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Abstract:  

Carrier thermoelectric-transport theory recently is of growing interest and 

numerous thermoelectric-transport models have been proposed in organic 

semiconductors, due to the most pressing current issues from energy and environment. 

The purpose of this review is to provide a theoretical description of the thermoelectric 

Seebeck effect in organic semiconductors. Special attention is devoted to the carrier 

concentration, temperature, polaron effect, and dipole effect dependence of Seebeck 

effect and its relationship to hopping transport theory. Furthermore, various 

theoretical methods are used to discuss the carrier thermoelectric transport. Finally, an 

outlook of remaining challenges for future theoretical research is provided. 
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1. Introduction  

With the development of human and the society's progressing, the questions from 

energy and environment have become some of the most pressing current issues. 

Thermoelectric technology offers a promising conception to convert heat from the sun 

and to recover waste heat from industrial sectors and automobile exhausts [1-6]. For 

this favorable technology, the most intrinsic parameter is the Seebeck effect which 

plays an indispensable role in converting temperature differences directly into 

electrical voltages [7-9]. Although the thermoelectric Seebeck effect was firstly 

discovered by Thomas Johann Seebeck in 1821 [10], the basic principle for harvesting 

electricity from a temperature gradient was utilized and developed as the 

contemporary technology in inorganic semiconductors until the late 1950’s [11, 12]. 

Other contributions to the field were from Jean Charles Peltier in 1834 (Peltier effect) 

[13], and Lord Kelvin in 1854 (Thomson effect) [14]. Experimentally, the 

thermoelectric Seebeck effect, generally evaluated by Seebeck coefficient (also 

referred to as thermopower), can be obtained via S=∆V/∆T [15-17]. A Seebeck 

voltage (∆V) can be measured between two ends of the sample along with the 

corresponding temperature difference (∆T) after the establishment of a thermal 

gradient over the sample, as illustrated in Figure 1. The Seebeck coefficient, which is 

determined by the sign and concentration of the dominant charge carrier, can provide 

direct insights in the energetics of dominant charge transport processes and determine 

the average transport energy of carriers [18-20].  

 

Figure 1. A typical set-up for measuring Seebeck coefficient. Carrier is impelled to 

move from hot side to cold side by the temperature difference. 
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For a long time, the mobility, which provides a quantitative estimate for the 

performance of organic semiconductor, is widely regarded as the most important 

parameter of the charge transport in organic semiconductors. However, with the 

decrease of the device size accompanying the channel length, the contact effect in the 

interface plays an important role in the charge transport characteristics [21]. Since the 

Seebeck voltage does not depend on the interfacial contact [22], hence the Seebeck 

effect would be a novel way to uncover the intrinsic charge carrier transport. In the 

past decade, the carrier thermoelectric transport has been received much attention in 

organic semiconductors. Figure 2 shows the Thomson Reuters Web of Science 

publication report for the topic “organic thermoelectric Seebeck effect” for the last 16 

years. Research interest in organic thermoelectric Seebeck effect has been growing 

remarkably over the last 5 years. 

 

Figure 2. Thomson Reuters Web of Science publication report for the topic “organic 

thermoelectric Seebeck effect” from 2000 to 2015. 

 

Organic semiconductors are mainly based on earth-abundant elements, that is, C, 

H, and O. Although compared with inorganic thermoelectric materials, the organic 

semiconductors still exhibit a lower ZT (approximately 0.5) so far [23-25], there are 

several more advantages in organic semiconductors instead of inorganic materials 

[26-29], for example, the non scarcity of raw materials, the non toxicity, and the large 

area applications, etc. Due to these excellent properties, along with their specific 

charge thermoelectric transport properties, organic semiconductors are of growing 

interest in some cases unique for various applications, particularly for thermoelectric 
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devices, where demands on the higher thermoelectric effect and relatively low thermal 

conductivity [30, 31]. In organic systems, conducting polymer, such as polyacetylene, 

was first developed to act as the thermoelectric technology in the late 1980s [32, 33]. 

Thereafter, researchers devoted a lot of enthusiasm to the experimental works in the 

organic thermoelectric technology [34-41]. While the thermoelectric-transport theory 

in organic semiconductors lags far behind the experimental investigation. The earliest 

theory of thermoelectric-transport was usually based on the Boltzmann theory in 

organic crystal semiconductors proposed by L. Friedman [42]. However, the more 

difficult problem within the band approximation from Boltzmann theory was a proper 

treatment of the scattering, although Friedman followed the previous in assuming the 

existence of a constant relaxation time �. Otherwise, it was likely that, under some 

circumstances, the relaxation time assumption may be entirely unjustified, and that, 

due to the narrow bandwidths, the scattering may not be amenable to a standard, 

one-phonon deformation potential treatment [42]. Therefore, as Friedman felt, the 

simulation results from the present Boltzmann theory was only a semi-quantitatively 

correct result. Then, ab initio techniques (first-principles calculations) combining with 

Boltzmann theory have also been applied to simulate the thermoelectric effect [43-46]. 

Although the thermoelectric transport theory took a big step forward in terms of 

Boltzmann theory combining the first-principles theory, it has an ineluctable 

shortcoming that it cannot go beyond the crystal systems and hence fails to the 

disordered organic semiconductors. To achieve a general thermoelectric-transport 

theory of the disordered systems, in the last few years, hopping transport theory and 

Monte Carlo simulation were widely employed to describe the thermoelectric Seebeck 

effect of disordered organic semiconductors [47-51]. Based on these theoretical 

models, several new physical phenomena of thermoelectric Seebeck effect, such as 

unusual thermoelectric behavior, temperature-independence, and dipole effect, etc., 

have been interpreted or predicted. There is no doubt that theoretical model of carrier 

thermoelectric transport is essential in order to better develop design strategies and 

predict characteristics. 

There have been some good reviews published recently with emphasis on 
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theoretical description of thermoelectric technology in organic semiconductors [45, 

52,53], however, the current reviews inclined to the scope of organic crystal materials, 

as well as the thermoelectric figure of merit. The review underlining the 

thermoelectric-transport theory of the disordered organic semiconductors is still 

scarce. In this review, we mainly focus on the thermoelectric Seebeck effect in 

organic semiconductors, including not only the crystal but also disordered organic 

semiconductors. In Section 2, theory basic of thermoelectric transport, included 

hopping transport, Boltzmann transport equation and general expression of Seebeck 

effect, is discussed. Theoretical study of Seebeck effect including unified theoretical 

model, carrier concentration dependence of Seebeck effect, polaron effect and dipole 

effect, are discussed in Section 3. In Section 4-7, percolation theory of Seebeck effect, 

hybrid model of Seebeck effect, Monte Carlo simulation and first-principles theory 

then are summarized. Finally, a future outlook of this field is briefly discussed in 

Section 8.  

 

2. Theory basic of thermoelectric transport 

2.1 Hopping transport 

Organic semiconductors generally can be sorted as crystalline or amorphous 

materials, depending on the degree of their crystallinity (static disorder) [54-56]. All 

organic semiconductors are generally characterized by weak van der Waals bonding, 

which gives them weak intermolecular interactions. This weak coupling of molecules 

leads to weak interaction energy to give narrow electronic bandwidths. Otherwise, the 

statistical variation of width in the energy level distribution of the molecules will 

overcome the already narrow electronic bands to create Anderson charge localization. 

For the crystalline organic semiconductors, the localization of charge carriers is 

mainly induced by intermolecular thermal fluctuations (dynamic disorder), where the 

size of the localized wave function is expected to be on the order of the molecular 

spacing and transport in this weakly localized carrier regime is classified as 

“intermediate hopping transport regime” [57-60]. For disordered organic 

semiconductors, because a large concentration of crystal imperfections (e.g., 
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impurities, grain boundaries, dangling bonds) breaks the periodicity of a crystal, the 

localization of charge carriers is attributed to spatial and energetic disorder due to 

weak intermolecular interactions [61-63]. Although the variety of such materials is 

very rich [64-65], due to the presence of disorder the basic charge transport 

mechanism in organic semiconductors is common: incoherent tunneling (hopping) of 

carriers between localized states [66-68]. The probability of hopping between two 

states of spatial separation R and energy separation W is generally given by 

Millar-Abrahams (M-A) transition rate (detailed description for M-A transition rate 

will be discussed in Section 3). For the localized states with their energies and 

positions, the distribution of the site energies and positions is called density of states 

(DOS), distribution of states or energy spectrum. Gaussian DOS (G-DOS) or 

exponential DOS are the general two forms of distribution in organic semiconductors 

[59, 69, 70]. So far, most of the researches for the charge carrier transport are based 

on the assumption of M-A jump rate and a DOS distribution in organic 

semiconductors [71-73]. 

