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CASSCF/SI–SO calculations have also been used to rationalize the
direction and extent of the magnetic anisotropy in terms of ligand
geometry and crystal field models based on electrostatic charge
distributions,19–23 to guide the design of new lanthanide-SMM
candidates,24 and to investigate spin and orbital magnetization
densities in a series of lanthanide sandwich complexes.25

CASSCF/SI–SO is now widely used to compute spectroscopic
and magnetic properties of Ln(III) complexes. Here we present
a critical assessment of this approach and propose an alternative
which is both a simplification and extension. Section 2 reviews
how CASSCF/SI–SO is applied to Ln(III) complexes. A discus-
sion of the characteristic electronic structure of 4f elements sug-
gests that state-dependent orbital flexibility, provided by CASSCF,
is of minor importance. This is corroborated by an analysis
of the common practice of applying state-averaged CASSCF to
these systems. Based on these findings we propose a simplified
method based on one set of molecular orbitals, obtained from
a configuration-averaged Hartree-Fock (CAHF) calculation. This
approach allows a great simplification of the subsequent state-
interaction problem, which can now be formulated as a simulta-
neous diagonalization of Coulomb repulsion and spin–orbit cou-
pling in the basis of Slater determinants of the 4fn configuration
(CASCI–SO).

In order to test the CAHF/CASCI–SO approach we apply it to
three example complexes. Some technical details of the method
are described in Section 3. Section 4 compares the results with
those obtained with CASSCF/SI–SO and it is shown that a very
good agreement is found.

2 CASSCF/SI–SO treatment of the elec-

tronic structure of Ln(III) complexes

We begin by reviewing the CASSCF/SI–SO method as it is applied
to mononuclear Ln(III) complexes in the molecular magnetism
literature. (See, for example, Ref.6 and references therein.)

The purpose of the CASSCF step is to obtain wave functions
that can be thought of as corresponding to the atomic Russell–
Saunders terms, whose degeneracies are weakly split by the pres-
ence of the ligand environment. For a Ln(III) complex whose
formal configuration is 4fn, this is achieved by choosing the ac-
tive space to consist of n electrons in the seven 4f-like orbitals,
giving rise to

(

14
n

)

Slater determinants. These are spin-adapted
into configurational state functions (CSF) of definite spin quan-
tum numbers S. For each spin manifold a number of CASSCF
wave functions is then optimized. Spin–orbit coupling (SOC) is
introduced in the second step (SI–SO) by diagonalizing the SOC
operator in the basis of the optimized CASSCF wave functions.
The resulting eigenvectors are then used to calculate expectation
values of relevant operators, in particular the magnetic moment.

Due to the importance of SOC in the rare-earth coupling
scheme known from atomic theory, according to which the
strengths of terms in the Hamiltonian are ordered as follows: in-
terelectronic repulsion > spin–orbit coupling > crystal field po-
tential, one would preferably include as many optimized CASSCF
spin states as possible in the SOC diagonalization. The best possi-
ble calculation in this setting would indeed include all spin states

of the 4fn manifold in the spin–orbit mixing, corresponding to
what in atomic theory is known as complete intermediate cou-
pling.26

Note that CASSCF in general employs different molecular or-
bitals for different states. Calculating a matrix element between
any two such states can be computationally expensive in large
basis sets, due to the mutual non-orthogonality of the molecu-
lar orbitals.27 The RASSI routine8,9 of MOLCAS deals efficiently
with this problem, but it is still a computationally demanding task
when interaction between a large number of CASSCF states is
required. For example, Dy(III), the most studied lanthanide in
single-molecule magnetism, has a 4f9 configuration which corre-
sponds to a total of 735 spin states. A complete intermediate cou-
pling calculation would require interaction between 735 CASSCF
states. This has so far not been feasible. In fact, in a recent re-
view concerning the application of CASSCF/SI–SO to Ln(III) com-
plexes the authors state that, based on experience, current com-
puter capacities limit the number of states to about 300.6

