolbox 

Building a quantum corral such as shown in Fig. 3 necessitates knowledge 

about the atoms to be used to make the corral as well as the ability to 

manipulate these atoms at will. In the biological context, bending nature 

by building simple, theoretically tractable biological systems required both 

knowledge of the molecular players as well as the capability to syntheti- 

cally exploit these players. Further, in analogy with the quantum case, the 

construction of such an experimental system should be motivated by a pu- 

tative theoretical understanding of that system. For example, for the case 

of transcriptional regulation Fig. 4 shows several examples of the available 

regulatory “knobs” that can be synthetically tuned to systematically alter, 

for instance, transcription factor copy number, transcription factor binding 

site affinity, separation, and number. In addition, in the context of eukary- 

otes, binding site accessibility can be tuned by dictating the relative position 

of these binding sites with respect to nucleosomes. Finally, in the bacterial 

case, the number of copies of a gene on, for example, a plasmid, has also 

emerged as a relevant control knob. 

The effect of these various knobs on gene expression has been char- 

acterized theoretically in great detail. The predictions afforded by these 

theoretical models can only be tested in the context of biological systems 

where these regulatory knobs can be tuned experimentally one at a time. It 

is virtually impossible to implement such an approach in the context of bi- 

ological phenomena whose relevant molecular players are unknown. Hence, 

to enable the bending of nature to reach a predictive understanding of some 

signaling or transcriptional regulatory circuit, it is important to focus on bi- 

ological case studies where the identities of the underlying molecular players 

has already been uncovered. We define such case studies as the analog of the 

“hydrogen atom” in physics: a study that is simple enough to be theoreti- 

cally and experimentally tractable, yet rich enough in its phenomenology to 

capture the essence of more complex phenomena. Work to systematically 

dissect the molecular underpinnings of bacterial case studies has made it 

possible to harness their molecular components to test our understanding 

and engineer novel biological function. Impressive examples range from the 

construction of toggle-switches [17] and oscillators [18, 19] to the engineer- 

ing of bacteria that respond to light [20] to the construction of logic gates 

[21, 22, 23, 24]. Indeed, the design of bacterial synthetic circuits has become 

a widespread practice which has led to the creation of biological parts lists in 

the hope of standardizing synthetic design efforts. [25] In the next sections 

we will explore several such “hydrogen atoms” in the context of    bacterial 
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gene regulation, the lysis-lysogeny decision associated with bacteriophage 

infecting bacteria, embryonic development, and evolution. 

 
Bending the lac operon in bacteria 

Many of the most important initial insights into the study of transcriptional 

regulation have originated from exercises in bending nature to understand 

it. Some examples of these synthetic efforts that we find most inspiring 

are provided by the series of activator-bypass experiments conducted in the 

1990s.[26, 27, 28, 29] These experiments were aimed at testing the mod- 

ularity of the proteins involved in transcriptional activation, and were en- 

lightening and successful in both bacteria and yeast. For instance, in one 

class of activator bypass experiments the DNA binding domain of activator 

I was fused to the activation domain of activator II. The result is a new 

chimeric activator that uniquely combines the DNA binding sequence of ac- 

tivator I with the molecular mechanism of activation of activator II. [30, 31] 

In addition to shedding light on the design principles behind transcriptional 

activators, the insights afforded by bypass experiments opened the door to 

the construction of synthetic transcription factors. The Gal4 and TetR sys- 

tems with all their variants, are perhaps two of the best examples of the 

far-reaching consequences of these pioneering experiments.[32, 33] Further- 

more, this knowledge has been harnessed as a tool to discover in vivo in- 

teractions between molecules such as protein-DNA interactions in promoter 

regions where the regulatory interactions were previously unknown [34, 35] 

or novel protein-protein interactions [36]. 

For us, the “hydrogen atom” of bacterial transcriptional regulation is 

the lac operon of E. coli [37]. 50 years of continuous work on this system 
has provided us with an exquisite understanding of its molecular players as 
well as with numerous strategies to manipulate them by tuning regulatory 

knobs.[38] The lac operon encodes for the enzyme β-galactosidase, which 
mediates lactose metabolism. In the absence of lactose, the Lac repressor 

(LacI) binds to three DNA sites in the vicinity of the lac promoter. Lac 

repressor can also bind to two of these sites simultaneously resulting in the 
formation of a loop of the intervening DNA. This interplay between DNA 

binding and looping leads to a decrease in the rate of β-galactosidase pro- 
duction. However, the presence of lactose leads to the production of the 
disaccharide allolactose, which binds to Lac repressor and reduces its DNA- 

binding affinity. Hence, lactose induces the production of β-galactosidase. 

Thus, as shown in Fig. 5, regulation of the lac operon has multiple lay- 
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ers: repressor binds to multiple sites and loops the DNA excluding RNA 

polymerase from the promoter, and inducer is transported into the cell and 

binds to repressor, which leads to an allosteric change in repressor confor- 

mation that decreases its DNA binding affinity. A superficial assessment 

of regulation in the lac operon would then be prone to claims that these 

multiple layers of regulation make it too complex to be understood from   

a quantitative perspective. However, through the exercise of rewiring the 

lac operon to make it simpler, recent experiments have led to an impressive 

list of successes in the predictive understanding of transcriptional regula- 

tion, and even in those cases where the predictions fall short, this reveals 

shortcomings in our presumed  understanding. 