 

2.2 Boltzmann transport equation 

As mentioned above, the earliest theory of thermoelectric effect in organic 

semiconductors is based on Boltzmann transport proposed by Friedman [42]. 

Friedman’s transport approach simulating thermopower used the existence of a 

constant relaxation for an anisotropic energy band. At the same time, it was assumed 

that, in the general case of applied dc electric and magnetic fields and a nonvanishing 

temperature gradient, the steady-state Boltzmann equation reads as 

    
�����(�)� = −�� ∙ ������� + �� �� + ���×��� � ∙ ���� ��,        (1) 

where ��(!) is the Boltzmann distribution function, F and H are the external electric 

and magnetic fields, �� = ħ�#�����$�  is the velocity of an electron in Bloch 

relaxation time. Taking the applied electric field and thermal gradient along the ith 

crystallographic direction, Eq. (1) may be readily solved for ��. From this, one gets 

the standard expressions for the electronic and thermal currents, given, respectively, 
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by 

           %& = � �'(��) + **+( ,-.�/#& + ���) � **+( ,-0�/1&,           (2) 

and 

          2& = −� �'(��) + **+( ,-.�/1& − #��) � **+( ,-0�/3&,          (3) 

here, A is the normalization constant for the Boltzmann distribution function, and 

                 /4& = 1(15)6 7�38�(��)&1$�4�#��(!),              (4) 

which is the standard transport integrals for a non-degenerate carrier distribution. In 

the above integrals, $�, is understood to mean the carrier kinetic energy, and is 

therefore measured from the relevant band minimum (or downward from the band 

maximum, in the case of hole conduction). 

To obtain the absolute thermoelectric power, one solves Eq. (2) under the 

constraint that %& = 0, giving 

               :& ≡ < '(=>=?(
@
A(BC

= − #�) D6(DE( − ��)� *FGH*) ,              (5) 

where it be recalled that I is positive (i.e., the charges on the electron is −I). Taking A = exp	($�/8!0), where $� is the Fermi level. Finally, the thermopower equation 

becomes 

                     :& = − #(�)) �D6(DE( − $��.                    (6) 

As Friedman pointed out [42] that the main purpose by using Boltzmann theory 

aimed to calculate the order of magnitude thermoelectric power of a large class of 

organic semiconductors which crystallize in the base-centered monoclinic structure.  

 

2.3 General expression of Seebeck effect 

Since the organic semiconductors consist of the amorphous and crystal structure, 

the theoretical model of the carrier thermoelectric-transport should be more general, 

as well as the mobility. The present expression of Seebeck effect derived was inspired 

by the work of Cutler and Mott [74]. The basis expression was in terms of the 

conductivity, P. Based on the definition of Cutler and Mott, for a hopping system in a 
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disordered lattice at zero and finite temperature, P was expressed as, 

                    P = −7P($) *�*Q �$,                  (7) 

Otherwise, one can start out by writing the conductivity as integral over the single 

states neglecting electron correlation effects [75] 

                 P = I 7�($)R($)�($)�1 − �($)��$,         (8) 

then, the energy dependence of the conductivity is written as 

                  P($) = I�($)R($)�($)�1 − �($)��$,        (9) 

here �($) is the density of states, R($) is the mobility and �($) is the Fermi 

distribution function. The thermopower S is related to the Peltier coefficient ∏ as [76, 

77] 

                           : = ∏) .                        (10) 

The Peltier coefficient is the energy carried by the electrons per unit charge. The 

energy carried is measured relative to the Fermi energy $�. Each electron contributes 

to ∏ in proportion to its relative contribution to the total conduction. The weighting 

factor for electrons in the interval �$ at energy E is thus P($)�$/P, where P($) 
is the energy dependence of conductivity as Eq. (9). One can obtains therefore the 

general expression of Seebeck effect as [76] 

                     : = − ��� 7�Q�QU��) � V(Q)V �$,             (11) 

To distinguish crystalline inorganic solids, the general Seebeck coefficient also 

can be defined the shape of transport energy with the mean energy of conducting 

charge carriers as [77] 

                        : = − #�) ($W XG4 − $�),               (12) 

where $� is the Fermi energy, the transport energy $W XG4 is defined as the averaged 

energy weighted by the conductivity distribution  

                         $W XG4 = 7 QV(Q)V �$,                 (13) 

The general expression of Seebeck coefficient was applied early in doped organic 

semiconductors by Roland Schmechel in 2003 [77]. In Schmechel’s literature, a 

detailed approach to the complex hopping transport in doped organic semiconductors 
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(p-doped zinc-phthalocyanine) was presented and used to describe experimental data 

from Maennig et al. [78], on the effect of doping on conductivity, mobility and 

thermopower. 

 

3. Theoretical study of Seebeck effect 

3.1 Unified theoretical model 

It is well known that, differing from nearly perfect crystals where the electronic 

states are delocalized, in organic semiconductors charge carriers are usually localized 

over spatially and energetically distributed transport sites [79,80]. It is widely 

accepted that the transport mechanism is hopping of charge carriers from one 

localized state to another within a lattice of molecular sites [59,62]. Pioneering 

hopping transport model in disordered systems was the Gaussian disorder model 

(GDM) carried out by Bässler [81]. The disorder models are conventionally based on 

a Miller-Abrahams jump rate. Since the energy of the localized states is randomly 

distributed, the density of states (DOS) can be described by a Gaussian function as 

                    �(Y) = Z[√15∆^ exp	(− _61∆6̂),                        (14) 

where Ẁ is the concentration of randomly distributed localized states (also called 

localization sites) where charge carries can transport by hopping, ε is the normalized 

energy and ∆C= ∆ 8!0⁄  indicates the energy scale of the density of states (DOS) 

which also implies the degree of energetic disordered, 8! is the Boltzmann constant. 

Based on the generalized Einstein relation [77], the energy-dependent carrier 

mobility is written as follows 

                  R($) = b �c(Q)6defg(Q)��)h#i�+jklUml��> no,                   (15) 

where η is a dimensionless fit parameter, 	p($) is the average hopping range of the 

carriers at the energy E, ν�4�($) is the total escape rate at the energy E, $� is the 

Fermi energy. 

Monroe had reported that the carrier transport includes two thermalization 

mechanisms: (a) hopping directly to deeper states; (b) thermal excitation to shallower 
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states (transport states), transport, and subsequent retrapping at deeper states [82]. 

Therefore, the escape rate for carriers will cover these two transport processes, i.e., 

the carrier transition rate from a site with energy E to another site with a different 

energy is given by the sum of average downward and upward hopping rates [47]. 

Based on Ambegaokar et al. [83], the intrinsic transition rate for a carrier hopping 

from an initial site i to an empty site j is expressed by γij=γ(Rij, Ei-Ej). The average 

transition rate from site i to site j is then  

                   νrs =< nr(1-ns)	γrs >,                         (16) 

where ni and nj are the occupation numbers, respectively. The energy dependence of 

	γrs is then a good approximation to write as 

               γrs = y γCexp k-2αRrs- }~-}����n ,										for	Es > Er	γCexp�-2αRrs�.																						for		Es < Er          (17) 

with γC is the constant which depends on the electron-phonon coupling strength, α is 

the inverse localized length, Rij is the hopping distance, Ei and Ej are the energies at 

sites i and j, respectively, and kB is the Boltzmann constant. Therefore, based on the 

energy dependence of 	γrs, the total escape rate as Miller-Abrahams jump rate is 

expressed as [84,85] 

  ν��� = νC exp�-rrs� = νC y exp k-2αRrs- }~-}���� n,				Es-Er > 0
exp�-2αRrs�.																			Es-Er < 0  (18) 

where ν0 is the attempt-to-jump frequency. The hopping range with normalized energy 

(Y = $/8!0) can therefore be rewritten as 

             p = � 2�p&A + YA − Y&,										YA − Y& > 0			2�p&A .																											YA − Y& < 0			              (19) 

The average hopping range of the carriers at energy E is given by [86] 

                p($) = � �53!g 7 �($)(1 − �($))Q�� �$��E�
.               (20) 

here, the numerical value of parameter Bc is determined to be 2.8 or 2.7 in terms of 

percolation criteria [59,87], �($) = 1/(1 + I� ��$ − $�(�)�  is the Fermi-Dirac 

distribution, 1 − �($) is the probability that the final site is empty. 

