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The purpose of statistical mechanics is to provide a route to the 

calculation of macroscopic properties of matter from their 

constituent microscopic components. It is well known that the 

macrostates emerge as ensemble averages of microstates. 

However, this is more often stated than implemented in computer 

simulation studies. Here we consider foundational aspects of 

statistical mechanics which are overlooked in most textbooks and 

research articles that purport to compute macroscopic behaviour 

from microscopic descriptions based on classical mechanics and 

show how due attention to these issues leads in directions which 

have not been widely appreciated in the field of molecular 

dynamics simulation. 

Introduction 

There are a few fundamental questions in science. While the 

discussion of and attempted resolution of these questions is of 

widespread interest, not only to scientists but also to the 

general public, they rarely appear to affect the day to day work 

of jobbing scientists. 

One such question concerns the nature of time, in particular 

how to make sense of the fact that while the microscopic 

description of matter is time-reversal symmetric, macroscopic 

behaviour is temporally asymmetric.
‡
 Thermodynamic systems 

are observed to approach equilibrium; they do not retreat 

from it. Conventional attempts to explain this time asymmetry 

frequently proceed from the paradoxical assumption that the 

reversible microscopic world, which we cannot directly 

apprehend, is the true one; while the observable irreversible 

macroscopic world is an illusion, however persistent. That such 

an interpretation does not stand up to scientific scrutiny has 

been pointed out by numerous authors of scientific and 

philosophical works.
1-7

 

In short, if one regards the concept of equilibrium as being as 

valid as the quantum mechanical or classical description of the 

molecules comprising the systems governed by 

thermodynamics, then we are obliged to reconcile these 

seemingly incompatible representations of matter. 

Dynamical systems, ergodic theory and the 

approach to equilibrium 

In this article, we shall only consider classical systems. Our aim 

is to discuss the use of classical molecular dynamics for the 

determination of macroscopic properties, in particular the 

Gibbs free energy for systems at equilibrium. While the 

formulation of classical mechanics typically presented in 

expositions of molecular dynamics found in textbooks of 

molecular dynamics is based on Newton’s equations of motion 

(and their equivalent Hamiltonian and Lagrangian 

formulations), there is a further probabilistic representation to 

which relatively scant regard is paid. However, it is important 

to always keep this representation in mind, especially when 

considering statistical mechanics. Instead of working with 

Newton’s equations of motion, in the probabilistic 

representation we employ the Liouville equation 
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where ��  is the (6N+1)-dimensional probability distribution 

function defined on the phase space, �� � � ��⁄ , L is the 

Liouville operator (i.e. the Poisson-bracket of the classical 

Hamiltonian acting on ��) and N is the number of particles in 

the system. 

Macroscopic averages are given by ensemble averages of 

dynamical observables, G, denoted 〈G〉t. Thus 

〈�〉� �  ��!	 ���!	"#																															�3	 
where ! denotes the 6N phase space variables and # is the 

invariant measure associated with it. 

Despite the frequent assertion that the Newtonian, trajectory 

based, formulation and the probabilistic description are 

equivalent, the two representations of dynamics cannot 
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always be used interchangeably. In particular, this is the case 

in discussing the approach to equilibrium and, indeed, the very 

concept of equilibrium itself. To see this, one can use the 

inverse Laplace transform to show that the solution of the 

Liouville equation may be written as 

�� � 1
2%& "'

()�
' � � �*+

																														�4	 
where the contour - avoids any singularities in the complex '-

plane. Thus the long time behaviour of a dynamical system is 

governed by the spectrum of L.	 A system possesses an 

equilibrium state if the solution of this equation asymptotically 

approaches a time-independent state �/ : 

lim�→4�� � �/ 																																													�5	 
We are primarily concerned with equilibrium states of matter 

here, so the equilibrium value of G, denoted 〈�〉/6 , is of 

considerable interest. Thus 

〈�〉/6 � lim�→4〈�〉� � lim�→4 ��!	���!	"# �  ��!	�/�!	"#					�6	 
So an equilibrium state will exist if one is able to interchange 

the limit with the integral in eqn (6), which follows from 

Lebesgue’s dominated convergence theorem and so holds 

almost everywhere, except possibly for a set of zero measure†. 