How does one navigate the numerous states and molecular parameters 

necessary to describe the lac operon (Fig. 5)? Over the last 30 years, multi- 

ple labs have embarked on a systematic effort aimed at reaching a predictive 

understanding of this operon by rewiring it to create simplified DNA regu- 

latory motifs. For example, by constructing operons with only one binding 

site for Lac repressor, all the complexity originating from DNA looping can 

be avoided. Furthermore, if the number of Lac repressor molecules within 

the cell are directly tuned, then the inducer import pathway and its inter- 

action with repressor can be circumvented. Indeed, this simple repression 

architecture is characterized by one free parameter: the in vivo binding en- 

ergy of repressor to the DNA. Hence, simple repression, despite not being 

the “real biology”, provides an ideal platform for an initial dissection of the 

lac operon. Experiments performed on this regulatory architecture by the 

Müller-Hill lab [39] were analyzed using thermodynamic models in order to 

extract the in vivo binding energy of Lac repressor to its various DNA tar- 

gets [40, 9]. These binding energies were then used as input parameters of 

thermodynamic models in order to generate the predictions shown as lines 

in Fig. 6A.[41, 42] These curves predict the fold-change in gene expression 

as a function of repressor copy number, binding site affinity, and gene copy 

number (which can be controlled by placing the operon on a plasmid or by 

integrating multiple copies on the genome). To respond to such predictions, 

a series of experiments was undertaken where these regulatory knobs were 

systematically tuned. The result of these experiments are shown in Fig. 6A. 

The agreement between theory and experiment is a testament to the predic- 

tive power that can be achieved by a combination of synthetic biology with 

theoretical models. 

The satisfactory agreement between predictions and experiments fea- 

tured in Fig. 6A should not be taken as unequivocal proof that the theoreti- 

cal models underlying these predictions are valid. For example, an assump- 
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tion permeating these models is that of equilibrium of the Lac repressor- 

DNA interaction: Lac repressor is assumed to equilibrate by binding and 

unbinding the DNA much faster than any other temporal scale in the system. 

Thus, under this assumption, the tools of equilibrium statistical mechanics 

can be used to mathematically describe simple repression. Recent exper- 

iments have harnessed synthetic Lac repressor variants to perform an in 

vivo pulse-chase experiment.[43] Here, individual molecules of a LacI-Venus 

fusion were visualized as they bind and unbind DNA. By out-competing 

this fusion molecule with “dark” Lac repressor molecules, this experiment 

made it possible to measure the rates of association and dissociation of Lac 

repressor to various operator sequences. The rates obtained through this 

experiment do not fully support a simple equilibrium-based view of simple 

repression. The authors then went on to explore a variety of non-equilibrium 

models for simple repression, many of which they argue are more convinc- 

ingly aligned with the experimental data. These results support the view 

that predictions such as shown in Fig. 6A could be yielding the right answer 

for the wrong reasons. Indeed, it was recently shown that non-equilibrium 

models can lead to the exact same functional forms as the equilibrium ones 

shown in the Figure.[44] More experiments aimed at measuring the in vivo 

rates involved in the transcriptional process need to be designed in order to 

directly test the conditions under which equilibrium considerations can be 

used to describe transcriptional regulation. 

Finally, theoretical models of transcriptional regulation can be further 

expanded to go beyond the mean level of gene expression and predict the 

noise (cell-to-cell variability) in expression of these synthetic lac operon 

variants.[45, 46] Fig. 6B shows the predictions made by these stochastic 

models. These predictions serve as zero-parameter fits for the experimental 

data obtained by measuring noise as the binding affinity and repressor copy 

number regulatory knobs are systematically varied.[47] These successes also 

provided the basis for the further theoretical and experimental dissection of 

lac operon variants with increasingly complex regulatory architectures. 

A further layer of complexity in the lac operon is afforded by DNA loop- 

ing.   Lac repressor can bind to any two  of the three sites in the operon    

in order to form a loop. Thus three different loops can be formed in the 

wild-type setting. This complexity of loops poses a challenge to the deter- 

mination of the role of DNA mechanics in transcriptional regulation. In 

order to uncover the precise contribution of DNA looping to gene expres- 

sion,  the  Müller-Hill  lab  spearheaded  a  set  of  experiments  where  the  lac 

operon was reengineered to contain only two repressor binding sites.[48] 

These constructs can only form one loop and were built to allow for the 

 
10 
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easy modulation of loop length by changing the distance between operators. 

These experiments unequivocally revealed the role of DNA looping in the 

lac operon as shown in Fig. 6C, where repression as a function of opera- 

tor distance is shown. These data display a periodic dependence of gene 

expression with binding site separation that is consistent with the helical 

periodicity of DNA, hence demonstrating that DNA loops are involved in 

repression. Theoretically, this regulatory architecture is described by the 

binding energy of repressor to each of its sites and by the energy required to 

loop the DNA. However, the previous synthetic dissection of the lac operon 

based on the simple repression architecture (Fig. 6A,B) already reported 

on the in vivo binding energy of repressor to its various operators. Thus, 

the information afforded by this previous round of experimentation can be 

used as known parameters in the new DNA looping experimental round in 

order to reduce the number of free parameters. More importantly perhaps, 

previous knowledge of the in vivo binding energies makes it possible to test 

a fundamental hypothesis: that the looping energy remains unaltered upon 

changes in the affinity of the intervening binding sites. This hypothesis was 

put to both experimental and theoretical tests as shown in Fig. 6D. Here, 

the level of gene expression was measured for the same loop length, but 

different combinations of binding site sequences. The lines were generated 

using the already known in vivo binding energies and assuming that only 

one looping energy is necessary to describe all experimental outcomes.[40, 9] 

This graph shows that indeed DNA looping is independent of the particular 

choice of operators that make the loops. These experiments highlighted the 

modularity of the looping process in transcriptional regulation and launched 

this synthetic version of the lac operon as a platform from which to query 

the in vivo mechanical properties of DNA.[49, 50, 51] 