Substituting Eqs. (19) and (20) into Eq. (15), the energy-dependent carrier 
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mobility is calculated as 

                R($)) = ���^��) �1 − �($)�p($)1exp	(−�&A).             (21) 

According to a Kubo-Greenwood type calculation of conductivity, the total 

conductivity can be written as 

             P = 7P($)�$ = 7 I�($)R($)�($)�$C�� .             (22) 

Then, the energy-dependent conductivity can be calculated as 

                P($) = I�($)R($)�($)�$.                    (23) 

Finally, by substituting Eq. (21)-(23) into Eq. (11), the Seebeck coefficient can be 

expressed as [88] 

                  

���
�� S = #�) 7 7 �Q�QU��(Q)H(+)!(Q)�Q� (+)m̂¡¢f^ 7 �(Q)H(+)!(Q)�Qm̂¡.(�) = �($)1I���$ − $��																					£($) = p($)1I���−�&A�																								

.          (24) 

 

3.2 Carrier concentration dependence of Seebeck effect 

In general, the carrier concentration in organic semiconductors is written as 

                      - = 7 �($)�($, $�)�$��� .                  (25) 

In an organic thin-film transistor (OTFT), carriers are always accumulated in the 

semiconductor-insulator interface under the effect of gate voltage and decrease with a 

distance x (see in Fig. 3(a)). The gate-induced potential ¤(�) shifts the difference 

between the transport band edge and the Fermi level. Therefore, the quasi-Fermi level $�(�) is 

                   $�(�) = $�C + ¥¤(�).                        (26) 
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Figure 3. (a) Geometric definition and channel configuration of Organic layer, and (b) 

schematic of carrier transport in variable-range hopping theory. The difference 

between the conduction band edge and Fermi level may be shifted by applied 

potential φ. 

 

Then, the carrier concentration in a transistor can be written as 

                      - = 7 ¦[√6§∆^�¨©	ª� «66∆6̂¬#i�¨©	k_�_U^�e¢(?)��> n�Y��� .                 (27) 

The variation of ¤(�) with respect to the distance x is determined by the 

Poisson equation as [89]  

        �(�)1 = 1�_f - = 1�_f ­7 7 �(_)#i�¨©k_�_U^�e¢(?)��> n��� (+)C �Y�¤(�)®,    (28) 

where Y4 is the dielectric constant and �(�) is the electric field perpendicular to the 

interface. At the interface, the electric field �(0) can be expressed through Gauss 

law as 

  Y4�(0) = &̄�°� − °�± − ¤4� = ²2IY4 7 7 �(_)#i�+jk_�_U^�e¢(?)��> n��� fC �Y�¤(�), (29) 

where Vg is the gate voltage, Vfb is the flat-band voltage, Ci is the insulator 

capacitance per unit area, φs is the potential at the semiconductor-insulator interface. 

Figure 4 shows the carrier concentration dependence of the Seebeck coefficient 

comparing the theoretical result calculated by the theoretical model above with the 

experimental data for PEDOT:Tos [90], and for a high-quality rubrene single crystal 

[91], respectively. To convert oxidation level to carrier density for PEDOT:Tos, one 
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can use the same approach with the literature [47], and the carrier density here is 

calculated by using Eq. (25). The fitting parameters are similar to the Ref., such as the 

total DOS Nt=1×10
21

 cm
-3

[47] and Nt=1.4×10
21

 cm
-3 

[91].   

 

Figure 4. Comparison between calculated [88] and experimental values of the 

Seebeck coefficient for PEDOT:Tos and Rubrene, respectively. The input parameters 

for PEDOT:Tos are: Nt=1×10
21

 cm
-3

, α
-1

=1 nm, Ci=1.5×10
-4 

F/m
2
, ∆0/kBT=2, 

Ef0=-0.65 eV, εs=3, P=0 D, Vg-Vfb=5 V, and T=300 K. The input parameters for 

Rubrene in inset are: Nt=1.4×10
21

 cm
-3

, Ci=3×10
-5 

F/m
2
, ∆0/kBT=1.3, Ef0=-0.52 eV, 

and T=294 K, the other parameters are the same as those of PEDOT:Tos. 

 

In OTFTs, the carrier concentrations are connected with the gate-voltage by using 

Eqs. (27)-(29). Lu et al. also discussed the gate-voltage dependence of the Seebeck 

coefficient for the OTFTs [92], as shown in Fig. 5. In Fig. 5, the Seebeck coefficient 

depends strongly on the gate-voltage at different polaron activation energy (the 

polaron effect will be discussed in Section 3.4). The strong gate-voltage dependence 

is attributed to the change of carrier concentration in deep or shallow energy states. In 

general, the deeper energy states will be occupied gradually with the increase of gate 

voltage (the larger gate voltage corresponding to a high density) and the quasi-Fermi 

level will move close or above the conduction band, hence a growing number of 

charge carriers are firstly trapped in the deeper energy states. As the carriers are 
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trapped in the deeper energy states, the movement of carriers to the shallower energy 

states would be difficult, which could result in the decrease of the carrier 

concentration in shallower energy states. Since the Seebeck coefficient is actually 

proportional to the flow of entropy transported by an electrical current, the decrease of 

carrier concentration in shallower energy states results in the decrease of the flow of 

entropy transported. As a result, the Seebeck coefficient decreases with the increasing 

gate-voltage. 

 

Figure 5. Gate voltage dependence of Seebeck coefficient at different polaron 

activation energy [92]. The input parameters are: Nt=1×10
20

 cm
-3

, α
-1

=0.1 nm, 

Ci=1×10
-4 

F/m
2
, ∆0=3 kBT, εs=3, Y�C=-20 kBT and T=300 K. 

 

3.3 Effect of temperature on Seebeck effect 

As described above, the Seebeck effect is attributed to the gradient of temperature 

in the device, the effect of temperature on the Seebeck coefficient (S) is greatly 

important. Kim et al. [47] discussed the relation of S vs T in organic semiconductors 

by examining fits which exhibits that for different organic materials the Seebeck 

effect demonstrates the different temperature dependence, as shown in Fig. 6. Kim et 

al. showed that, for Naphthalenetetracarboxylic dianhydride (NTCDA) [93], S shows 

an activated (~1/0) temperature dependence. For polyacetylene [94], the result 
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shows that S increases with T and that the increase is approximately linear (similar to 

the predicted temperature dependence of VRH for an exponential DOS [95]). Finally, 

for a pentacene FET [96], the results show S(T) predicted by their model that the 

available S vs T data are somewhat noisy, which do appear to follow the predicted 

trend. As a result, one can conclude from the results of Kim et al. that the temperature 

dependence is various for different energetic disorder in organic semiconductors.  

Figure 6. Fits of the model to further experimental data, demonstrating how d|S|/dT 

changes as α increases from an activated (|S|～1/T ) regime in NTCDA to an 

intermediate (|S|～const.) regime in pentacene to a VRH (|S|～T ) regime in 

polyacetylene. 

 

Differing from the results of Kim et al., Henning Sirringhaus et al. [97] have 

reported that the Seebeck coefficient displays the temperature-independent property 

for the organic semiconductors with the disorder-free (IDTBT) (as shown in Fig. 7), 

as well as the results from Batlog et al. for single crystals (pentacene and rubrene) 

[91]. In Fig. 7, the Seebeck coefficient shows the variable decreased trend with 

temperature for PBTTT, that is, at low temperature the carrier density dependence is 

stronger than that at higher temperature. As mentioned in Ref. [97], the energetic 

disorder in IDTBT is significantly lower than that in PBTTT. Therefore, the 

temperature-independent feature of Seebeck coefficient could be induced by the 
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smaller energetic disorder.  

 

Figure 7. Temperature dependence of Seebeck coefficient for PBTTT and IDTBT. 

Symbols and solid lines are experimental [97] and simulated [98] results used 

percolation theory in Section 4, respectively. 

 

To better understand the temperature-independent feature of Seebeck coefficient, 

Lu et al. discussed the effect of energetic disorder and temperature on the Seebeck 

coefficient, as shown in Fig (8) and (9). Figure 8(a) shows the energetic disorder 

dependence of Seebeck coefficient at 200 K and 300 K based on the following 

percolation theory (the detailed theoretical theory described in Section 4 [98]). The 

Seebeck coefficient shows a strong energetic disorder dependence. This dependence 

under the larger energetic disorder will enhance with decreasing the temperature. For 

the smaller energetic disorder, such as ∆/kBT<1, this dependence is similar for 

different temperatures. Temperature dependence of Seebeck coefficient for different 

energetic disorders is plotted in Fig. 8(b). The observed results clearly show that the 

temperature dependence enhances with increasing energetic disorder.  
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Figure 8. (a) Energetic disorder dependence of Seebeck coefficient at 200 K and 300 

K, and (b) temperature dependence of Seebeck coefficient for different energetic 

disorder [98]. 

 

Generally, carriers in deep states wi1l move by thermal excitation to shallower 

states, whi1e carriers in shallow states wi1l move by hopping to other shallow states. 

If the carrier is initially generated randomly within the DOS, it tends to relax towards 

tail states, the typical rate at which carriers hop away from a state is much smaller for 

deeper initial energy. Otherwise, the Seebeck coefficient is dominated by the entropy 

of mixing associated with adding a carrier into the density of states, which is 

determined by the density of thermally accessible transport states [96, 99, 100]. 

