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The local environment of CS2 and in solution in two ionic liquids ([C1C1im][NTf2] and [C4C1im][NTf2]) are investigated by

atomistic simulation and compared with that in neat CS2. The intermolecular vibrational densities of states of CS2 are calculated

and compared with experimental OHD-RIKES spectra. The fair agreement of the results from solutions but poor agreement

of the results from neat CS2 suggest that while collective effects are unimportant in solutions, they have a major effect on the

OHD-RIKES spectrum of neat CS2. Comparing polarizable and unpolarizable models for CS2 emphasizes the importance of

polarizability in determining local structure.

1 Introduction

The solvation mechanism of molecular solutes in ionic liq-

uids (ILs) can be quite different than in conventional molec-

ular solvents not only because of the ionicity of ILs1 but

also because of their nanoscale structural heterogeneity. That

such heterogeneity is present in ILs was first evidenced by

molecular dynamics (MD) simulations of ILs based on 1-

alkyl-3-methylimidazolium ([CnC1im]+)2–4 and experimen-

tally by small-wide X-ray scattering (SWAXS) measurements

on [CnC1im][Cl] and [CnC1im][BF4].5 Initially, the existence

of heterogeneity in ILs was met with scepticism, particularly

in the assignment of the prepeak in the total scattering function

S(q) to nanoscale correlations associated with this heterogene-

ity.6 However, these doubts have largely been laid to rest by

Margulis and coworkers7 who through the use of MD simula-

tions showed how S(q) can be resolved into components corre-

sponding to correlations between the types of charge-density

regions reflecting this heterogeneity.

The heterogeneity in ILs is characterized by nonpolar

domains (low-charge density regions) embedded or inter-

twined with polar domains (high-charge density regions)

that arise from the nanosegregation of the alkyl tails, with

the degree of structural heterogeneity being dictated by the

length of the Cn-alkyl tails. Recent MD simulations on

the [CnC1im][NTf2] series of ILs, where [NTf2]− is the

bis[(trifluoromethane)sulfonyl]amide anion, reveal a more

complex picture of the evolution of the morphology with

increasing alkyl chain length from isolated ‘hydrocarbon-

like islands in the midst of a continuous polar network’ for
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short chains (n = 2- 4) that percolate to form a continu-

ous nonpolar microphase for longer alkyl chains with the

percolation threshold occurring at n = 6.8 Given this sce-

nario of polar and nonpolar domains, the modes of solva-

tion of molecular solutes can be understood from the chem-

ical adage ‘like dissolves like’ with nonpolar solutes re-

siding in the low-charge density regions, polar protic so-

lutes in the high-charge density regions, and polar aprotic

solutes at the interface between the high-charge and low-

charge density regions, as shown, respectively, in simulations

of mixtures of hexane/[C6C1im][PF6], H2O/[C6C1im][PF6],

and CH3CN/[C6C1im][PF6].9,10 Recent experimental mea-

surements of butane and isobutane in imidazolium-based ILs

backed by MD simulations, provide further support for non-

polar aprotic alkane solutes being localized in the low-charge

density regions of the IL.11,12 Nonpolar aromatic solutes, such

as benzene, are a special case because of their propensity to

interact with the imidazolium ring through local electrostatic

interactions giving rise to π-stacking.13–17

In a recent study, Xue et al.18 found that mixtures of certain

nonpolar aprotic solutes and [C1C1im][NTf2] appear to be at

odds with the paradigm of nonpolar solutes residing mainly

in the low-charge density regions. Because [C1C1im][NTf2]

lacks the long Cn chain (n > 2) required to form nonpolar do-

mains, the solubility of a nonpolar aprotic solute must solely

be determined by its interaction with the high-charge den-

sity part of [C1C1im][NTf2]. They found that upon mixing,

a 10 mol% mixture of CCl4 and [C1C1im][NTf2] formed an

optically clear solution, whereas a 10 mol% mixture of n-

pentane and [C1C1im][NTf2] formed a cloudy emulsion. Sim-

ilar results were obtained for the 20 mol% mixtures of CCl4
and [C1C1im][NTf2] and n-pentane and [C1C1im][NTf2]. In

contrast, a 10 mol% mixture of CS2 and [C1C1im][NTf2]

formed an optically clear solution, whereas a 20 mol% mix-
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ture of CS2 and [C1C1im][NTf2] formed a cloudy emulsion.

These tests showed the relative solubilities in [C1C1im][NTf2]

at room temperature to be in the order n-pentane < CS2 <

CCl4. As CS2 is polarizable it can interact with the high-

charge density regions of the IL via charge-induced dipole

forces. Therefore, the greater the molecular polarizability

of the solute, the greater is its solubility in [C1C1im][NTf2].