One of the properties of the lac operon that has captured the fascination 
of researchers for years is its switch-like response when inducer molecules are 
present: large changes in gene expression are triggered in response to small 
changes in inducer concentration. This sensitivity in inducer response is cap- 
tured quantitatively by the black curve in Fig. 6E. The curve shows the level 

of gene expression of the wild-type lac operon as a function of inducer con- 
centration. The slope of this wild-type curve is to be compared to the yellow 

curve slope, which measures the in vitro binding of Lac repressor to a single 

binding site as a function of inducer concentration. These experiments show 

that in vitro Lac repressor binding is much less sensitive to inducer than in 

vivo gene expression. It could be argued that this is not a surprising result 

given the multiple layers of complexity that exist in the in vivo setting that 

are not present in vitro (Fig. 5). However, several laboratories embarked on 
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a set of experiments that made it possible to turn this qualitative claim into 

a quantitative one: how much does each layer of complexity contribute to 

the sensitivity of the lac operon? First, it was recognized that the transport 

of inducer into the cell is not a passive process. Rather, inducer is actively 

transported by the LacY permease. This permease contributes to operon 

sensitivity as demonstrated by the red curve in Fig. 6E, which presents the 

level of gene expression in a mutant background for the permease. Finally, 

DNA looping leads to non-linearities in the dependence of gene expression on 

inducer concentration. These non-linearities also contribute to an increase 

in sensitivity as shown by the blue curve in Fig. 6E, which was obtained 

using the simple repression architecture of Fig. 6A. Interestingly, the in vivo 

sensitivity of this synthetic construct now becomes comparable to the sensi- 

tivity of the in vitro system. These results illustrate how, by systematically 

creating synthetic versions of the lac operon aimed at removing extra layers 

of complexity, the in vivo behavior of the lac operon becomes quantitatively 

comparable to its in vitro response. 

 
Synthetic biology beyond the lac operon 

The above examples illustrate the power that synthetic approaches offer 

in dissecting, in this case, the lac operon to study particular features of 

bacterial transcriptional regulation in E. coli, such as cis regulation, repres- 

sion by looping, and small molecule induction, “one at a time.” Similar 

approaches have led to beautiful experiments aimed at uncovering the con- 

straints behind gene network wiring in the bacterium B. subtilis.[52] Under 

environmental stress, this bacterium can enter a competent state that fa- 

vors the uptake of extracellular DNA and the incorporation of this DNA 

into the chromosome. A regulatory protein known as ComK mediates en- 

try into this competent state. Furthermore, expression of ComK actually 

induces its own degradation by repressing ComS, the protein responsible 

for protecting ComK from proteolysis. This circuit, shown in Fig. 7A thus 

forms a negative feedback loop that results in exit from the competent state 

about 20 hours after its initiation (Fig. 7C) . However, this is not the only 

network architecture that can lead to such transient dynamics. For exam- 

ple, ComK could have activated a protein which, in turn, would increase 

ComK degradation. Such network wiring is shown in Fig. 7B and would 

also lead to a negative feedback loop and, presumably, to similar transient 

competence dynamics. This then begs the question of why one strategy was 

chosen over another, is it just happenstance or are there important features 

Page 13 of 57 Integrative Biology



13  

 
 
 
 
 

of this specific network that lead to the resulting physiology? Although the 

alternative network architecture described above does not exist in wild-type 

B. subtilis, synthetic biology was used to rewire this competence decision. 

These experiments revealed that, indeed, this alternative network can also 

lead to a transient competent state with the same physiological function. 

However, the synthetic circuit did so far less efficiently. The primary physi- 

ological distinction between the two regulatory architectures was a dramatic 

difference in their resulting cell-to-cell variability: Fig. 7C shows how the 

wild-type network led to a distribution of competence-state duration that is 

two-fold broader than the distribution afforded by the synthetic circuit. The 

authors determined that this noise was necessary for the efficient response to 

varying environmental conditions. Hence, by rewiring cells to build circuits 

that did not previously exist, important insights can be garnered into the 

dynamical constraints on the design of gene regulatory networks. 

The power of these techniques is, by no means, limited to bacteria. An- 

other excellent example of a synthetic dissection of a biological process fo- 

cuses on signaling between neighboring eukaryotic cells. Notch-Delta signal- 

ing mediates the adoption of alternative cellular fates in adjacent cells and is 

ubiquitously used in embryos to generate checkerboard-like developmental 

patterns. A few occurrences of this strategy in development include the de- 

termination of alternative cellular fates in vulva development in C. elegans, 

the shaping of a checkerboard pattern of bristle formation in the fruit fly D. 

melanogaster, and neurogenic patterning in both flies and vertebrates.[53] 

Like in the lac operon (Fig. 5), Notch-Delta signaling has multiple layers of 

complexity. Here, the Notch receptor is translocated to the cell membrane, 

where it is transactivated by Delta ligands on the membrane of a neigh- 

boring cell. Upon activation, the Notch intracellular domain is cleaved and 

translocated into the nucleus, where it carries out its transcriptional regu- 

latory function. In addition, Notch can be inhibited by binding in cis to 

Delta ligands present in the cell membrane. To uncover how these different 

layers of complexity mediate Notch-Delta signaling, a similar approach to 

that taken for the “deconstruction” of the lac operon shown in Fig. 6 was 

undertaken.[54] Here, the Notch-Delta signaling system was reconstituted 

in cells that do not normally express it.   This strategy made it possible    

to construct Notch “receiver cells” which can be exposed to systematically 

controlled concentrations of Delta ligand that are presented either on a mi- 

croscope cover slip, on the membrane of engineered Delta “sender cells” or 

on the membrane of the same “receiver cells”. Much like in the case of con- 

trolling Lac repressor concentration in the lac operon, the ability to tune the 

amount of Delta ligand present on different substrates showed that, while 
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the activating response to Delta concentration from sender cells is graded, 

the inhibiting response to the concentration of Delta ligands on the mem- 

brane of the receiver cells is much sharper. This reconstitution showed that 

the interplay between cis and trans signaling is necessary for the switch-like 

adoption of mutually exclusive cellular fates. 