Therefore, for the smaller energetic disorder, the density of thermally accessible 

transport states will remarkably decrease. As a result, the Seebeck coefficient shows 

the temperature-independent. Fig. 9 clearly shows the contribution to Seebeck 
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coefficient of carriers above Fermi level (shallow state) and below Fermi level 

(deeper state), respectively. Here :(Q´QU) and :(QµQU) denote the contributions of 

carriers below or above the Fermi level, respectively. The overall Seebeck coefficient 

is calculated as S = :(QµQU) − :(Q´QU). One can see that the Seebeck coefficient from 

the contribution of carriers below Fermi level reduces remarkably with the decrease of 

the energetic disorder. Thus the Seebeck coefficient is attributed to the carriers in 

shallow states by hopping to other shallow states and will imply the 

temperature-independent for the smaller energetic disorder.  

 

Figure 9. Contribution to overall Seebeck coefficient of carriers below :(Q´QU) or 

above :(QµQU) Fermi level as a function of carrier density at ∆/kBT=3.5 (a) and 

energetic disorder (b) [98]. The input parameters are Nt=5×10
20

 cm
3
, α

-1
=0.15 nm, 

T=300 K.  
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Otherwise, the effect of temperature on Seebeck effect induced by energetic 

disorder is consistent with the various temperature-dependent in Kim et al. [47]. In 

Kim et al., being different from polyactylene [94] which has a lager energetic disorder 

and showing an increasing trend with temperature, pentacene is the crystal organic 

with smaller energetic disordered [96] and thus shows almost 

temperature-independence. 

 

3.4 Polaron effect 

About 20 years ago, Bässler et al. suggested that the effective zero-field activation 

energy of the charge transport in a system can be approximated by a sum of 

superimposed disorder and polaron contribution [101]. Shortly afterward, by using 

Monte Carlo simulations in a disordered organic solid, Parris et al. based on the 

Marcus rate model demonstrated that polaronic carriers with moderate polaron 

binding energy are consistent with experimental observations [102]. Subsequently, 

Arkhipov et al. formulated an analytic model of low-temperature energy relaxation of 

polarons, and proved that the energy relaxation of polarons is much slower than that 

of charge carriers in a similar disordered system [103]. The polaron effect can 

obviously affect the charge transport properties. So far, numerous studies have shown 

that hopping transport of charge carriers in disordered organic materials can, in 

principle, be controlled by both energy disorder and polaron effects [58, 79, 86, 104].  

Generally speaking, a polaron is a quasi-particle composed of the charge and its 

surrounding polarization cloud. After the formation of the polaron in disordered 

system, the strong charge-phonon coupling could lead to carrier self-trapping and 

carry an adjacent molecule along the associated molecular deformation. This strong 

charge-phonon coupling weakens the energy of the charge to create a bigger barrier 

for charge removal. Polaron formation in organic materials is usually treated 

according to small-polaron model suggested by T. Holstein [105] and L. Friedman 

[106], and further developed for nonadiabatic polaron transfer between sites with 

different energies by D. Emin [107]. At high enough temperatures, the small polaron 
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model gives a jump rate equivalent to a Marcus expression. The jump rate of Marcus 

expression is given by the following [108, 109] 

            ν = ¶·(¸¶6
h ��)¹ 5Qº I�� ª− �Q¸�Q(iQº�6�Qº��) ¬,                  (30) 

where h  is the Planck constant divided by 2π, ( )exp 2ij ijJ Rα∝ − is the transfer 

integral, i.e., the wave function overlap between sites i and j, Ea is the polaron 

activation energy. Based on the hopping range derived from Miller-Abrahams jump 

rate in Eq. (17), the hopping range derived from Marcus jump rate with normalized 

energy (Y = $/8!0) can be represented as 

                    R = 4�p&A + �_¸�_(i_º�6�_º ,                        (31) 

Then, the average hopping range R can be obtained following the approach used 

in Ref. [110] by solving the following equation 

            
51!g¼� 7 �1��c 1⁄C 7 �(Y)�1 − �(Y)��Y = 1_(�_ºi½�_º(c�1 )_(�_º�½�_º(c�1 ) .     (32) 

Here, parameter Bc=2.8 or 2.7 is determined according to percolation criteria [59,87].  

Replacing Eq. (20) by Eq. (32) to calculate the average hopping range R, the 

corresponding polaron effect dependence of Seebeck effect can be obtained. 

A polaron effect dependence of Seebeck coefficient at different carrier density has 

been shown in Fig. 10 [92], at which the carrier density is calculated by Eq. (25). The 

simulated Seebeck coefficient displays completely different dependence of polaron. 

For example, for Ea<0.01 eV, S decreases with the increase of polaron activation 

energy (Ea), while for Ea>0.01 eV, is remarkably dependent on the polaron effect. The 

different influence of polaron effect on Seebeck coefficient can be attributed to 

different polaronic contribution to the carrier transport.  

Page 20 of 56Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



 21 / 56 

 

 

Figure 10. Polaron activation energy dependence of Seebeck coefficient at different 

carrier density. The input parameters are Nt=1×10
20

 cm
-3

, α
-1

=0.1 nm, Ci=1×10
-4 

F/m
2
, 

∆0=3 kBT, εs=3, Y�C=-20 kBT and T=300 K. 

 

As is well known that the effect of polaron effect on mobility is comparable to 

energetic disorder effect [79,86], for the Seebeck coefficient, the similar results are 

also obtained. Fig. 11 shows energetic disorder dependence of the Seebeck coefficient 

for different polaron activation energy. In Fig. 11, the Seebeck coefficient increases 

with energetic disorder, which is consistent with Kim et al.’s result under the 

assumption of negligible polaron effects [47]. However, please note that, the Seebeck 

coefficient remarkably exhibits the different dependence on energetic disorder for the 

variable polaron activation energy. To explicitly understand the effect from polaron 

effects and energetic disorder, the Seebeck coefficient for different Ea/∆ ratios was 

calculated, as shown in Fig. 12. In Fig. 12, the Seebeck coefficient reduces with the 

increase of Ea/∆ ratios, i.e., with increasing the relative strength of the polaron effects. 

Otherwise, the reduced trend under Ea/∆ >1 is obviously larger than that for Ea/∆ <1. 

The results suggest that the effect of the polaron effect on Seebeck coefficient may be 

comparable to energetic disorder. 
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Figure 11. Energetic disorder dependence of Seebeck coefficient at different polaron 

activation energy. The input parameters are Nt=1×1020 cm-3, n/Nt=0.001, Vg-Vfb=1.78 

V, α-1=0.1 nm, Ci=1×10-4 F/m2, ∆0=3 kBT, εs=3, Y�C=-20 kBT and T=300 K. 

 

Figure 12. Seebeck coefficient as a function of Ea/∆ ratios. The blue dash line is a 

guide to the eye. 

 

3.5 Dipole effect 

To discuss the effect of dipole on the Seebeck effect, we now propose a 

theoretical model based on the OTFTs. In physics, an electric dipole refers to a 

separation of electric charge. The electric dipole moment is a measure of the 
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separation of positive and negative electrical charges in a system of electric charges. 

A surface dipole is a neutral charge with an electric dipole moment per unit area 

directed perpendicular to the surface. OTFTs usually operate in accumulation mode. 

Because the charge carrier transport is typically confined to the first few monolayers 

of the organic semiconductors adjacent to the gate dielectric, the transistor 

performance is greatly influenced by the interface [110,111]. Fig. 13(a) shows the 

device structure of the OTFT, at which the dipole layer lies in the interface between 

the insulating layer and organic semiconductor. The dipole is randomly distributed in 

the dipole layer, which would change the energy distribution of nearby hopping sites 

because of the Coulomb interactions between the charge in the localized states and 

electric dipole within the dipole layer. 

 

Figure 13. (a) The device structure of OTFT with the dipole layer, and (b) schematic 

diagrams of variable-range hopping theory with a simple Gaussian DOS (G-DOS) or 

a deviated DOS (D-DOS) induced by dipole, respectively. SAMs: a self-assembled 

monolayers. 

 

Richards et al. [112] and Diechmann et al. [113] have reported that surface dipole 

effect could induce a deviation in the DOS distribution and broaden the tail states of 

the DOS in organic semiconductors. Fig. 13(b) displays the schematic diagrams of 

variable-range hopping theory for the cases of a simple Gaussian DOS and a deviated 

DOS induced by surface dipole effect. Generally, a dipole moment P for a charge pair 
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is	¾¿À = $Á¿À, where the vector Á¿À points from the negative charge to the positive charge. 