Given that the mean molecular polarizability of CCl4 (11.7×

10−40 J V−2m2)19 is greater than that of CS2 (9.7× 10−40 J

V−2m2),19 this correlation between polarizability and solubil-

ity is consistent with solubility of CCl4 in [C1C1im][NTf2]

being greater than that of CS2. Because the molecular polariz-

ability of n-pentane (11.1×10−40J V−2 m2)19 is almost equal

to that of CCl4, one would have predicted that the solubilities

of n-pentane and CCl4 should be the same, and that n-pentane

should have a greater solubility than CS2, which is contrary

to the results of the solubility tests. Because solvation in the

high-charge density regions of the IL involves disruption of

the charge-order, the size of the solute must also be considered

in that small solutes would be more readily accommodated in

the charge-ordered network than large solutes. This would ex-

plain the relative observed solubilities of CCl4 and n-pentane,

even though they have nearly the same polarizabilities. As the

molecular volume of n-pentane (VvdW = 107 Å3) is larger than

CCl4 (VvdW = 88.3 Å3)) and CS2 (VvdW = 55.6 Å3)), we would

predict that the solubility of n-pentane to be less than that of

CS2 and CCl4, in agreement with the solubility tests. How-

ever, using solute size alone, we would also predict that the

solubility of CS2 should be greater than that of CCl4, contrary

to the solubility tests. Therefore, in the solvation of nonpolar,

nonaromatic solutes in [C1C1im][NTf2], the polarizability of

a solute appears to play a greater role than its molecular size.

CS2 is often used as a reference in OHD-RIKES spec-

troscopy as its large anisotropic polarizability gives a strong

signal.20–24 Xue et al.18 have made measurements of the Kerr

spectra of solutions of CS2 in [CnC1im][NTf2]. In order to

model these systems in computer simulations one needs a

model for the interaction of CS2 with the other species present.

We wondered whether it was important to include the polar-

izability of CS2 in the simulation or whether properties of the

mixture would be described adequately by a non-polarizable

model. To investigate this we have compared simulations of

CS2 in [C1C1im][NTf2] and [C4C1im][NTf2] using different

models of CS2. We find that while the properties of solutions

of CS2 in the ionic liquid are much the same for models with

and without charges, including polarizability affects the lo-

cal structure considerably. We find considerable differences

between the imidazolium ionic liquid with a butyl side chain

and one with a methyl side chain which we attribute to the

presence and absence of non-polar domains in the liquid. Of

course the S atoms of CS2 are not the only polarizable atoms

in the system, but with the computational resources available

to us it is not practical to make all the atoms polarizable. Kerr

spectra of solutions of solutions of CS2
18,20–24 show that the

dominant contribution comes from the anisotropically polar-

izable CS2. Hence in this current work we only include the

polarizability of CS2.

2 Models and simulation conditions.

CS2 has been modelled in computer simulations for many

years. Tildesley and Madden25 first introduced a model with

three Lennard-Jones sites on a rigid CS2 molecule which gave

good liquid properties. This is our first model, the T&M

model. However the molecule has a quadrupole moment26

and our second model, the charged model, has charged sites

in addition to the Lennard-Jones terms. The charges are taken

from Torii27 which were chosen to fit the electrostatic field

around a molecule. Although Torii showed that one needs site

quadrupoles in addition to site charges to obtain a good fit to

the electrostatic field of the molecule, we have not included

such terms. Our third model includes polarizability - the po-

larizable model. Polarizability was modelled using the shell

model with shells on the two sulphur sites, but with no inter-

actions between sites in the same molecule. This model does

not account for the difference in molecular polarizability par-

allel and perpendicular to the symmetry axis, but does allow

the molecule to respond to an unsymmetric environment. The

polarisability of CS2 has been measured28,29 and calculated30

to be approximately 14Å3 parallel and 5.5Å3 perpendicular to

the molecular axis. The force constant for the harmonic core-

shell interaction was chosen to give an atomic polarizability

volume, αS of 7Å3 by setting it to 2431 kJ/Å2. The mass

of each shell was set equal to 0.5 amu with a corresponding

reduction of the mass of the core. The charge of each sul-

fur atom is divided to give a charge of -3.5e on the shell and

+3.618e on the core. Additional runs with a model with half

the polarizability were carried out, the halfpol model. Again

no intramolecular polarization was allowed. Simulations of

neat CS2 showed that the Lennard-Jones σ parameters had to

be increased in the polarizable model to obtain a pressure near

1 atmosphere. The values used for the C and S potential pa-

rameters are shown in Table 1.