The experiments mentioned above have relied on deliberate synthetic 

manipulation of specific molecular targets as a means to systematically tune 

the system and arrive at a predictive understanding of the mechanisms un- 

derlying cellular decision making. An alternative to these systematic ma- 

nipulations has emerged in the last few years thanks to the enabling power 

of high-throughput sequencing technologies. These experiments rely on ob- 

taining massive amounts of data in order to draw correlations that make it 

possible to formulate and test hypothesis regarding biological function. Such 

approaches have uncovered, for example, insights into the mechanisms of 

transcriptional initiation, elongation and translation in cells.[55, 56, 57, 58] 

These experiments have also enabled the mapping of the binding land- 

scape of almost any DNA-binding protein as well as the 3D conformation 

of chromatin.[59, 60, 61] Despite the amount of data provided by these 

high-throughput sequencing techniques, the diversity of such data is not 

always enough to draw statistically significant conclusions. This limita- 

tion recently became evident in the study of the N-Terminal codon bias   

in bacterial genes.[62] It was known that rare codons are usually found in 

the N-terminus of genes, but the reason for this bias was unclear. Previ- 

ous approaches had mostly relied on the measurement of translation levels 

of endogenous genes and the correlation of these levels with their codon 

usage. However, the diversity of sequences existing in the E. coli genome 

made it challenging to test different hypothesis aimed at explaining this bias. 

Thus, the researchers decided to use synthetic biology in order to increase 

the repertoire of sequences to be analyzed. The authors created a library 

of more than 10,000 reporter genes where the promoter, ribosomal binding 

site, and the N-terminal codons of a reporter protein were systematically var- 

ied. By measuring the correlations between DNA sequence, transcription, 

and translation levels, the authors realized that the key factor determining 

N-terminal codon usage is secondary structure: the N-terminus of mRNA 

molecules is selected against the formation of secondary structure, which fa- 

cilitates the initiation of translation. Thus, synthetic biology was used once 

again to bend nature and augment the reach of high-throughput studies by 

going beyond sequences found in the wild-type setting and enriching them 

using precisely designed  libraries. 

Similar high-throughput synthetic approaches have been used to go be- 
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yond translational efficiency and uncover the sequence rules governing tran- 

scriptional regulation. Here, promoter libraries containing random or de- 

signer regulatory regions are transformed into single cells such that each 

cells harbors a unique promoter.[63, 64, 65] The expression level of each 

cell is then measured and correlated with its promoter sequence. By these 

means, a vast set of data can be generated which enables an exploration  

of the transcriptional regulatory code that goes far beyond what could be 

afforded if only endogenous regions were  considered. 

 
Bending the fruit fly developmental program 

As cells within a developing fly embryo multiply, they “decide” on their ul- 

timate developmental fates. Often, these decisions are predicated by their 

spatial position along the embryo. The elegant French Flag model proposed 

that cells determine their spatial position by reading out a spatially-varying 

concentration of a morphogen.[66] This model is illustrated diagrammati- 

cally in Fig. 8 in the context of the early embryo of the fruit fly Drosophila 

melanogaster. Here, the concentration of a morphogen (green curve) varies 

along the anterior-posterior (A-P) axis of the embryo. Cells exposed to mor- 

phogen concentrations above threshold 1 adopt a blue developmental fate, 

cells located at concentrations between thresholds 1 and 2 take on the white 

developmental fate, and cells in regions with concentrations below threshold 

2 assume the red fate. 

Qualitatively, the French Flag model has been put to the test repeatedly 

in embryos using what is perhaps one of the most common forms of synthetic 

biology in the study of development: misexpression, where patterns of gene 

expression are synthetically altered in order to test hypotheses about their 

role in dictating body plans. Misexpression has been repeatedly used to 

reshape protein gradients and reveal the regulatory logic behind embryonic 

patterns of gene expression.[67, 68, 69, 70] For example, the Bicoid activator 

is expressed in an exponential gradient spanning from the anterior to the 

posterior end of the embryo as shown in Fig. 8. To test the role of Bicoid  

as a morphogen, the activator was synthetically introduced by injection on 

the posterior end of the embryo.[71] The result was the formation of head 

structures where tail structures would normally be found. Thus, through 

experiments based on rewiring embryonic development, the qualitative role 

of transcription factors such as Bicoid as morphogens in development was 

established. 

Synthetic biology provides opportunities to go further and quantitatively 
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test this French Flag model. These tests go beyond the qualitative insights 

afforded by coarse misexpression experiments. For example, the model pre- 

dicts that a change in Bicoid activator concentration, illustrated by the 

purple curve in Fig. 8,  will lead to a quantifiable change in the position   

of developmental boundaries. Bicoid’s exponential-like gradient along the 

anterior-posterior axis of the embryo can be described mathematically by 

the formula 

Bcd(x) = Bcd0e−x/λ. (1) 

Here, x denotes the position along the axis of the embryo, Bcd0 corresponds 

to the Bicoid concentration at x = 0, and λ = 0.165L, where L is the embryo 
length.[72] One developmental boundary dictated by Bicoid concentration 
is the cephalic furrow, which demarcates the separation between the head 
and the thorax of the embryo.   In the wild-type fly,  the cephalic furrow    

is positioned at about x0 = 0.34 L of the embryo length.[72] However, by 

systematically perturbing the bicoid gene dosage (as in Fig. 9), one can tune 

the spatial gradient of the Bicoid protein by a constant scaling factor D to 
produce curves like those shown in Fig. 8. Under this perturbation, the 
French Flag model predicts that the new position of the cephalic furrow, 

xnew  will be given by 

xnew  = x0  + λ ln(D). (2) 

This new cephalic furrow position is plotted as a function of bicoid gene 

dosage as a line in Fig. 10. In order to test this quantitative prediction 

synthetically several flies bearing different copies of the bicoid gene were 

generated. These multiple copies were created either using wild-type Bi- 

coid or using a Bicoid-GFP fusion.[73, 72] Each one of these flies forms its 

cephalic furrow at different positions depending on the gene dosage. This 

position can be measured using light microscopy or fluorescence microscopy 

for the particular case of Bicoid-GFP as shown in Fig. 10. The results ob- 

tained from these experiments are also shown in Fig. 10. Qualitatively, the 

data is consistent with the model: a higher Bicoid dosage pushes the cephalic 

furrow towards the posterior side of the embryo. However, a clear quanti- 

tative disagreement between the theoretical prediction and the quantitative 

data is observed. Indeed, the data show that the embryo compensates for 

changes to the bicoid dosage. When the embryo is exposed to higher Bicoid 

concentrations, the cephalic furrow moves, but it does not move as much as 

expected. These results suggest that multiple genes within the developmen- 

tal network work simultaneously to determine the position of the cephalic 

furrow. These genes also respond to changes in bicoid dosage and their com- 

bined action leads to a buffering of the nä ıve effect predicted by the French 
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Flag model.[72] 