While CASSCF in principle allows individual optimization of CI
roots with respect to molecular orbital rotations, this is in prac-
tice only feasible for a few of the lowest-energy roots of the CI
matrix. When a large number of roots is required, the only vi-
able strategy is to resort to state-averaged CASSCF, whereby the
molecular orbitals are optimized to minimize the average energy
of the required roots. Thus, within the current application of
the CASSCF/SI–SO strategy to Ln(III) complexes, for each S, a
state-averaged CASSCF calculation is performed often including
all states with spin S that are possible within the 4fn manifold,
giving equal weight to all states in the average. It should be
noted that the molecular orbitals so obtained are completely in-
dependent from the CI problem. This can be seen as follows. The
CASSCF iterative process involves alternating orbital rotation and
CI diagonalization steps. The latter determines the roots and their
energy. But if only the average energy of all roots is required, then
diagonalization is not necessary, because the sum of all eigenval-
ues is always equal to the sum of all diagonal matrix elements
(i.e. the trace of the CI matrix):

dimHS

∑
i=1

ES,i = TrHS. (1)

A CASSCF optimization of this type is thus mathematically equiv-
alent to a minimization of the trace of the CI Hamiltonian matrix
with respect to molecular orbital rotations. Since the trace is inde-
pendent of basis choice, there is no need to build and diagonalize
the CI matrix at every iteration. Indeed, one obtains exactly iden-
tical results by first performing an SCF minimization of TrHS and
then, using the orbitals so obtained, a single CI diagonalization to
obtain state energies and wave functions. This shows that the or-
bital optimization is completely decoupled from the CI problem.

The reason that this state-averaging procedure works well is
probably that molecular orbital relaxation between states of the
4fn space is relatively small. In fact, the almost pure atomic
nature of the 4f valence shell would suggest that MCSCF cal-
culations are not required. Characteristic for most Ln(III) com-
plexes is indeed the almost complete absence of covalent mixing
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of 4f atomic orbitals with ligand orbitals. It can therefore be ar-
gued that the strong electron correlation problem is essentially an
atomic one. In atoms Coulomb repulsion commutes with both SSS2

and LLL2 electronic angular momenta, so that if one could start
with CSF’s with good quantum numbers S and L arising from
a given 4fn configuration, i.e. a representation of the Russell–
Saunders terms, one would expect such basis to be optimal in
order to capture the dominant features of strong electron correla-
tion (static correlation) at the atomic level, or in a few cases after
solving very small diagonalization problems for the determination
of accurate Russell–Saunders terms as linear combinations of few
LS-symmetry adapted CSF’s. It is therefore arguable that pure
atomic spin–orbit multiplets characterized by a total angular mo-
mentum quantum number J, obtained by diagonalization of the
SOC Hamiltonian on the basis of atomic Russell–Saunders CSF’s,
would represent the most appropriate guess-states for subsequent
molecular calculations, possibly for simple SCF calculations to de-
termine the optimal orbitals in the presence of the crystal field po-
tential. However, current molecular quantum chemistry codes do
not work that way and one is typically forced to start from a basis
of CSF’s that are only spin-symmetry adapted, thus quite far from
being atomic states already taking care of on-site correlation.

If this argument is valid, and we are only interested in the prop-
erties of the lowest spin-orbit multiplet, we should expect that in
the CASSCF/SI–SO approach what captures the relevant electron
correlation effects is the attempt to reproduce LLL2 eigenfunctions
as closely as the rotational symmetry-breaking effect of the lig-
ands allows, pursued via diagonalization of Coulomb repulsion
in the basis of the CAS same-spin CSF’s. Such attempt would
arguably be quite independent of orbital optimization which is
instead crucial to represent the symmetry-breaking character of
the crystal field electrostatic potential, and consequent splitting
of the ground atomic multiplet.

The previous discussion naturally suggests to go one step fur-
ther and assume that the averaged 4f orbitals will not depend
much on the total spin of the wave function either, so that just
one set of orbitals can be used to describe the entire 4fn mani-
fold of states. The result of this simplification is that we can now
formulate the CI on a determinantal basis and that the CI on the
electrostatic Hamiltonian and on the SOC, which are separated in
CASSCF/SI–SO, can now be combined in just one diagonalization
step. This approach will be described in the next section.