The models for the [C1C1im]+ and [C4C1im]+ were taken

from the work of Canongia Lopes and Padua31 while that for

[NTf2]− was taken from Köddermann et al.32. Note that while

the cation potential is an all-atom potential, the anion poten-

tial is a 9-site potential with united CF3 groups. In all cases

the Lennard-Jones cross terms were calculated using Lorentz-

Berthelot combining rules.33

Molecular dynamics simulations were performed with a

modified version of the program DL POLY34 using the dy-

namic shell model. Runs were performed with time steps

of 2fs for the unpolarized models and 0.5fs for the polariz-
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able models. Several independent runs were carried out in

the NVT ensemble at 300K with a Nose Hoover thermostat

with time constant=0.5ps. The electrostatics was calculated

using an Ewald sum with precision 10−5. This corresponds

to the Ewald parameters α = 2.2470× 10−1Å−1 and a maxi-

mum k vector equal to (8 8 8). The stability of the Ewald sum

was checked by monitoring the Coulomb energy and Coulomb

virial, which remained constant and equal and opposite within

the required precision. The real space cutoff for both the

Ewald and the Lennard-Jones terms was chosen to be 1.25nm.

Some runs were made at 400K where the molecular structure

equilibrates more rapidly to check that the systems were equi-

librated. The periodically repeated cubic cell with dimensions

37.0Å3 contained 124 ion pairs and 8 CS2 molecules, that is

a molar percentage of 6%. Note the maximum solubility re-

cently measured in our laboratory is 13%.

Table 1 Potential parameters for C and S sites in CS2 in the four

models. The values for the Lennard-Jones εii are in kJ/mol, for σii

are in nm and the polarizability volume αS is in Å3.

εCC σCC qC/e εSS σSS αS

T&M 0.4257 0.335 0. 1.521 0.352 0.

charged 0.4257 0.335 -0.236 1.521 0.352 0.

polarizable 0.4257 0.33853 -0.236 1.521 0.3552 7.0

halfpol 0.4257 0.33853 -0.236 1.521 0.3552 3.6

3 Energetics

We can compare the energetics of the interaction of a CS2

molecule with the two ionic liquids for the different models.

This shows both the effects of including polarizability and the

difference due to the side chain.

The data in Table 2 show that the Lennard-Jones energy of

CS2 in [C1C1im][NTf2] is almost the same for all the mod-

els. This term dominates the energy in the charged model and

the half polarizable model, and even in the fully polarizable

model it is comparable to the electrostatic energy. One must

also include the cost of polarizing the molecules in the total

energy, which is given in the table. The errors were calculated

from the variation between different runs. It is noteworthy that

the electrostatic interactions are much more negative and the

polarization energies are higher in solutions in either of these

ionic liquids than in a simulation of a pure liquid of the fully

polarizable model of CS2. In the neat liquid the net electro-

static energy (Coulomb plus polarization) is only -0.7kJ/mol

in contrast to -24.3kJ/mol in the ionic liquid environment. In-

creasing the temperature of [C1C1im][NTf2] from 300K to

400K results in the total interaction energies becoming less

negative by about 2kJ/mol.

There is an interesting difference between the [C1C1im]+

Table 2 Contributions(a) to the interaction energy of CS2 with

surroundings (in kJ/mol per CS2 molecule)

T&M charged halfpol polarizable

[C1C1im][NTf2]

ES 0 −2.32±0.1 −11.0±0.3 −52.6±2.0

LJ −35.2±0.2 −35.7±0.2 −36.2±0.2 −34.7±0.2

Epol 0 0 +3.9±0.1 +23.8±0.8

total −35.2±0.2 −38.0±0.2 −43.3±0.4 −63±2

[C4C1im][NTf2]

ES −1.82±0.03 −23.4±0.6

LJ −37.6±0.2 −39.2±0.1

Epol 0 +14.9±0.4

total −39.5±0.2 −47.6±0.2

CS2 (neat)

ES 0 −0.11 −1.97± .01

LJ −24.5 −24.5 −25.1± .01

Epol 0 0 1.24± .01

total −24.5 −24.6 −25.8± .01

(a)ES:Coulomb; LJ:Lennard-Jones; Epol: energy of polarization

and [C4C1im]+ cations. While the Lennard-Jones energy in

the [C4C1im][NTf2] ionic liquid is more negative by about

4kJ/mol than in the [C1C1im][NTf2] liquid, the electrostatic

energy of the polarizable model in [C4C1im][NTf2] is about

half the value as it is in [C1C1im][NTf2]. This is the result

of changes in the local environment of the CS2 molecule. In

[C4C1im][NTf2] the CS2 has a high probability of being in the

non-polar domains near the cation tails rather than near the

charged domains near the rings. In [C1C1im][NTf2], however,

the cation side chains are too short to form non-polar domains

and the CS2 interacts more strongly with the charged ring.