As a given dipole moment change the energy distribution of the system, the 

probability density w(r) is determined by the Poisson distribution as [66]
 

               2(�) = 4Â�1 ẀI�� �− �3Â�3 Ẁ�,                  (33) 

where r is the distance between the carrier and center of a dipole. By taking into 

account the electrostatic interaction energy $��  between a charge e in the 

semiconducting layer and a specific dipole moment in the gate dielectric, one can 

express the potential energy of this interaction as [113] 

                    $�� = �Ã∙Ä�5_f � = �j^�Å4Æ�5_f � ,                     (34) 

where p is an effective dipole strength calculated from the dipole moment p0 of the 

monomer groups of the dielectric, and the dielectric constants of the semiconductor 

Y4, and θ is the angle between the dipole moment and the vector r. Because the dipole 

orientation is random, the total energy of the interaction between the charge and total 

dipole moment of the interface is calculated as 

                   $� = 7 7 $���Ç�¤5/1C5/1�5/1 .                       (35) 

For a localized state, the total energy E of the hopping site can be obtained as 

$ = $� + $C, where $C is the intrinsic disorder energy. Finally, the deviated DOS 

with the dipole effect can be rewritten as [115] 

��($) = 2Â Ẁ � �ÈÉ5_f�
�6 7 I�� ª− �5Z[3 �− �ÈÉ5_fQg�

�6¬ (−$�)�Ê6�($ − $�)�$�C�� . (36) 

Replacing the Gaussian DOS in Eq. (14) by using deviated DOS, the dipole effect 

dependence of Seebcek coefficient can be calculated. 

Figure 14 shows the gate-voltage dependence of the Seebeck coefficient at 

different dipole moments. The simulated results show that the Seebeck coefficient 

depends strongly on the gate-voltage under the surface dipole effect. More remarkably, 

the dependence of the Seebeck coefficient on the gate-voltage will enhance when the 

dipole moment increases. The characteristics of Seebeck coefficient on one hand 

derived from the increasing carrier concentration in the systems. On the other hand, 
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with increasing the dipole effect, the DOS can be broadened, as well as the increase of 

disorder [115]. The broadened DOS and increased disorder can shift the Fermi level 

upward [116], which will decrease the occupied probability of charge carriers in 

shallow energy states. According to the results from Germs et al. [48], within the 

variable-range hopping (VRH) transport, the Seebeck coefficient is proportional to the 

Fermi level (Ef), such as : ∝ Q[�QUÌ)  (here Et is the transport energy). Otherwise, 

although the carrier concentration increases with the increase of gate voltage, the 

increasing carriers will prior to be trapped by deep energy states when Fermi level 

shift upward. Therefore the increasing carriers don’t contribute to the flow of entropy 

transported by an electrical current. Consequently, the gate-voltage dependence of the 

Seebeck coefficient becomes much more intense when the dipole moment is 

increased. 

 

Figure 14. Gate-voltage dependence of the Seebeck coefficient for different dipole 

moments. The input parameters are: Nt=1×10
20

 cm
-3

, α
-1

=0.5 nm, Ci=1×10
-4 

F/m
2
, 

∆0/kBT=4, Ef0=-0.65 eV, εs=3, and T=300 K. 

 

Figure 15 shows the dependence of the Seebeck coefficient on the dipole moment 
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for different energetic disorders. The results in Fig. 15 demonstrate that the Seebeck 

coefficient varies non-monotonically as the dipole moment is increased. For example, 

as P < 5 D, the Seebeck coefficient decreases with the increase of the dipole moment, 

while increases for P > 5 D. As mentioned above, the dipole moment can broaden 

DOS and increase the disorder, which results in an increasingly large number of 

shallow sites into deep states and accordingly decrease the mobility. Therefore the 

Seebeck coefficient decreases remarkably with the increase of the dipole moment in 

the lower dipole moment. When the dipole moment is larger, such as P > 5 D, the 

strength of Coulomb interaction between carrier and dipole will increase and hence 

promote the carrier transport. As a result, the Seebeck coefficient will increase with 

the increase of the dipole moment, as the surface dipole effect is larger, which is 

consistent with the results reported at which increasing the strength of the Coulomb 

interaction can increase the Seebeck coefficient [117].  

 

Figure 15. Seebeck coefficient as a function of dipole moment for different energetic 

disorder.  

 

4. Percolation theory of Seebeck effect 

So far, the percolation theory is considered as the best way known to analytically 
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describe charge hopping transport characteristics in disordered systems. The 

percolation problem for a charge transport properties in a disordered semiconductor 

has been argued early by Ziman and a number of workers [118-120], at which the 

charge transport should be proportional to the percolation probability ¾(�). A brief 

definition is that a first approximation to the conductivity as [121] 

                    σ(E) = PC¾(�($)),                         (37) 

where ¾(�), the percolation probability, is the fraction of the volume allowed but not 

isolated, i.e., lying in infinitely extended channels; and PC has a value characteristic 

of large allowed regions of the material. ¾(�) is known to vanish for p less than a 

critical value 	£� , falls sharply to zero as � → £� . To simplify the percolation 

question, two kinds of standpoints for the critical value £� have been confirmed. One 

is £� = 1 from Arkhipov et al. [122] and Li et al. [110] for the Gaussian DOS, 

another is £� = 2.8 from B. N. Limketkai et al. for the exponential DOS [123] or 

£� = 2.7 from Rubel et al. for the Gaussian DOS [124]. Although the unified 

agreement is not achieved among researchers, the percolation theory in hopping 

system was widely developed to describe the charge transport characteristics.  

In general, the charge transport happens to be in a four-dimensional (4D) hopping 

space, including three spatial coordinates and one energy coordinate, where the 

probability of carrier hopping between localized states depend on the spatial and 

energy coordinates. Therefore the percolation approach addressing the charge 

transport would be more complicated, if one considers not only spatial positions of 

sites but also their energies and the occupation of sites. In Eq. (36), to calculate the 

electrical conductivity σ(E), the key is to find the percolation path in a hopping 

system. Thus, a random-resistor network connecting each molecular site under a 

percolation model is often used. Figure 16 shows the schematic diagram of the charge 

transport in a hopping system and the corresponding percolation current through the 

polymer matrix for carrier to travel through. 
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Figure 16. (a) Schematic diagram of carrier transport in hopping space with the 

density of states, and (b) the corresponding percolation current in disordered organic 

semiconductor. 

 

Based on the following general definition through Kelvin-Onsager relation to the 

Peltier coefficient Ñ , a percolation theory to calculate Seebeck coefficient S in 

hopping transport is expressed as in Eq. (10). Ñ is generally identified with the 

average site energy on percolation cluster and can be written as 

                        Ñ = 7$&¾($&)�$&,                        (38) 

where ¾($&) is the probability that a site of energy $& is on the current-carrying 

percolation cluster and was further given by 

                       ¾($&) = �(Q()ÈE(ÒÓ|Q()7 �(Q()ÈE(ÒÓ|Q()�Q(lÓmlÓ ,                 (39) 

where �($&) is the density of states per unit volume, $Õ is the maximum site 

energy, and ¾#(ÖÕ|$&)  is the probability that the second smallest resistance 

emanating from a site with energy $& is not larger than the maximum resistance on 

the percolation cluster, ÖÕ. The expression of the probability ¾#(ÖÕ|$&) is written 

as 

                ¾#(ÖÕ|$&) = 1 − I���−¾(ÖÕ|$&)��1 + ¾(ÖÕ|$&)�	,       (40) 

where	¾(ÖÕ|$&) is the bonds density, which means the average number of resistance 

of ÖÕ or less connected to a site energy $&. To calculate the Peltier coefficient (or 

Seebeck coefficient), an expression for ¾(ÖÕ|$&) is essential.  
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According to the percolation theory, the disordered organic semiconductor is 

viewed as a random-resistor network (see in Fig. 16(b)). To determine the total 

conductivity in disordered system, the first step is to take a reference conductance H 

and remove all conductive pathways between sites i and j with ×&A < × . The 

conductance between sites i and j is given by ×&A ∝ I���−:&A� with [87] 

                    :&A = 2�p&A + ¶Q(�QU¶i¶Q¸�QU¶i¶Q(�Q¸¶1��) .              (41) 

The density of bonds ¾(ÖÕ|$&) then can be written as 

          ¾(ÖÕ|$&) = 74Âp&A1�($&)��$A��p&A�$&�$AÇ�:� − :&A�.    
 

(42) 

If the density of participating sites is ¾4, the critical parameter :� is found by 

solving equation 

             ¾(ÖÕ|$&) = £�¾4 = £� 7�($)�$Ç�:�8!0 − ¶$ − $�¶�.   (43) 

Based on the numerical studies for a three-dimensional amorphous system, the 

formation of an infinite cluster corresponds to £� = 2.7 [123,125]. 