3 Simplified approach: CAHF/CASCI–SO

The method we propose here consists of two steps. In the first
step a set of optimal molecular orbitals is obtained from a suitable
configuration-averaged restricted HF-type calculation as detailed
in subsection 3.2. In the second step the optimized orbitals are
used to construct all Slater determinants of the open 4fn shell, re-
gardless of which subset was used in the first step to build the av-
erage energy functional. These determinants form the basis for a
generalized configuration-interaction type matrix diagonalization
which, besides the usual non-relativistic Coulomb repulsion oper-
ator, also involves the spin–orbit coupling operator, as detailed in
subsection 3.3.

Configurational-average methodologies have been extensively

discussed and applied for many years, since the work of McWeeny
who proposed them to treat excited states associated with any
number of open shells.28,29 We also note in passing that, as a
cheaper alternative to CASSCF, complete active space configura-
tion interaction (CASCI) based on molecular orbitals determined
in a previous step has also been studied by several workers in
a variety of contexts.30–37 Visser et al.38 applied the idea of
configuration-averaged orbitals to a lanthanide crystal-impurity
problem in the context of relativistic four-components calcula-
tions, which therefore contain spin–orbit coupling from the very
start. Their method has never developed, to our knowledge, into
a practical non-relativistic ab initio approach dedicated to the
calculation of crystal field levels and magnetic properties of lan-
thanide complexes.

3.1 Hamiltonian

The Hamiltonian that we use in the present paper is identical to
that used for CASSCF/SI–SO calculations in MOLCAS.9 It is given
by the second order Douglas–Kroll–Hess (DKH) scalar Hamilto-
nian, combined with the usual non-relativistic Coulomb electron
repulsion operator and an effective one-electron atomic mean-
field (AMFI) approximation of the DKH no-pair spin–orbit oper-
ator.8,39 A detailed description of this Hamiltonian can be found
in Ref.40.

We have implemented configuration-averaged Hartree–Fock
(CAHF) and spin–orbit-inclusive complete-active space configu-
ration interaction (CASCI–SO) modules in a local development
code, CERES (Computational Emulator of Rare Earth Systems),
which is based on the open-shell version41 of the SYSMO soft-
ware.42 Since in SYSMO the integrals of the DKH operators in the
atomic basis set are not available, all integrals are computed us-
ing the SEWARD program of MOLCAS 8.0,9 and read into CERES

to be used by our CAHF and CASCI–SO modules, which are de-
scribed in the next sections.

3.2 Configuration-averaged Hartree–Fock (CAHF) orbitals

In order to obtain a set of molecular orbitals (MO) for the sub-
sequent CI calculation we minimize the average energy of the
states of the 4fn configuration.28 There are several ways one
might choose to do this. For instance, we could build an average-
energy functional over all Slater determinants with a constant MS

projection of the spin angular momentum. Such approach turns
out to be rather useful, e.g. for debugging purposes. In fact,
when MS = Smax, the energy functional is equivalent to that min-
imized during a state-averaged CASSCF calculation performed
with as many roots as there are S = Smax states within the 4fn

configuration (see Eq. (1)), and thus the orbitals obtained via
this approach should be equivalent to those obtained via a state-
averaged CASSCF calculation with MOLCAS. Moreover, for any
other MS value our configuration-averaged approach optimizes
orbitals by mixing two or more spin-manifolds. Clearly, such or-
bitals are not equivalent to any of the state-averaged CASSCF op-
timized orbitals, and it is thus an interesting question whether this
can lead to significant discrepancies between the two approaches.
Finally, we can average over all MS spin manifolds and simply ob-
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tain a fully-averaged SCF problem within the 4fn configuration,
in the spirit of the old McWeeny proposal,28 which, if our rea-
soning is correct, should yet again lead to nearly atomic 4f-like
orbitals with no appreciable discrepancies from the SA–CASSCF
methodology.

McWeeny has treated the general case of configurational aver-
aging (see, for example, Ref.29, §§6.5–6.6). We briefly present
here the special case of MS-configuration-averaging, and then
generalize the results to those reported by McWeeny. We use
McWeeny’s density matrix notation.