A common reaction to these experiments is that such models are too 

simple and, of course, they should not be expected to work. However, we 

find that there is a missed opportunity to learn something by trying to 

understand where such models fall short. To our mind, this is the analog 

of disregarding the quantum mechanical particle-in-a-box models because 

they do not describe hydrogen atoms.  The point of view advocated here   

is that the failure to understand simple systems does not merit throwing 

our hands up in defeat, but rather, requires a redoubling of our efforts to 

figure out precisely how these “simple” systems work. Indeed, recent work 

went beyond just controlling bicoid dosage and into synthetically engineering 

Bicoid protein patterns that are uniform throughout the embryo.[70] This 

work revealed that there is a system of repressors that counters activation 

by Bicoid. It is the combined action of Bicoid activation and repression by 

these repressors that determines the position of developmental boundaries 

in the early embryo. These insights now open the door to a new generation 

of quantitative and predictive models which take account of the presence of 

several  regulatory gradients. 

This experiment is perhaps one of the clearest examples of the use of 

synthetic tools to unnaturally simplify a biological system to uncover the 

mechanisms behind developmental programs. As such, it also has great 

pedagogical value. We have successfully carried out this experiment multi- 

ple times in laboratory courses that we have run for students ranging from 

freshman at Caltech to advanced participants in the Physiology Course at 

the Marine Biological Laboratory. Here, students learn about fly genet- 

ics and the techniques required to create synthetic flies, they measure the 

position of the cephalic furrow using brightfield microscopy, write custom 

image analysis code to extract cephalic furrow position from their data, and 

compare their results against the model’s predictions shown in Equation 2. 

Finally, the synthetic exploration of pattern formation is by no means 

limited to the realm of multicellular organisms. Much in the same way 

that the quantum corral created a synthetic atom, researchers have used 

synthetic biology to devise a bacterial system that mimics how morphogen 

gradients can establish positional information in the controlled context of 

a Petri dish.[74] Here, theoretical modeling was used to engineer bacterial 

strains that generate spatial patterns of gene expression. In this scheme, 

three strains are spotted on agar. First, bacteria that emit a signal that dif- 

fuses throughout the agar are plated on a disk. Second, two band-detection 

strains of bacteria are grown on this same dish. These band-detection strains 

contain synthetic gene regulatory circuits tuned to trigger the expression of 
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fluorescent proteins when exposed to certain concentration ranges of the 

emitted signal. The result of these efforts was the creation of a synthetic 

bacterial bullseye pattern. Because of the completely synthetic nature of this 

system, model parameters regarding the underlying gene regulatory network 

such as the lifetime of the involved transcription factors can be easily ma- 

nipulated. Thus, this pattern formation system can be used as a platform 

to test ideas similar to the French Flag model in the much more controllable 

setting of bacteria. 

 
Hidden variables 

An intriguing outcome of the kind of understanding through synthesis high- 

lighted throughout the paper is that these approaches can help us discover 

what one might call “hidden variables”.  This nomenclature is inspired   

by the early days of quantum mechanics when the interpretation of the 

atomic world was still largely in question.[75] Physicists such as Einstein 

and  Schrödinger  were  unhappy  about  the  fall  of  determinism  and  argued 

that perhaps there were hidden variables that would restore determinacy in 

much the same way  that knowing the initial velocity and rotation rate of   

a flipped coin would allow us to predict heads or tails.[76] Alas, such was 

not to be the case in quantum mechanics. On the other hand, the argu- 

ment to be made in this section is that such hidden variables may have a 

role to play in thinking about biological problems such as transcription and 

signaling. Specifically, there are a number of interesting examples where 

what appears to be distinct or stochastic biological outcomes in fact, can 

be predicted by knowing some underlying hidden variable which causes the 

apparent stochasticity to vanish. That is, hidden variables in our system 

can mask biological phenomena behind noise when not properly controlled, 

increasing the apparent complexity of these phenomena. 

To see the idea of hidden variables in play, we turn to an example from 

the classic lysis-lysogeny decision in phage lambda. Though this example is 

not given here to illustrate the idea of bending nature to test models, we 

offer it as one of the most transparent examples we can imagine of biological 

hidden variables. In this case, the infection of a bacterial host by phage 

lambda can lead to one of two eventualities: either the infected cells are 
the seat of synthesis for a burst of new viral particles (≈ 100) or the phage 

genome is integrated into the host genome where it now becomes a passenger 

as the cells replicate generation after generation.[77]One hypothesis has 

been that the decision of whether to become lytic or lysogenic as shown in 
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Fig. 11A is a random decision, based upon the flipping of some dishonest 

coin, and that is, that it is a noisy decision. 

The control variable in these experiments is the concentration of viruses 

the bacteria are exposed to.[78] This concentration dictates, in turn, the 
average multiplicity of infection ((MOI)): the average number of infecting 

phages per cell. As shown in Fig. 12A, the probability of a cell adopting the 

lysogenic fate as a function of the average MOI is described by a broad dis- 

tribution. The width of this distribution supports the hypothesis that each 

cell makes a random decision to undergo lysogeny, and that this stochastic 

decision is biased by the number of phages the cell encounters. However, 

upon closer examination of the infection process hidden variables emerge. 