Mathematically, it is well known that, for an equilibrium 

distribution to exist (eqn (5)), the dynamics must be at least 

that of a mixing flow in the language of ergodic theory. A 

mixing system is one for which 

lim�→4
#�8� ∩ :	
#�:	 � #�8																																		�7	 

where #�8	 is the measure of an initial region of phase space 

A, and #�8�	 the same at time t. This property means that the 

dynamical system exhibits sensitivity to initial conditions, such 

that the late time behaviour of the system is totally 

uncorrelated with its early time properties. That is to say, the 

system possesses at least one positive definite Lyapunov 

exponent or, in more colloquial language, the system is 

“chaotic”. This result is of fundamental significance here. 

Mixing systems are one class of dynamical systems in the 

classification provided by ergodic theory
8;9

 rooted in the 

probabilistic description of dynamical systems governed by the 

Liouville equation. Ergodic theory has grown out of the 

relationship between the global properties of dynamical 

systems and statistical mechanics.
10-12

 Unfortunately, due to 

the level of mathematical rigour involved in the subject, it has 

become rather detached from workaday research in statistical 

mechanics and computer simulation. In a nutshell, the ergodic 

hierarchy embraces (i) ergodic; (ii) mixing; (iii) Kolmorgorov; 

and (iv) Bernoulli dynamical systems, whose distinct properties 

are governed by the nature of the spectrum of L. These 

systems display an increasing level of dynamical instability, 

each implying the properties of the level before it, but not 

being implied by it. 

In many textbooks on statistical mechanics and molecular 

simulation, attention is focused on ergodicity to provide the 

link between dynamics and thermodynamic equilibrium. 

Ergodic systems are ones that pass through every available 

point in phase space (given sufficient time), but ergodicity is 

not a sufficient condition: such systems do not display an 

approach to equilibrium. A greater degree of instability in the 

dynamics is required. As noted above, mixing systems are 

ergodic and they also display an approach to equilibrium. 

Kolmorgorov and Bernoulli systems manifest even greater 

dynamical instabilities than mixing flows; they too display an 

approach to equilibrium and are, of course, also ergodic. 

The key point is this. From ergodic theory, we know that if a 

system is going to exhibit an equilibrium state, it must be at 

least mixing. There is, however, an important additional 

requirement for these properties to be relevant to statistical 

mechanics. That is, in thermodynamics we are dealing with 

systems with very large numbers of atoms and molecules. In 

particular, statistical mechanics works because, in the 

thermodynamic limit (large N and large volume V, such that 

the density (N/V) is constant), ensemble averages converge to 

the same behaviour as the average properties of a single 

system, since the fluctuations become negligible
$
. 

Classical molecular dynamics 

As noted, many textbooks and research papers in the domain 

of interest here pay no attention to the foregoing discussion. 

Instead, they advocate the calculation of “statistical averages” 

from molecular dynamics by reference to the “ergodic 

theorem” (and the associated “ergodic hypothesis”). In short, 

they assume that it is possible to perform a sufficiently long 

single microscopic trajectory calculation such that, in the long 

time limit, one may replace the ensemble averages 〈G〉 which 

are fundamental in statistical mechanics by time averages: 

�< � 		lim=→4
1
> ��!�	"�
=

*
																																�8	 

since the ergodic theorem holds that 〈�〉/6 � �< . Thus, for 

example, one reads in Understanding Molecular Simulation 

that “molecular dynamics is concerned with time averaging”.
13

 

The problem with eqn (8), however, is obvious. The equation is 

valid in the infinite time limit; in practice this has been taken to 

mean that one runs a simulation for as long as is possible, 

computes its time averaged properties, and then claims that 

the values reported represent the macroscopic 

thermodynamic properties of the system. More 

fundamentally, such an approach to computing macroscopic 

averages lacks the generality one seeks in statistical 

mechanics. It is manifestly restricted to the case of systems in 

equilibrium; it cannot be employed for non-equilibrium 

systems where the system’s properties depend explicitly on 

time. 