Let us consider a system with one closed and one open shell,
having n1 spatial orbitals in the closed shell (or n1 inactive or-
bitals), n2 spatial orbitals in the open shell (or n2 active or-
bitals). Let nA be the number of active electrons, with nα spin-
up and nβ spin-down electrons (nA = nα + nβ ), thus with fixed
MS = 1/2(nα −nβ ) value. Averaging the electrostatic Hamiltonian
over the

(

n2

nα

)(

n2

nβ

)

Slater determinants that can be formed by oc-
cupying the n2 active orbitals with nα spin-up electrons and nβ

spin-down electrons we obtain the energy functional:

E
MS
av = ν1

n1

∑
i

hi +
ν2

1

2

n1

∑
i, j

(Ji j −
1

2
Ki j) (2a)

+ν1ν2

n1

∑
i

n2

∑
u

(Jiu −
1

2
Kiu) (2b)

+ν2

n2

∑
u

hu +
ν2

2

2

n2

∑
u,v
(λ MS

J Juv −λ MS

K Kuv). (2c)

where ν1 = 2, ν2 = nA

n2
are the (average) occupations of the two

sub-shells, indices i, j run over the inactive space, indices u,v run
over the active space, and the Coulomb (Juv) and exchange (Kuv)
integrals for the active space are weighted by the MS-dependent
coefficients:

λ MS

J =
n2nA (nA −1)−2nα nβ

n2
A (n2 −1)

λ MS

K =
n2nA (nA −1)−2n2nα nβ

n2
A (n2 −1)

(3)

This expression can be rewritten in terms of density and inte-
gral matrices on the atomic basis

Eav = ν1 Tr[R1(h+
1
2
G1)]+ν2 Tr[R2(h+

1
2
G2)], (4)

where Ri = TiT
⊺

i is the density matrix of shell i, whose LCAO
coefficients are contained in the columns of Ti, h is the matrix of
the one-electron Hamiltonian, and

G1 = ν1G(R1)+ν2G(R2)

G2 = ν1G(R1)+ν2G
MS(R2)

(5)

are Coulomb–exchange matrices, with

G(R) = J(R)− 1
2
K(R)

G
MS(R) = λ MS

J J(R)−λ MS

K K(R),

(6)

and

J(R)αβ = ∑
δγ

Rδγ 〈γα|δβ 〉

K(R)αβ = ∑
δγ

Rδγ 〈γα|βδ 〉

(7)

the usual Coulomb and exchange matrices, respectively. Greek
letters denote basis set functions.

We are also interested in optimizing the energy functional orig-
inally proposed by McWeeny, arising from averaging over the full
set of Slater determinants that can be obtained in the chosen
active space, regardless of the spin-projection quantum number
MS. This can be easily recovered by multiplying λ MS

J and λ MS

K in
Eqs. (3) by the number of Slater determinants

(

n2

nA/2+MS

)(

n2

nA/2−MS

)

with constant MS, summing over all possible MS, and dividing by
the total number of Slater determinants. This leads to:

λ J =

∑
MS

(

n2
nA

2
+MS

)(

n2
nA

2
−MS

)

λ MS

J

∑
MS

(

n2
nA

2
+MS

)(

n2
nA

2
−MS

) =
2

ν2

(nA −1)

(2n2 −1)

λ K =

∑
MS

(

n2
nA

2
+MS

)(

n2
nA

2
−MS

)

λ MS

K

∑
MS

(

n2
nA

2
+MS

)(

n2
nA

2
−MS

) =
1

ν2

(nA −1)

(2n2 −1)

(8)

which determines a modified energy functional, given by a mod-
ified Eq. (2), where the average electron–electron repulsion term
within the active space (i.e., last term in the last line in Eq. (2))
is modified using Eq. (8), thus becoming:

ν2

(nA −1)

(2n2 −1)

n2

∑
u,v
(Juv −

1

2
Kuv). (9)

The energy functional Eq. (2), or equivalently that originally
proposed by McWeeny that can be obtained from Eq. (9), is akin
to the energy functional arising in the restricted open-shell HF
(ROHF) theory.29 Thus it can be easily shown that a sufficient
condition to minimize Eq. (2) or Eq. (4) is to build the density
matrices for inactive and active spaces from the converged self-
consistent eigenfunctions of an effective Fock-like Hamiltonian:

Feff = aR̃2F1R̃2 +bR̃1F2R̃1 + cR̃3 (ν1F1 −ν2F2) R̃3 (10)

where Fi = h+Gi, R̃i = 1−Ri, and a, b and c are arbitrary real
non-zero parameters that can be adjusted to improve convergence
of the SCF process. This procedure has been implemented via a
simple modification of the open-shell SYSMO code41, by modify-
ing the mean-field repulsion potential within the active space by
Eqs. (3) or Eqs. (8), which enter Eq. (10) via the G-matrix G2 in
Eq. (5). For the time being the only tools we have implemented
to achieve convergence of the configuration-averaged SCF process
are a direct inversion of the iterative subspace (DIIS) algorithm,43

and level shifters for the open and virtual shells.44
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3.3 Spin–orbit-including complete active space configura-

tion interaction (CASCI–SO)

The CAHF orbitals are now used to set up the full configuration in-
teraction calculation in the determinantal basis of the open shell.
Since there are 7 spatial 4f orbitals and n electrons distributed
among them, the dimension of the CI secular matrix is

(

14
n

)

. The
largest dimension occurs for n = 7 and is 3432. As this is a rela-
tively small number, diagonalization of the CI matrix is fast.

The CI routine that we have implemented is based on the σ -
algorithm of Olsen et al.45 for the scalar (spin-conserving) part of
the Hamiltonian (i.e., the scalar one-electron plus interelectronic
Coulomb repulsion terms). We also need to include the CI matrix
elements of the SOC operator, which is not spin-conserving.

The AMFI SOC operator can generally be written as

HSO = ∑
i

t(i) · s(i), (11)

where the summation is over all electrons, and t is a function of
space only. In second quantization this gives

HSO =
1

2
∑
u,v
[tz

uva
†
uα avα − tz

uva
†

uβ
avβ

+(tx
uv − ity

uv)a
†
uα avβ +(tx

uv + ity
uv)a

†

uβ
avα ], (12)

where tuv are the AMFI integrals, transformed to the active molec-
ular orbital basis. The first two terms are spin-conserving, and can
be handled by the scalar CI algorithm.45 The third and the fourth
term introduce spin flips and in order to include these we have
supplemented the original algorithm with routines that handle
single excitations from α to β spin orbitals and vice versa.

4 Application

This section presents results of calculations on three isostructural
complexes: [Ln(acac)3(H2O)2], Ln = Dy, Ho, Er.46 We compare
the CASSCF/SI–SO method with the CAHF/CASCI–SO method.

We performed single-point calculations on all three complexes,
using the crystallographic structures.46 ANO-RCC basis sets47

were used on all atoms, contracted to [9s8p6d4f3g2h] for Dy,
Ho, Er, [3s2p1d] for C and O, and [2s1p] for H.

CASSCF/SI–SO calculations were done with MOLCAS 8.0.9 The
active space consists of the seven Ln 4f orbitals, and is occupied
by 9 electrons for Dy, 10 electrons for Ho, and 11 electrons for
Er. These occupations correspond to the trivalent oxidation state
and give rise to a ground spin–orbit multiplet with total angular
momentum J = 15/2 for Dy(III), J = 8 for Ho(III), and J = 15/2

for Er(III). (Within the single Russell–Saunders term approxima-
tion, these correspond to 6H 15