By connecting Eqs. (41-43), the bond density can be formulated as 

¾(ÖÕ|$&) = 4Â3(2�)3 × 

y 7 �:� − ÙA + Ù��3��ÙA��ÙAÚ(ÚU + 7 �:� − ÙA + Ù��3��ÙA��ÙAÛgiÚUÚ( + 7 �:� − Ù& + ÙA�3��ÙA��ÙA ,			Ù& > Ù� 	ÚUÚ(�Ûg7 �:� + Ù& − Ù��3��ÙA��ÙAÚUÚ( + 7 �:� + Ù& − Ù��3��ÙA��ÙAÚ(ÚU�Ûg + 7 �:� − ÙA + Ù&�3��ÙA��ÙAÚ(iÛgÚU ,				Ù& < Ù� 	(44) 

here Ù is the normalized energy as Ù = Q��). This expression has been split into two 

regimes of Ù& > Ù� and Ù& < Ù�, which are corresponding to the contributions of Ù& 
above or below Fermi level to ¾(ÖÕ|$&)  and therefore Seebeck coefficient S, 

respectively. Above Fermi level, carriers in shallow states will move by hopping to 

other shallow states. While below Fermi level, carriers in deep states will move by 

thermal excitation to shallower states.  

By substituting Eqs. (38-40), and (44) into Eq. (10), one can obtain the final result 

of Seebeck coefficient. 

The validity of the proposed percolation model in Seebeck effect has been 

demonstrated by fitting the experimental results. Figure 17 shows the calculated 

Seebeck coefficient as a function of carrier density based on the percolation theory, 
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comparing the simulation results with the experimental data measured by using FET 

from three kinds of conjugated polymers, i.e., IDTBT, PBTTT and PSeDPPBT [97]. 

The proposed model can reasonably reproduce the experimental data under the whole 

range of carrier density for different conjugated polymers. Otherwise, except for the 

carrier concentration dependence of Seebeck coefficient, the presented percolation 

theory also can well explain the temperature-independence of Seebeck effect, as 

discussed above in Section 3.3. In a word, the temperature-independence of Seebeck 

effect is induced by the smaller energetic disorder. 

 

Figure 17. Carrier density dependence of Seebeck coefficient for different materials 

at room temperature. Symbols and solid lines are experimental and simulated results, 

respectively. 

 

5. Hybrid model of Seebeck effect 

As mentioned in Section 3.2, the usual behavior for the Seebeck coefficient is to 

decrease with increasing charge carrier density [90, 97]. However, Germs et al. 

measured the Seebeck coefficient of pentacene in a TFT [48], and observed that at 

room temperature the increase of charge density indeed results in the expected 

decrease of S, while when decreasing the temperature to below room temperature, an 

increase of S with increasing charge carrier density at T=250 K and even more 

pronounced at T=200 K, as shown in Fig. 18.  
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Figure 18. Measurements (symbols) and calculations (lines) of the Seebeck 

coefficient vs gate bias in a pentacene thin film transistor. The gate bias Vg is 

corrected for the threshold voltage Vth of the TFT. 

 

Such an unusual thermoelectric behavior cannot be explained using VRH or ME 

alone, as both predict a strictly monotonously decreasing density dependence. To 

explain this unusual thermoelectric behavior, Germs et al. developed a simplified 

hybrid model that incorporates both variable range hopping (VRH) and the mobility 

edge (ME) transport [48]. In general, charge transport in organic semiconductors is 

often described within the framework of strong localization as developed by 

Anderson and Mott [126,127]. This transport mechanism is then described in terms of 

ME (or multiple trapping and release) model or by the VRH model. The ME model 

implies bandlike conduction, the later does not. For the bandlike transport within the 

ME model, where the current is carried by charges that are thermally excited over the 

mobility edge at energy $Ü  as illustrated in Fig. 19(a). Fig. 19(b) shows the 

schemetic diagram of VRH model.  
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Figure 19. The density of states used in (a) the ME model, (b) the VRH model, and (c) 

the hybrid model, including the relevant energy levels. The gray area below EC 

represents the density of occupied localized states. 

 

The corresponding schematic diagram of the hybrid model is shown in Fig. 19(c). 

It accounts for the contributions to the charge and energy transport by two processes 

that are treated as independent: VRH-type processes that occur within an exponential 

tail of localized states and transport by charges that are thermally excited to bandlike 

states above a mobility edge. Then, the Seebeck coefficient of the hybrid model is 

calculated as the conductivity-weighted average of the two contributing transport 

channels:  

                      S = ÛÝlVÝliÛÞßàVÞßàVÝliVÞßà ,                         (45) 

where :áQ and PáQ is the Seebeck coefficient and conductivity in the ME part, and 

:âcã  and Pâcã  is the Seebeck coefficient and conductivity in the VRH part, 

respectively. 

Then, the general expression of Seebeck effect in Eq. (11) reduces  

                      :áQ = �Qg�QU��) + .,                          (46) 

with 

                       A = 7 «e>V(_)�_¡̂
7 V(_)�_¡̂ ,                             (47) 

where Y = $ − $Ü.  

In Eq. (46), the second term on the right-hand side accounts for excitations 

beyond the band edge and is typically 1%–20% of :áQ. Similarly, within the VRH 
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model, where the transport is assumed to be dominated by a characteristic hop from 

the equilibrium energy to a relatively narrow transport energy $∗[128] as illustrated 

in Fig. 19(b), Eq. (11) becomes 

                           :âcã = (Q∗�QU)�) .                         (48) 

The conductivity in ME part is calculated as 

                         PáQ = I-� ��R� ��(0),                     (49) 

with a power law dependence on temperature, R� ��(0) = RC0�Õ.  

The VRH part is described by the Mott-Martens model that assumes transport to 

be dominated by hops form the Fermi level to the transport level $∗.The conductivity 

in VRH part is subsequently calculated by optimizing a Miller-Abrahams-type 

expression as 

                     Pâcã = PCexp	�−2�p∗ − ($∗ − $�)/(8!0)�,       (50) 

where the position of this level and the typical hopping distance p∗ are connected via 

a percolation argument,  

                          £� = �3Âp∗3 7 å($)�$Q∗QU ,                 (51) 

With £�=2.8 the critical number of bonds. G(E) represents the density of states 

(DOS), which here is simplified to a single exponential trap tail below the mobility 

edge and a constant density of extended states above EC, 

              å($) = yG[æºç��)̂ I�� �− Q��)̂ � 			�è�	$ < $Ü ,G^��)̂ 																													�è�	$ ≥ $Ü ,		($Ü = 0),      (52) 

where -C  is divided by 8!0C  for dimensional reasons. The number of charge 

carriers above $Ü, -� ��, follows from the Fermi-Dirac distribution. 

Figure 20 shows the measured and calculated Seebeck coefficients at T=200 K. 

One can see that at 200 K the heat transported at the mobility edge (EC-Ef) and the 

heat transported at the transport level (E
*
-Ef) both decrease with increasing charge 

carrier density, accounting for the downward trends in :áQ and :âcã. Consequently, 

the weight-averaged Seebeck coefficient :�ê± shifts from the :âcã curve at small 

gate bias up towards :áQ for large gate bias. The relatively large value of :áQ at 

lower temperatures follows from Eq. (46) and the temperature independence of $Ü. 
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Figure 20. (a) Measured (symbols) and calculated (lines) Seebeck coefficients at 

T=200 K. Shyb is the conductivity-weighted average of SVRH and SME. 

 

6. Monte Carlo simulation 

So far we discussed the analytical model of thermoelectric Seebeck effect. 

However, in spite of exhibiting the large number of advantages as compared with 

numeric model, such as more context and physical property, these current analytical 

models have an inevitable shortcoming due to the use of plenty of free parameters 

during the simulation and calculation. In order to eliminate these hindrances, a 

universal method is based on the Monte Carlo (MC) simulation in describing the 

hopping transport for insuring the validity and accuracy of thermoelectric Seebeck 

coefficient. 

The kinetic Monte Carlo simulation generally includes six steps as follows [49].  

(i) Initializing site energies $&. The random energy $& at site i derives from 

Gaussian or exponential DOS. 

(ii) Initial placement of charges. The Fermi-Dirac occupation probabilities will be 

used in randomly placing Ncharges charges.  

(iii) Choosing hopping events. If neglecting the polaron effect, the hopping rates �&A from site i to site j are based on the Miller- Abrahams transition rate in Eq. (18). 

The corresponding setting is: a) hopping rates equals to 0 to prevent hopping into 
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already occupied sites; b) introducing a cut-off distance and set �&A=0 for the jumps 

longer than this distance. 