What is more or less universally ignored is the requirement, if 

an equilibrium state is to be reached, that the probabilistic 

dynamics must be at least mixing. Neighbouring trajectories in 

the “underlying” phase space diverge exponentially fast. A 

single trajectory will never capture such behaviour since on 

the Newtonian trajectory level of representation each instant 

in time is equivalent to every other. Indeed, in this 
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representation the very concept of equilibrium has no 

meaning. 

Rather than pursue such a tenuous approach to determine 

equilibrium properties based on single trajectories—no matter 

how “long” they be—we prefer to embrace the tenets of 

statistical mechanics and directly compute ensemble averages 

by running sufficiently large numbers of replicas of the system 

of interest.  

None of the foregoing theory tells us anything about whether 

the systems under investigation in molecular dynamics 

simulation fulfil the mixing or higher instability properties in 

the ergodic hierarchy. Nor does that theory say anything about 

the rate at which equilibrium is approached, or the number of 

replicas one needs to include in an ensemble. As regards the 

first of these questions, it is known that rigorous proofs aiming 

to show that real systems reside in a specific class within the 

ergodic hierarchy are almost impossible to establish; but since 

these properties are the ones known to guarantee equilibrium 

behaviour, one must assume them to be at least mixing unless 

they are proved not to be so
ǁ
. It is the central purpose of non-

equilibrium statistical mechanics to calculate kinetic 

descriptions that describe the rate at which equilibrium is 

attained.
11

 However, the existing rigorous theories are again 

restricted to idealized and often abstract dynamical systems.
14-

16
 Both the first and the second question therefore need to be 

investigated by computational means. And this is precisely the 

programme we have pursued. 

The ensemble approach to free energy 

determination using molecular dynamics 

computer simulation 

Although the use of ensemble simulations in molecular 

dynamics was first proposed some time ago,
17;18

 the approach 

was not systematically investigated. We focus here on the 

calculation of the Gibbs free energy of binding of a ligand to a 

protein in water. Assuredly these systems display 

experimentally observed equilibrium states, and one can 

measure the Gibbs free energy of binding. It follows from this 

that the system, if faithfully described by classical molecular 

dynamics, is at least a mixing system with trajectories that 

diverge exponentially in time, no matter how close they are 

initially.  

We start, therefore, from a suitably selected ensemble of 

initial conditions, working within the probabilistic 

interpretation of the dynamical behaviour. As noted earlier, 

statistical mechanical theory provides no guide as to how large 

such ensembles should be, while we must also keep an eye on 

the thermodynamic limit. Starting, for example, from an initial 

structure provided by x-ray diffraction, we build models with 

the ligand docked into the active site of the protein. Once the 

models are constructed and ready for molecular dynamics 

analysis, a sufficiently large number of replicas are created, 

which differ only by the random number seed that assigns 

them the differing velocities of all the atoms at the initial time 

when the simulations kick off. Two issues arise. First, how 

many replicas are required, and second what role is played by 

the thermodynamic limit? The answer to the first is 

established by numerical simulation; the thermodynamic limit 

is simply attained by the same process – a macroscopic system 

of this kind would just have of order one mole of ligand and 

protein present. Since there are no significant interactions 

between the individual ligand-protein complexes, we can 

access the thermodynamic limit directly by aggregating the 

properties of the replicas in the ensemble.  