As shown in Fig. 12B, the phages can be labeled with GFP. The ability to 

visualize these phages makes it possible to measure the single-cell MOI and 

to relate this magnitude to the lysogen probability. This enabled the testing 

of the hypothesis that the concentration of viral genomes in a cell dictates 

the lysogeny decision.  In this scenario the probability of lysogeny is only  

a function of the ratio of the MOI and the cell volume.  Fig. 12C shows  

this single-cell lysogeny probability as a function of viral concentration for 

different MOIs. As seen in the figure, the data cannot be described by a 

single function. Instead, each MOI falls on a separate curve, suggesting that 

the hypothesis of the lysogeny probability being dictated solely by viral con- 

centration is incorrect. This observation led to the formulation of a second 

hypothesis that goes beyond describing lysogeny as a decision made at the 

cellular level. Rather, this second model states that the lysogeny decision is 

made at the subcellular level, with each infecting phage randomly “decid- 

ing” whether they are going to adopt the lysogenic pathway. In this model, 

cells will undergo lysogeny only if all infecting phages adopt the lysogenic 

pathway. Fig. 12D shows the inferred single-phage lysogeny probability as a 

function of the viral concentration. The collapse of all the data on the same 

master curve indicates that, indeed, each phage randomly decides whether 

it will lead to lysogeny and that only in the case of an unanimous decision 

will the infected cell actually enter this lysogenic state. Thus, it was discov- 

ered that there are hidden variables captured both by the cell size and the 

number of viruses that have infected a given cell of interest.  When    these 

quantities are acknowledged, the lysis-lysogeny decision appears much more 

predictable in the same way that if we have 106 receptors that bind some 
ligand, we may not be able to tell which receptor will be occupied by a 
ligand, but we can say very well what fraction of those receptors will be 
occupied. 

With the hidden-variable concept in mind, we now turn to the use of 
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synthetic biology as a tool for discovering the existence of such variables. 

We have already described the way in which a variety of different knobs can 

be used to elicit different regulatory responses in bacterial transcription as 

shown in Fig. 4. Specifically, Fig. 4A shows experimental data corresponding 

to a host of different regulatory scenarios all involving the simple repression 

motif. Recall that in this regulatory architecture, there is a single regulatory 

binding site that makes it so that RNAP cannot bind.   As a result,  as     

the number of repressors is increased, the gene expression is reduced in a 

predictable fashion. The different curves in the figure correspond to different 

ways of setting up this simple repression motif, with different binding site 

strengths and with different chromosomal or plasmid arrangements that give 

rise to different gene copy numbers. Ostensibly, this data makes it appear 

as though each and every curve and associated set of data points is a unique 

regulatory scenario; the possible responses vary widely with unique character 

and shape as the number of repressors is changed. However, this view is 

belied by the results shown in Fig. 13 where we see that if instead of working 

in the language of repressor copy number (the x-axis variable in Fig. 4A) 

we instead use the idea of the fugacity, then all of the data follows one 

master curve.[79] The fugacity framework reveals a hidden variable. When 

this hidden variable is used, all the data is seen to collapse onto one master 

curve signifying that it is really the “effective concentration” of repressor 

(dictated by complicated features such as how many competing binding sites 

are present on the genome and on plasmids, the strength of their competition 

and indeed the total number of repressors in the cell) that determines the 

level of expression and that there is a very particular mathematical way of 

capturing this effect that is only revealed by suppressing the full complexity 

of the “real” regulatory network and constructing a simplified scenario that 

allows us to test our understanding. 

 
Synthesizing evolution 

The idea of rewiring biological systems to generate understanding is not 

unique to cell and developmental biology. Similar approaches have been 

instructive at much larger scales as well. One of the most exciting frontiers 

in the study of evolution in the last half-century has been the emergence of 

a rigorous field of experimental evolution. Just as with our earlier examples, 

many of these studies sacrifice the “real biology” in order to set up a precisely 

controlled and measurable system that admits of a direct confrontation with 

our  theoretical understanding. 
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In this section, we describe several inspiring examples in flies of what 

one might call synthetic evolution. These experiments are complemented 

with assays that harness the power of high-throughput sequencing to track 

complex evolutionary events in carefully controlled microbial populations. 

Thus, through these examples, we show just how long such “synthetic” 

approaches have had a place in evolutionary biology and how important 

they will be in shaping our understanding of evolution in the future. 

 
Synthesizing genetic drift 

A textbook example of genetic drift was provided by the classic experiment 

of Buri in the 1950s.[80] The idea of this experiment was to use a simple 

marker (eye color) as a tool to measure changes in allele frequencies in a 

population that was not subjected to any form of selection. By using a small 

population size, namely, 8 male and 8 female flies in each vial, Buri was able 

to watch as the initial population composed strictly of heterozygotes drifted 

to fixation of one of two alleles. A schematic of the experimental protocol 

followed by Buri is shown in Fig. 14. 

To be concrete, Buri had 107 distinct populations, all of which started 

out as heterozygotes, with each vial containing 8 orange-eyed males and 8 

orange-eyed females. For 20 generations, he followed the protocol described 

above as shown schematically in Fig. 15. In each generation Buri chose  

the 8 males and 8 females that would seed the next generation randomly. 

The result is that, over time, he found more and more red- and white-eyed 

homozygotes. This experiment revealed how allele frequencies change over 

time without the action of selection. The data that captures these  changes 

in allele frequencies is shown in Fig. 16. Note that in generation zero, there 

are 107 populations, all of which have allele frequency 0.5 of bw and bw75. 
However, over time, as more and more flies have become homozygotes, the 
allele frequency distribution broadens and certain vials end up being taken 
over by all red or all white homozygotes, permanently losing the other allele. 

 
Synthesizing natural selection 

As pointed out by Darwin himself in the first chapter of his “On the Origin 

of Species”, synthetic biology has been underway as long as humans have 

used artificial selection to generate new organisms. We only need turn to the 

freakish canine creations at any given dog show to see how far such breeding 

efforts have pushed the mighty wolf. Similar amazing results have been 

marshaled in the case of domestic pigeons, one of Darwin’s most  beloved 
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model systems. 