Otherwise, renormalizing the hopping rates Гij as �&A = Г(¸∑ Г(í¸í(í¸í . The sum of 

rates only include jumps from the occupied to unoccupied, i.e., Гrs=0 for occupied 

site j or unoccupied site i. For every pair ij, an index k (i.e., ij→k, and pij = pk), where 

8 ∈ ï1, … , 8ÕX+ñ, with kmax being the total number of all possible hopping events. 

Then a partial sum :� is defined for every index k, 

                          :� = ∑ ��í��íB# .                      (53) 

Apparently, for every k the length of the interval [Sk−1, Sk] is equal to the 

probability pk for the kth jump, and the total length of all intervals is equal to 1, i.e., 

Skmax = 1. Then drawing a random real number r from the interval [0, 1] and finding 

the index k such that :��# ≪ � ≪ :�, which gives us the hopping event that will 

occur. Having chosen the hoping event and moving a charge between the 

corresponding sites i and j. 

(iv) Calculating the waiting time. After determining every hopping event, one 

adds to the total simulation time t and the waiting time τ that has passed until the 

event took place. This time is obtained by drawing a random number from the 

exponential waiting time distribution P(�) = �&exp	(−�&�) with �& = ∑ �&AA  being 

the total hopping rate of hopping from site i. It is therefore given by 

                          τ = − #õ( ln	(�),                         (54) 

where a random number x is drawn from the interval [0, 1]. 

(v) Calculating the current density. Every time that a predefined number of jumps 

has occurred, the current density ÷(ø) can be expressed as  

                         ÷(ø) = �(Zù�Zm)WZúZûX6 ,                        (55) 

where N
+
 and N

−
 are the total number of jumps along and against the electric field for 

a cross section slice in the yz plane.  

(vi) Calculating the Seebeck coefficient. The Seebeck coefficient is given by the 

expression 
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                       :(0) = QU�Q[æºüf|�|) ,                          (56) 

where the transport energy is defined as the averaged energy weighted by the 

conductivity distribution 

                    $W XG4 = 7QV(Q,))��=Uýþ=l ��QV()) ,                    (57) 

with P(0) = 7�$P(0, $) �− *�ýþ*Q �. 

Although the kinetic Monte Carlo technique provides a direct modeling of the 

hopping transport in organic semiconductors and therefore it gives the most accurate 

description of the electronic conductivity, its disadvantage is that it demands 

extensive computational resources, which makes it difficult to use this technique to 

analyze and fit experimental data. A comparison between the analytical model and 

MC simulation for Seebeck coefficient has been shown in Fig. 21 [49]. It is seen in 

Fig. 21 that they exhibit a qualitative agreement for all values of the parameter α. For 

large α in Fig. 21(a), Ssa and SMC show not only qualitative, but even a relatively good 

quantitative agreement in the energy interval E<0 (corresponding to the relative 

carrier concentration n/N0≤0.5). For higher energies (and thus for the higher 

concentrations) the difference between Ssa and SMC increases. As the parameter α 

decreases, the functional dependencies Ssa and SMC remain very close to each other, 

but Ssa gets shifted with respect to SMC (Fig. 21(b)). 

 

Figure 21. The Monte Carlo and semianalytical calculations of the Seebeck 

coefficient for different values of the localization length (a) � = �, (b) � = 0.2	�. Ef 

is in units of ∆. ∆= 4 kBT, and T = 300 K. Here and hereafter (unless stated otherwise) 
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the numerical Monte Carlo calculation are performed on the lattice 50×50×50 with a 

lattice constant a=1 nm and the results are averaged over 16 different samples. 

 

For the sake of comparison between neglecting and including polaron transport, 

N. Tessler et al. have reported that both Miller-Abrahams hopping and Marcus theory 

charge transfer were used in the MC simulation [51]. In the MC simulation from N. 

Tessler, a three-dimensional cubic lattice, where periodic boundary conditions were 

defined, firstly was implemented. For the three-dimensional lattice, each site 

representing a localized carrier wave function, was then assigned an energy drawn 

randomly from the system density of states (DOS) with a Gaussian function. The 

hopping event time and destination was determined by drawing a random dwell time 

as in Eq. (54). 

Otherwise, Tessler et al. also induced the spatial correlations (correlated GDM) 

and off-diagonal disorder (off diagonal GDM) to expand the physical picture. Spatial 

correlations were introduced following Ref. [129], where initially all sites were 

assigned energy values Ui drawn randomly from the DOS function and subsequently 

were replaced by the spatially averaged energy values calculated as 

                        $& = `#/1∑ �(�&A)�AA ,                     (58) 

where  

                       �( (¸) = �1			�&A ≤ /	0			�&A > / 	,                       (59) 

In Eqs. (58) and (59), N is the normalization factor set to yield the desired DOS 

standard deviation, and K is the cutoff radius determining the number of sites over 

which averaging is performed. 

Figure 22 shows a comparison of the Seebeck coefficient between measured and 

calculated results. The various lines correspond to the different models used. These 

are the GDM (diamonds), the correlated GDM (circles), the off-diagonal disorder 

GDM (squares), and the GDM under the premise of polaron transport (triangles). The 

functional form of the Seebeck coefficient is similar for all of the physical scenarios 

tested and cannot be used to experimentally differentiate between them. 
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Figure 22. Seebeck coefficient values obtained from MC simulation (a) as a function 

of temperature with carier density n=10
17

 cm
−3

, and (b) as a function of the carrier 

density at temperature T = 300 K.  

 

Figure 23 shows the Seebeck coefficient and transport energy dependence on the 

disorder parameter δ under the premise of the different model variants for a range of 

parameter values. The data were obtained from simulations run at T = 300 K and 

carrier density of n= 10
17

 cm
-3

. In Fig. 23, the lowering of the transport level and 

decrease of the Seebeck coefficient due to the incorporation of spatial correlations 

within the system energetic landscape can be seen to be augmented as δ increases. 

The predominant effect seems to follow the actual incorporation of correlations (K=1), 

while a further increase of the spatial correlation parameter leads to a somewhat 

weaker effect. 

Page 38 of 56Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



 39 / 56 

 

 

Figure 23. (a), (c), (e) Seebeck coefficient and (b), (d), (f) transport energy as a 

function of δ for different physical scenarios. (a), (b) Correlated GDM, (c), (d) 

off-diagonal GDM, and (e), (f) the GDM implemented under the premise of polaron 

transport. All corresponding model parameter values are presented in subfigure 

legends. 

 

7. First-principles theory  

A first-principles (ab initio) theory would be deemed to the best type of theory for 

hopping charge transport in organic semiconductors, since it starts from the particular 

Page 39 of 56 Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



 40 / 56 

 

chemical and geometrical structure of the system, and it starts directly at the level of 

established science and does not make assumptions such as empirical model and 

fitting parameters. In the recent years, the first-principles approach has been 

developed to address the charge transport. However, as S. D. Baranovskii remarked 

that the current state of theoretical research on charge transport in disordered organic 

semiconductors is yet far behind this desired level [59]. The inapplicability of 

first-principles theory in the disordered organic semiconductors derives from the 

disordered structure and transport sites of localized distribution over spatially and 

energetically. The first-principles theory for investigating the Seebeck effect indeed is 

more suitable to the systems with the crystal structure.  

So far, a few researches on charge transport properties based on the first-principle 

theory are hardly beyond the scope of crystalline. Otherwise, the direct calculation of 

Seebeck effect is hardly realistic. The current method generally combines the 

first-principles calculations with the transport theory. For example, Gao et al. have 

investigated theoretically the thermopower of low-band-gap crystalline polymers, 

including the crystalline solids β-Zn4Sb3 and AuIn2 and these polymers, based on 

muffin-tin orbital and full-potential linearized augmented-plane-wave (FLAPW) 

electronic structure code [43]. In essence, Gao et al.’s method for the calculation of 

transport properties of a crystalline solid is firstly based on the semiclassical 

Boltzmann theory, following as  

         PC(0) = �63 7�$�($, 0)`($)�1($) �− *�(Q)*Q �,             (60) 

where e, τ, f, and v represent the charge of the electron, electronic relaxation time, 

Fermi distribution function, and Fermi velocity, respectively. If one assumes the 

relaxation time for the electron scattering processes is a constant, i.e., �($, 0)=Const., 

which has been shown to yield reasonably good results in several materials, then the 

temperature dependence of PC(0)  can be calculated in terms of the constant 

relaxation time τ, 

                   
V^())� = �63 7�$`($)�1($) �− *�(Q)*Q �,             (61) 

Then, the Seebeck coefficient is calculated from the ratio of the zeroth and first 
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moments of the electrical conductivity with respect to energy, 

                      :(0) = #�) �E�^,                             (62) 

where 

              �+(0) = 7�$�($, 0)`($)�1($)($ − $�)+ �− *�(Q)*Q �.    (63) 

A product of the density of states N(E) and arbitrary quantity g which has energy 

and k-vector dependence as in the expressions (60) and (63) can be obtained by 

integration on the constant energy surface S in k space. The electronic band structure 

can be calculated by using the WIEN97 and WIEN2K FLAPW [130] or the 

pseudopotential plane-wave code in Vienna ab initio simulation package (VASP) 

[131]. 