Our extensive studies of numerous protein-ligand systems 

show that such ensembles require no more than 4 nanosecond 

duration simulation and no fewer than 25 replicas in order to 

return errors on the free energy predictions of around 1 

kcal/mol or less. The free energies are computed by two 

classes of method, known as ESMACS
19;20

 and TIES
20;21

. One 

can control the errors in these free energy calculations 

through a combination of the duration in time of each 

molecular dynamics simulation and the number of replicas 

used. Errors at this level, which for one of our methods of free 

energy determination (TIES) are certainly less than 

experimental values, are also reproducible. Accuracy, precision 

and reproducibility of binding free energy predictions are all 

hallmarks of these ensemble based methods, while being 

notoriously elusive in the history of the use of molecular 

dynamics to predict these quantities. 

What emerges from these studies is that the properties one 

computes from individual molecular dynamics trajectories are 

well described by Gaussian random processes. That is, they 

can be thought of as stochastic processes with mean and 

standard deviation conforming to a Gaussian distribution 

(Figure 1a).
9
 This in turn makes it possible to reinterpret 

numerous equations and calculational routes in statistical 

mechanics as stochastic integrals (of which just one example 

are the equations for relative free energy changes in terms of 

thermodynamic integration over alchemically combined pairs 

of distinct molecular states), thereby allowing us to draw on 

the theory of stochastic calculus to compute relevant 

properties reliably.
9
  

The use of these ensemble simulations can be compared to 

what happens when one performs a “long time duration” 

single trajectory simulation. Our work demonstrates 

compellingly that such long simulations (in cases we have 

studied, these have been run for up to a couple of 

microseconds or longer) produce predictions that are no 

better than those of a single replica taken from a 25-member 

ensemble, even though the former is several times longer in 

temporal duration than the entire ensemble simulation (Figure 

1).
19;22

 Our free energy studies show that binding affinities 

obtained from two independent simulations of the same 

molecular system, differing only in initially assigned atomic 

velocities, can vary by up to 10 kcal/mol in the small molecule-

protein complexes,
23;24

 and by up to 43 kcal/mol in the 

peptide-MHC (major histocompatibility complex) systems.
19

 

These variations are much larger than the experimentally 

observed maximum binding free energy difference of the 

inhibitors under investigation. 

We use bootstrapping analysis to quantify convergence and 

deduce errors in these ensemble simulations for a given 
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number of replicas and simulation duration.
24

 A very large 

number of bootstrap samples are generated, drawing with 

replacement from the population of the original data set. The 

standard deviation of the bootstrap samples provides an 

estimate of the error in the original data set. The magnitude of 

the estimated error decreases by increasing the number of 

replicas in an ensemble simulation, directly providing 

information on convergence of the results. 

Thus, the success of such ensemble based simulation studies is 

due to a highly effective exploration of the relevant parts of 

phase space. One can of course envisage situations when there 

may be multiple minima pertaining to different ligand-protein 

bound states, or even simply a number of separate rotameric 

states of (say) the ligand, which may not be accessible from 

the initial ensemble within the timeframe of 4 ns. The absence 

of active-inactive transitions and the lack of sampling of 

inactive conformations do not make a significant contribution 

to the free energies of binding. If such transitions (translating 

into so-called “on” and “off” rates) and additional bound 

states are of interest, then one must ensure they are targeted 

by inclusion of ensembles of initial conditions that guarantee 

there is an appreciable probability for these processes to 

occur. One-off (single replica) simulations do not have any 

reliability owing to the random nature of molecular dynamics 

trajectories. 

When the kinetics of conformational transitions and/or ligand 

binding is of interest, much longer molecular simulations, 

usually on the microsecond timescale
25;26

, will be required 

than those recommended in our studies for equilibrium 

binding affinities. The kinetic information, as well as 

equilibrium properties, can be reconstructed from studies 

with so-called “enhanced sampling techniques” which are 

usually based on tempering the system, modifying the 

underlying potential energy surface, or a combination of both. 