Evolution experiments have been used to probe not only genetic drift, 

but also the selection process itself. Unlike in the case of dog breeding, for 

example, evolution experiments set up a population which is then subjected 

to rigorous and reproducible rules for propagating the population forward in 

time. In another series of classic studies using flies, Cavener and Clegg ex- 

plored the reproductive success of flies grown in the presence of ethanol.[81] 

In this case, there were two alleles of alcohol dehydrogenase present: AdhF 

and AdhS . The allele AdhF has a higher activity than its AdhS counter- 

part. As shown in Fig. 17A, over the 57 generations of the experiment, the 

frequencies of these different alleles were followed in populations grown in 

the presence and absence of ethanol. As the experiment progressed, the 

frequencies of these different alleles were monitored. The results of this 

controlled experiment are a clear demonstration of how selection pressures 

can lead to the fixation of an advantageous allele. Fig. 17B shows how, in 

the presence of alcohol, the AdhF quickly became fixed or almost fixed in 

the population. In contrast, in control experiments lacking ethanol in the 

growth media, neither allele became fixed. Instead, their frequencies drifted 

within the population over the generations of the experiment. 

As evidenced in the examples above, flies have provided a dramatic and 

well-controlled setting for synthetic evolution, with easily distinguishable 

phenotypic markers such as eye color. However, the sequencing revolution 

has touched nearly all aspects of the synthetic biology research agenda, and 

few areas have been so deeply altered as have the study of evolution. As a re- 

sult microbes, thanks in part to their short generation times, have provided 

some of the most powerful examples of synthetic evolution.[82, 83, 84, 85, 86] 

In these studies, cultures of carefully designed and controlled microbial pop- 

ulations can be left to evolve over tens of thousands of generations all the 

while freezing small aliquots of culture which serves as a chronological his- 

tory of the organisms evolution that can later be sequenced or re-animated. 

These approaches have shed light on many evolutionary phenomena that 

would be inaccessible with a slow-growing organism such as the fruit fly. 

For example, by carrying out a repeated bacterial culture experiment over 

30,000 generations, the evolution of the ability to metabolize a completely 

new carbon source (citrate) was demonstrated.[82] Further, technology to 

deeply sequence the genomes contained within a microbial popula1tion has 

made it possible to track the temporal dynamics of multiple mutations.[86] 

These type of experiments have uncovered, for example, how the genetic 

context a mutation appears in reveals itself in a process called “clonal inter- 

ference”: beneficial mutations occurring in unfit genetic background cannot 
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fix, whereas neutral or deleterious mutations taking place in fit genetic back- 

ground can proceed to fixation. 

 
Concluding  Thoughts 

The ability to manipulate the genomes of living organisms of all kinds is 

a stunning advance that would have been rightly considered science fiction 

at the time when the structure of DNA was first elucidated just a little 

over a half century ago. In the intervening decades, biology has under- 

gone one spectacular revolution after another with methods such as cloning, 

polymerase chain reaction, DNA sequencing and CRISPR-Cas9 gene editing 

making it possible to read and write genomes nearly at will.[87, 88, 89, 90] 

But what are we to make of all of these achievements? Of course, many 

have been tempted by the exciting prospects of rewiring living organisms to 

do our own bidding in contexts ranging from new kinds of energy to biore- 

mediation, and this certainly constitutes one compelling vision for synthetic 

biology. However, a second view of synthetic biology argued for in this pa- 

per is as a powerful new tool for biological discovery, where we really raise 

our standards about what it means to understand a biological phenomenon. 

In this view of synthetic biology, it can be used to excise some of the com- 

plexities found in the “real” biological context making it possible for us to 

construct a serious and rigorous dialogue between theory and experiment. 

Specifically, this article was founded upon a single thesis best exemplified by 

the quantum corral shown in Figure 3. Recall that in that case, effectively 

what was done was to synthesize experimental realizations of one of the 

most famous “toy” problems of quantum mechanics, namely, the so-called 

particle in a box, the quantum mechanicians version of the spherical cow. 

But out of this quantum cow and others like it came great opportunities 

to explore some of the deepest aspects of our understanding of quantum 

mechanics. We argue that synthetic biology is poised to help explore some 

of biology’s deepest aspects as well. 

One of the most powerful ways to proceed in building a solid founda- 

tion of actionable, rigorous scientific infrastructure is to design experimental 

systems that allow us to test what we think we really understand. Clearly, 

when our hypotheses fail this litmus test, they are a weak foundation for the 

more complicated “real” systems that many researchers favor. As a result, 

we hope that some readers will be inspired to find new ways not to attack 

“real” biological problems, but rather to make “unreal” biological systems 

that will realize the ambition of turning cells into this century’s new test 

Page 24 of 57Integrative Biology



24  

 
 
 
 
 

tubes. 
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Figure 1: Combinatorial complexity of a simple regulatory motif. (A) Even 

for a modest regulatory architecture featuring only three activator binding 

sites and a binding region for RNA polymerase, the number of distinct states 

and parameters is daunting. (B) These molecular parameters and multi- 

ple occupancy states conspire together to dictate a non-linear input-output 

function determining rate of mRNA production as a function of activator 

concentration. (C) Counting up the number of distinct states of occupancy 

for the activator. By synthetically simplifying the regulatory architecture it 

is possible to reduce the combinatorial complexity and determine parameters 

dictating levels of gene expression. 

 

 
Figure 2: Combinatorial complexity in biology. (A) Distribution of regu- 

latory states in annotated E. coli operons according to RegulonDB. The 

number of states was obtained by calculating 2N , where N is the number 

of binding sites per operon. (B) Signaling complexity of a model protein. 

We  consider a protein radius R = 2 nm,  a residue radius r = 0.5 nm,    

and that only 2 (serine and threonine) out of the 11 polar residues can be 

phosphorylated .[91] 
 

 
Figure 3: Synthetic quantum mechanics. (A) Building a quantum corral by 

placing iron atoms in a circle on a crystalline surface. (B) Electronic wave 

function within the corral measured using a scanning tunneling microscope. 

(C) Observed (dots) and computed (lines) energy levels for a quantum corral. 

(Adapted from [16].) 

 

 
Figure 4: A synthetic biology toolkit. Regulatory knobs that can be tuned 

both theoretically and experimentally in order to control gene expression. 