Figure 24 shows the Seebeck coefficients calculated as a function of pressure at 

300 K. The theoretical trend in the variation of the Seebeck coefficient with pressure 

is in qualitative agreement with experiment. Otherwise, the magnitude of the 

calculated Seebeck coefficient within the spin-orbit (SO) approximation is evidently 

in better agreement with experiment. 

 

Figure 24. Calculated Seebeck coefficient (S) as a function of pressure for AuIn2 with 

and without spin-orbit interactions. 

 

Figure 25(a) and (b) shows the calculated energy band structure of the 

polythiophene polymer. For this calculation, the internal structural parameters of the 
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polymer are fully optimized and the electronic band structure is obtained from 

pseudopotential plane-wave calculations employing an ultrasoft Vanderbilt 

pseudopotential and a generalized gradient scheme. The calculated results show that 

polythiophene has a very simple band structure and is a semiconductor with a band 

gap of 0.9 eV. The neutral polythiophene is an electrical insulator. Otherwise, the 

inspection of the band structure shows that except very close to the zone center, where 

the density of states is high, the band dispersions are considerable. The special band 

structure thus leads to the very low Seebeck coefficient (～20 μV/K), as shown in 

Fig. 25. 

 

Figure 25. Calculated energy band structure (a), (b), and Seebeck coefficient (S) (c), 

(d), for polythiophene (left) and polyaminosquarine (right), respectively. Isolated 

planar polymer chains were used for this calculation. 

 

As well as the calculated method from Gao et al., Shuai et al. also combined the 

first-principles band structure calculations coupled with the Boltzmann transport 

theory to study the thermoelectric in pentacene and rubrene crystals [44]. In the 

constant relaxation time and rigid band approximations, the electronic contribution to 

the Seebeck coefficient is obtained, as shown in Fig. 26. The calculated results also 
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exhibited the similar trend compared with the experimental Seebeck coefficient. 

 

Figure 26. The Seebeck coefficient calculated as a function of carrier concentration (a) 

for pentacene and rubrene at room temperature and compared to the field-effect 

transistor measurements. The calculated Seebeck data have been averaged over three 

crystal directions (b) for rubrene at temperatures in the range between 200 and 300 K. 

 

Otherwise, Shuai et al. also applied a combined computational scheme to predict 

the thermoelectric properties of organic semiconductors, taking a-from 

phthalocyanine crystals H2Pc, CuPc, NiPc, and TiOPc [46]. Their computational 

approach combined first-principles band structure calculations, Boltzmann transport 

theory, deformation potential theory. In the work, the first-principles calculations of 

the Seebeck effect is performed in VASP. Figure 27 shows the structures of a-from 

phthalocyanine crystals.  

 

Figure 27. Structures of a-from (a) H2Pc, (b) CuPc, (c) NiPc, and (d) TiOPc crystals. 
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After finishing the band structure calculations, the Boltzmann transport theory 

was applied to calculated properties related to the charge carrier transport, as in Eqs. 

(60) and (61). 

Differing from Gao et al’s and their previous works, in the work the relaxation 

time �(�, 8)  isn’t assumed to be a constant, which can be evaluated by the 

deformation potential theory for treating the electron-phonon scattering. According to 

the literatures [46, 132], the acoustic phonon scattering in both pristine and doped 

system was modeled by the deformation potential theory with the scattering matrix 

element for electrons from the � state to the �� state taking the form as 

                       |�(�, ��)|1 = QE6Ü(( 8!0,                    (64) 

where $# is the deformation potential constant that represents the energy band shift 

caused by the crystal lattice deformation, and &̄&  is the elastic constant in the 

direction of propagation of the lattice wave. The relaxation time then can be expressed 

by the scattering probability 

      
#�(&,�) = ∑ �15ħ |�(�, ��)|1	�Y(�, 8) − Y(�, 8�)�(1 − 
è�Ç)��í∈!Ò ,   (65) 

where 	�Y(�, 8) − Y(�, 8�)� is the Dirac delta function and θ is the angle between k 

and k�. In Bardeen and Shockley’s treatment, it is assumed that scattering is isotropic 

and the matrix element of interactions	�(�, ��) is independent of k and k′. 

The calculated band structures and the density of states (DOS) of H2Pc, CuPc, 

NiPc, and TiOPc are displayed in Fig. 28. The band gaps of H2Pc, CuPc, NiPc, and 

TiOPc are calculated to be 1.179, 1.253, 1.337, and 0.912 eV, respectively. A 

localized state is observed in the band gap of CuPc. It is noted that to calculate the 

electrical transport properties, the authors ignored the trap state. Otherwise, the 

authors also noted that the underestimation of band gaps from the DFT calculations 

have little influence on the charge carrier transport, since the transport properties is 

determined by the bandwidth. The calculated Seebeck coefficient S is shown in Fig. 

29. The calculated Seebeck coefficient displays different properties, such as, positive 

S for holes and negative S for electrons. The Seebeck coefficient is isotropic at first 

glance, and it decreases rapidly as the charge carrier concentration increases. 
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Figure 28. Band structures and DOS for (a) H2Pc, (b) CuPc, (c) NiPc, and (d) TiOPc. 

Band energies are shifted so that Fermi levels are at the zero point. The reciprocal 

coordinates of high-symmetry points are Γ=(0, 0, 0), Y=(0.5, 0, 0), K=(0.5, 0, 0.5), 

B=(0, 0.5, 0), Z =(0, 0, 0.5), A=(0.5, 0.5, 0), and D=(0.5, 0.5, 0.5). The highest 

valence bands and lowest conduction bands, including all of the sub-bands arising 

from inequivalent molecules in the unit cell, are highlighted in red. 

 

Figure 29. The Seebeck coefficient as a function of the logarithm of the carrier 

concentration. The solid lines represent holes, and the dashed lines represent electrons. 

Page 45 of 56 Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



 46 / 56 

 

In case of electrons, the absolute value of the Seebeck and the concentration is used. 

 

More recently, utilizing the similar method as mentioned above, Shuai et al. have 

investigated the thermoelectric properties of a novel class of excellent hole transport 

organic materials, 2,7-dialkyl[1]benzothieno[3,2-b]benzothiophene derivatives 

(Cn-BTBTs). The first-principles calculations show that BTBTs exhibit high mobility 

and large Seebeck coefficients (0.3 mV/K) [133]. The structure of C8-BTBT, band 

structures and DOS of C8-BTBT and calculated Seebeck coefficient are shown in Fig. 

30. Based on the predicted excellent performance, the authors suggested that if 

controlled doping is achieved without significantly decrease of the charge transport 

properties of the materials, BTBTs will become ideal candidates for thermoelectric 

applications.  

 

Figure 30. (a) Lamella-like alternating structure of C8-BTBT in the ac plane. (b) 

Herringbone arrangement of C8-BTBT in the ab plane; the red dashed lines represent 

the crystal lattices. (c) Calculated band structures and DOS of C8-BTBT. (d) Seebeck 

coefficient (S), along the a-direction (blue lines) and the b-direction (red lines) for 

C8-BTBT as a function of carrier concentration at 298 K.  
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Otherwise, Shuai et al. also have identified a close-to-unity charge transfer from 

PEDOT to the dopant, and found that the ionized impurity scattering dominates over 

the acoustic phonon scattering in the doped PEDOT [132]. The authors revealed that 

the lightly doped PEDOT would exhibit thermoelectric properties superior to the 

heavily doped one, and the thermoelectric transport is highly anisotropic in ordered 

crystals. 

 

8. Conclusions and outlook 

In this work, we have reviewed the origin and development of organic 

thermoelectric Seebeck effect under the scope of thermoelectric applications. It looks 

that the theoretical progress of organic thermoelectric Seebeck effect lags far behind 

the experimental investigation in the last 30 years, but has been changed remarkably 

until the recent five years. From the enormous number of contributions, we have tried 

to describe several of the effect on thermoelectric Seebeck and the theories or 

approaches abundant in the literature concerned with carrier thermoelectric transport 

characteristics in organic semiconductors. Some possible merit and demerit for the 

current theoretical methods have also been discussed. Otherwise, to advance the 

thermoelectric effect in organic semiconductors, the theoretical model and predict is 

essential and promising for fundamental understanding of organic thermoelectric 

performance. We hope that this review will be helpful to the organic thermoelectric 

Seebeck effect and can provide the motivation for enlarging the thermoelectric 

application in organic semiconductors.  
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