Such enhanced sampling methods may be required to obtain 

relevant metastable states for computing equilibrium 

properties if barriers are sufficiently high between these 

states. However, attempts made to report kinetics from single 

simulations are likely to be just as error prone as single 

simulation based attempts to calculate free energies. Extreme 

caution must be exercised in seeking to make general 

inferences about a system’s behaviour based on these, no 

matter how long the simulated time is reported to be. 

Previous molecular dynamics studies have demonstrated that 

protein systems can get trapped in one or a few 

conformations even in a relatively long time duration 

simulation. The epidermal growth factor receptor (EGFR), for 

example, may
25

 or may not
25;27

 overcome the energy barrier 

between its active and inactive states in the course of 

molecular dynamics simulations on a time scale of 10 μs or 

longer. Even if the transition does occur, a probabilistic 

description cannot be meaningfully constructed because of 

the rare nature of the events concerned. 

The increasing speed of modern computers is largely 

determined by the number of cores and accelerators available 

on them. This development in computer architectures is well 

aligned with the need articulated here to perform ensemble-

based molecular dynamics studies since, in the elapsed time 

needed to perform one such simulation, we can do all of them 

if the machine is large enough. The ability to perform such 

calculations fast – in a few hours – and reliably will have an 

important impact on the use of such methods in areas such as 

drug discovery and clinical decision making.
20;28

 

Conclusions 

We started by recalling known properties of dynamical 

systems which approach and reside in equilibrium states. The 

central property, largely overlooked in discussions of statistical 

mechanics and molecular simulation methods designed to 

compute equilibrium properties from the microscopic level, is 

that of “mixing” in the ergodic hierarchy which classifies the 

types of global behaviours leading to thermodynamic 

equilibrium states under dynamical evolution. 

a)  

 b)  

Figure 1. Comparison of ensemble and single trajectory simulations 

of four peptide-MHC complexes. Results for one peptide sequence, 

AAAKTPVIV (9 amino acid residues in single-character notation), are 

shown here as an example. All others exhibit similar behaviour. (a) 

The Gaussian distribution of free energies from ensemble 

simulation, comprising 50 independent replicas each of 4 ns 

duration, has a larger spread than from any individual replica; single 

microsecond trajectories (red line), five times longer than the 

aggregated length of all replicas in the ensemble, behave like 4 ns 

replicas.
19 

(b) The ensemble simulations correctly predict the 

ranking of the binding energies for the four peptides considered 

(black circles and dashed line), while single long trajectories produce 

rankings which are anti-correlated with those observed (red circles 

and dashed line). 
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Basing the determination of equilibrium properties on ergodic 

theory in this manner ensures that we compute ensemble-

averaged behaviour in a manner which is truly consistent with 

the methods of statistical mechanics. We indeed find that 

neighbouring trajectories diverge very rapidly in phase space. 

Properties derived from these show all the hallmarks of 

Gaussian random processes. 

Calculating macroscopic properties in this manner from 

classical molecular dynamics provides the means to report 

reproducible results including errors intrinsic to the method. 

The errors are under the direct control of the person 

performing the calculations through the choice of number of 

replicas and duration of the molecular dynamics simulation 

time. 

In several respects, this approach to molecular dynamics 

calculations is analogous to weather forecasting. To predict 

tomorrow’s weather today, meteorologists do not run a single 

simulation. They recognise that they will never know exactly 

the initial conditions that are required to perform a single fluid 

dynamics based calculation, in a system of Navier-Stokes 

equations known to exhibit dynamical chaos. So they perform 

many simulations with slightly varying initial conditions—i.e 

they compute the behaviour of ensembles—in order to make 

reliable probabilistic predictions of what the weather will look 

like the next day. Speed too is of the essence here as it is 

there. Just as the public wishes to know tomorrow’s weather 

today, not in three weeks time, for the application of free 

energy calculations in drug development and clinically based 

personalised medicine
28

 we must be able to deliver accurate 

and reliable results within hours to drive decision making. 
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