 

 
Figure 5: The multiple layers of complexity of the lac operon. Inducer can 

enter the cell actively through a channel or passively through the membrane. 

Inducer binds Lac repressor and reduces its affinity to DNA. In the absence of 

inducer, Lac repressor can be bound to any of its three sites in the operon. 

The repressor can bind to multiple sites simultaneously, resulting in the 

formation of a DNA loop. 
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Figure 6:Regulatory knobs for the synthetic dissection of the  lac operon in 

E. coli. (A,B) Tuning the simple repression motif by modulating binding 

site affinity, repressor copy number, and reporter gene copy number. The 

resulting (A) mean and (B) noise in gene expression are measured and com- 

pared to predictions from theoretical models based on statistical mechanics. 

The fold-change in gene expression is defined as the ratio between the gene 

expression levels in the presence and absence of repressor. The Fano factor 

is used as a measure of cell-to-cell variability. (C,D) The DNA loop length 

knob. (C) Repression (inverse fold-change) as a function of operator dis- 

tance in a lac operon mutant bearing only two repressor binding sites. (D) 

The fold-change in gene expression as a function of repressor concentration 

can be described by the same looping free energy regardless of the choice 

of binding sites indicating that this energy is only a function of the DNA  

in the loop. (E) Level of in vivo gene expression or in vitro Lac repressor 

binding as a function of inducer concentration for several lac operon vari- 

ants. The systematic elimination of key regulatory effects in vivo, such as 

the presence of an active pump for the inducer and DNA looping in the lac 

operon, leads to a regulatory behavior comparable to that of the simple in 

vitro situation (A, adapted from [42]; B, adapted from [47]; C, adapted from 

[48]; D, adapted from [40, 9]; E, adapted from [92, 93].) 

 

Figure 7: Gene network driving competence in B. subtilis. (A) Endogenous 

gene network driving the expression of ComK through a negative feedback 

loop, which dictates entrance into the competent state. (B) Synthetic net- 

work providing an alternative negative feedback loop as a driver of ComK 

expression. (C) Distribution of competence state duration for the endoge- 

nous and synthetic gene networks. (Adapted from [52].) 

 
Figure 8: The French Flag Model of developmental patterning. A schematic 

of the wild-type morphogen profile is shown in green and a mutant version 

with a reduced gene dosage is shown in violet. The threshold for a develop- 

mental boundary between blue and white is shifted to the left in the embryo 

with the reduced gene dosage of the morphogen. 

 
Figure 9: Experiment to test the spatial information provided by a mor- 

phogen gradient in the fruit fly embryo. Flies with different copy numbers 

of the bicoid gene were synthesized through mating and the resulting cephalic 

furrow positions were measured. 
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Figure 10: Cephalic furrow position as a function of bicoid gene dosage. 

The red and blue dots correspond to different experiments, one done using 

brightfield microscopy and the other on the basis of fluorescence. (Adapted 

from [73, 72].) 

 

Figure 11: Hidden variables behind bacteriophage lysogenic or lytic pathway 

adoption. In the noisy decision picture, it is imagined that after phage 

infection, stochastic factors determine whether the infected bacterium will 

take the lysogenic or lytic developmental pathway. In the hidden variable 

picture, the size of the infected cells as well as their so-called multiplicity of 

infection (MOI) determine the cell fate. 

 

Figure 12:Revealing the hidden variables behind bacteriophage infection. 

(A) The probability of a cell undergoing lysogeny as a function of the average 
multiplicity of infection ((MOI), the average number of infecting phages per 

cell) is given by a broad distribution . (B) GFP-labeled phages allow for  

the measurement of the single-cell MOI. Green cells indicate an infection 

in progress as new phages are produced, while red cells mark the lysogenic 

cell fate. (C) Probability of a cell becoming a lysogen as a function of viral 

concentration (defined as the ratio of the single-cell MOI and the normalized 

cell length). (D) Probability of a phage deciding on lysogeny as a function 

of viral concentration. (Adapted from [78].) 

 

Figure 13:Hidden variables and the simple repression motif. The fugacity- 

based description (λre−βεr ) accounts for both the number of repressors and 

their tendency to be taken up by other gene copies and by the nonspecific 

genomic background, resulting in an effective repressor concentration. Here, 

εr is the binding energy of the repressor to the DNA and λr accounts for 

the chemical potential associated with a repressor moving from the solution 

to a DNA-bound state. (Adapted from [79].) 
 

Figure 14: Synthesis of genetic drift using flies. Schematic of the Buri 

experimental protocol, where orange-eyed flies with the genotype bw75/bw 
are crossed. The genotype of their progeny will be homozygous for the 

red-eye allele (bw75/bw75), homozygous for the white-eye allele (bw/bw), or 

heterozygote (bw75/bw), resulting in orange eyes. By randomly selecting a 
set of flies in each generation, genetic drift can be simulated. 
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Figure 15: Schematic of the Buri experiment. Initially, all 107 vials contain 
8 male heterozygotes and 8 female heterozygotes, implying that all 107 vials 

have an allele frequency for bw75 of 0.5. Each generation, 8 males and 8 
females are selected at random and used as the basis of the next round of 
mating. 

 
 
 
 
 
 
 
 
 

Figure 16: Results from the Buri experiment. In generation 0, all 107 vials 
have 8 male heterozygotes and 8 female heterozygotes, implying that all 107 

vials have an allele frequency for bw75 of 0.5. In subsequent generations, the 
allele frequencies change as a result of genetic drift and after 19 generations, 
many of the vials contain flies all with the same eye color, implying fixation 
of alleles and evolution due to genetic drift. (Adapted from [80].) 

 
 
 
 
 
 
 
 
 

Figure 17: Experimental evolution approach using fruit flies. (A) Four 

populations were breeded over 57 generations, with two of the populations 

grown on ethanol, and two of them grown in the absence of ethanol. (B) 

The allele frequencies of two different alcohol dehydrogenase alleles were 

monitored as a function of time. (B, adapted from [81].) 
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