2

for Dy(III), 5I8 for Ho(III), and
4I 15

2

for Er(III)). Crystal field splitting of the J multiplets results in
eight low-lying Kramers doublets (KD’s) for the Dy and Er com-
pounds. The ground J multiplet of the Ho compound, being an
even-electron system, splits into seventeen non-degenerate states.
State-averaged (SA) CASSCF optimizations were done on the av-
erage energy of all states belonging to the highest spin, viz. 21
S = 5/2 states for Dy, 35 S = 2 states for Ho, and 35 S = 3/2 states

for Er. The resulting wave functions were spin–orbit coupled with
the RASSI module of MOLCAS. We chose not to include states of
lower spin in the spin–orbit coupling calculation for two reasons:
First, as mentioned in Section 2, it is computationally not feasi-
ble to include all spins of the 4f9 manifold of Dy(III) in a RASSI
calculation (this goes for the 4f10 manifold of Ho(III) as well).
In practice, one resorts to an approximation, either by discard-
ing states above a certain cutoff energy, or by just including the
highest-spin states only.6 Second, this allows to assess the influ-
ence of SOC mixing with states of lower spin, by comparison with
the CASCI–SO results.

CAHF/CASCI–SO calculations were done following the method
described in Section 3. Two different types of HF averaging were
considered to obtain the molecular orbitals: in the first, averaging
was done over all determinants with maximum spin projection
MS, using the λ coefficients in Eq. (3). In the second type aver-
aging was done over all determinants, using the λ coefficients in
Eq. (8).

Magnetic g-factors were calculated for each Kramers doublet
of the Dy and Er complexes.48,49 The Ho complex is an even-
electron system and as such has no Kramers doublets. Neverthe-
less, it is sometimes possible to find two quasi-degenerate states
and treat them as a pseudo-doublet, for which g-factors can be
calculated. This has been done for the two lowest states of the
Ho complex (Table 3). Note that such pseudo-doublets have only
one non-zero principal g-factor.50

Table 1 presents calculated average and ground state energies,
the latter both with and without inclusion of SOC. Note that the
SOC-free energies in columns 1 and 2 are identical. This confirms
the equivalence of SA–CASSCF and CAHF orbitals for the high-
spin subspace, predicted by Eq. (1).

The calculated relative energies and magnetic g-factors are
summarized in Tables 2–4. It is clear that there is minimal dif-
ference between the results generated by the three methods. The
largest changes are observed when including all spin states in
the spin–orbit coupling, as opposed to the high-spin states only.
Smaller changes are observed when using orbitals averaged over
all states, as opposed to orbitals averaged over the high-spin
states only.

5 Conclusion

We have investigated the application of the CASSCF/SI–SO ab

initio method to the calculation of crystal field splitting and mag-
netic anisotropy in complexes of trivalent lanthanide ions. The
two main ingredients of this method are: (i) Coupling of Slater
determinants into Russell–Saunders-like terms by configuration
interaction in the active space 4fn; (ii) Coupling of those terms
into J-like multiplets by spin–orbit state interaction. CASSCF per-
forms step (i) but uses state-dependent molecular orbitals. This
complicates step (ii) because the SI–SO program has to calcu-
late matrix elements between states expressed in mutually non-
orthogonal orbitals. Based on the fact that “4f molecular orbitals”
in Ln(III) complexes are almost pure atomic 4f orbitals we have
suggested that significant state-dependence of the CASSCF molec-
ular orbitals is not expected. This is corroborated by the already
common practice of state-averaging CASSCF over a large number
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Table 1 [Ln(acac)3(H2O)2]: Comparison of total energies, shifted by

−13328 Hartree for Dy, −13787 Hartree for Ho, and −14256 Hartree for

Er. GS = ground state energy.

SA–CASSCF CAHF CAHF
Ion on Smax on MS = Smax on all MS

Dy Eav −1.021652 −1.021652 −0.777037

CASCI
GS −1.057170 −1.057170 −1.055993

SI–SO CASCI–SO
GS −1.079553 −1.086042 −1.084697

Ho Eav −0.477551 −0.477551 −0.327231

CASCI
GS −0.559519 −0.559519 −0.558906

SI–SO CASCI–SO
GS −0.589286 −0.595589 −0.594871

Er Eav −0.866271 −0.866271 −0.789330

CASCI
GS −0.949870 −0.949870 −0.949656

SI–SO CASCI–SO
GS −0.982882 −0.986258 −0.985998

Table 2 [Dy(acac)3(H2O)2]: Calculated relative energies and g-factors of

the Kramers doublets corresponding to the crystal-field split J = 15/2

ground multiplet.

Doublet Energy/cm−1 g1 g2 g3

SA–CASSCF/SI–SO (S = 5/2)
1 0.0 0.01 0.01 19.56
2 156.4 0.26 0.45 15.70
3 234.8 2.02 2.87 11.28
4 289.5 2.27 5.87 7.01
5 323.3 2.12 4.25 13.84
6 417.9 0.01 0.13 16.28
7 477.7 0.04 0.08 18.84
8 539.7 0.01 0.02 19.22

CAHF (MS = 5/2)/CASCI–SO
1 0.0 0.01 0.01 19.44
2 154.0 0.26 0.45 15.60
3 231.9 1.92 2.75 11.22
4 285.8 2.42 6.02 6.99
5 319.1 2.05 4.13 13.66
6 410.8 0.00 0.13 16.21
7 468.9 0.04 0.07 18.78
8 529.8 0.01 0.02 19.14

CAHF (all MS)/CASCI–SO
1 0.0 0.01 0.01 19.43
2 155.0 0.25 0.43 15.59
3 234.2 1.87 2.68 11.23
4 288.5 2.40 6.05 6.97
5 321.2 2.05 4.22 13.60
6 413.3 0.01 0.13 16.23
7 471.8 0.04 0.07 18.79
8 533.3 0.01 0.02 19.14

Table 3 [Ho(acac)3(H2O)2]: Calculated relative energies of the states

corresponding to the crystal-field split J = 8 ground multiplet. The

calculated g-factors are those of the pseudo-doublet consisting of states

1 and 2.

SA–CASSCF/ CAHF (MS = 2)/ CAHF (all MS)/
SI–SO (S = 2) CASCI–SO CASCI–SO

g1 0.00 0.00 0.00
g2 0.00 0.00 0.00
g3 17.23 17.12 17.16

State Energy/cm−1

1 0.0 0.0 0.0
2 4.2 4.0 3.9
3 34.9 33.2 33.6
4 45.0 42.7 43.0
5 101.4 96.1 96.5
6 125.8 118.8 119.2
7 146.1 138.1 138.4
8 162.5 153.5 154.1
9 177.6 168.3 168.4
10 209.0 197.7 197.5
11 220.1 208.1 208.1
12 222.8 210.6 210.8
13 230.9 218.5 218.3
14 255.6 242.0 242.2
15 264.3 250.1 250.0
16 293.9 277.6 277.4
17 295.0 278.6 278.4

Table 4 [Er(acac)3(H2O)2]: Calculated relative energies and g-factors of

the Kramers doublets corresponding to the crystal-field split J = 15/2

ground multiplet.

Doublet Energy/cm−1 g1 g2 g3

SA–CASSCF/SI–SO (S = 3/2)
1 0.0 0.65 1.88 14.43
2 29.6 1.92 3.48 12.24
3 70.4 1.74 4.41 9.45
4 87.5 0.27 3.64 10.85
5 135.3 0.19 3.69 10.37
6 179.1 1.56 3.82 10.99
7 252.2 0.15 2.64 11.53
8 296.6 0.63 2.11 15.26

CAHF (MS = 3/2)/CASCI–SO
1 0.0 0.57 1.68 14.62
2 29.2 1.81 3.21 12.59
3 70.9 1.91 4.24 9.62
4 89.0 0.23 4.01 10.39
5 134.3 0.23 3.47 10.40
6 179.0 1.65 3.80 11.03
7 253.3 0.29 2.48 11.68
8 299.9 0.58 1.88 15.38

CAHF (all MS)/CASCI–SO
1 0.0 0.56 1.69 14.62
2 28.7 1.77 3.20 12.62
3 70.6 1.95 4.23 9.64
4 88.8 0.21 4.10 10.34
5 133.8 0.23 3.46 10.40
6 178.4 1.65 3.79 11.07
7 252.4 0.32 2.46 11.70
8 299.2 0.57 1.85 15.39
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of 4fn states. If so, a single set of 4f-configuration-averaged or-
bitals may be used to represent all states. As a result, steps (i)
and (ii) may be combined in a convenient single diagonalization
on the Slater determinant basis.
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