4 Local environment

4.1 Radial distribution functions

Radial distribution functions were calculated for a number of

cation and anion sites relative to C and S sites on the CS2

molecules. These show rather little change for anion sites, but

a dramatic change for cation sites.

Figure 1 shows radial distribution functions between the

ring carbon atoms in both [C1C1im]+ and [C4C1im]+ and

the centre of the CS2 molecule for various models. In

[C1C1im][NTf2] there is a big change in the radial distribution

function for C2, the unique carbon atom on the [C1C1im]+

ring. As polarization is added the CS2 molecule is attracted to

this atom and its probability density becomes more localised.

The distributions relative to the adjacent carbon atoms in the

ring, C4 and C5, also show a similar, but less pronounced, ef-

fect. On the other hand in [C4C1im][NTf2] there is much less

change on adding polarisability. This can be attributed to the

attraction of the CS2 molecules to the butyl side chain. Figure

1–11 | 3
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2 demonstrates that the distance of closest approach of CS2 to

the anion is longer than to the cation. The various models give

essentially the same radial distributions relative to the central

N site of [NTf2] (=[N(SO2CF3)2]−) and rather small changes

to the peripheral O sites.

Figure 3 is interesting because it shows that in the charged

model there is a strong tendency for the CS2 molecules to be

near the tail, especially near to the terminal methyl group. On

the other hand the tendency is less marked for the polarizable

CS2 molecules.

The radial distribution functions from the CS2 molecule to

the central site (N) and the O sites on the anions show that the

CS2 molecules do not approach the anions as closely as the

cations; the first peak is at 5Å for O and 7Å for N. There

is little difference between the models. In summary, CS2

molecules tend to be closer to the cations than to the anions

particularly in the polarizable model. The distributions are

also more structured in the latter.

Values for the number of nearest neighbours for the cen-

tral C of CS2 can be calculated from these radial distribution

functions. There are on average about 0.6 cations in the sharp

first peak of the polarizable model (to 4.1Å), which is consid-

erably larger than for the other models. Including the second

peak one obtains about 3.3 neighbours, which is the same as

the number to this distance for the other models. This shows

that, in this model, some cations from the first shell of neigh-

bours are pulled close to the CS2 molecule.

4.2 Spatial distribution functions

More insight into these changes can be found by look-

ing at the spatial probability distribution functions for CS2

around the cations. In Figures 4 and 5 these functions are

shown for the charged models and the polarizable models of

[C1C1im][NTf2] and [C4C1im][NTf2]. First, comparing the

polarizable and unpolarizable models, we see that in both liq-

uids the distributions around the cations are much more lo-

calised in the polarizable models (red) than in the charged

models (blue). Note that in both liquids the density con-

tours used to show the distributions are 3 times the average

for the polarizable models but only 1.3 times the average for

the charged models. If the higher cutoff were used for the

charged models nothing would be seen. There are consider-

able differences in the distributions around the two cations.

For [C1C1im]+ polarizable CS2 tends to lie above and below

the unique CH bond, while near [C4C1im]+ polarizable CS2

tends to lie above and below the ring. The charged CS2 models

have a broad band of high probability around [C4C1im]+, but

the regions of high probability for this model lie to the back of

the [C1C1im]+ cation near the adjacent C atoms.

Finally in Figure 6 we see the distributions from the point

of view of a CS2 molecule. This figure shows concentrations

Table 3 First moments (M1) and maximum frequencies (νmax) of

density of states(a) for polarizable CS2 in ionic liquid solutions and

in neat CS2. Values in cm−1.

[C4C1im][NTf2] [C1C1im][NTf2] CS2 (neat)

M1 νmax M1 νmax M1 νmax

CS2 lib 56.1 40 67 45(b) 52 30(b)

CS2 trans 49.3 28(b) 57 26(b) 47 13

OKE 35 21 36 24 44 28

(a) (b) denotes a broad band.

of [C1C1im]+ cations (above) and [NTf2]− anions (below) in

a plane containing a polarizable CS2 molecule. The cation po-

sitions are defined by the central point of the NN vector, while

the anions are described by the positions of the four oxygen

atoms. We see that the greatest concentration of cations is

near the central C atom, while the anions tend to be near the

S atoms where they also interact with the cations around the

central C atom. The localisation is much less marked in the

unpolarizable models (not shown).

5 Comparison of Densities of States

Figure 7 shows the intermolecular part of the CS2 vibrational

density of states in different environments. In the neat liq-

uid both the translational and vibrational contributions are

broader and have a lower frequency than in ionic liquid so-

lutions. There is rather little difference between the two ionic

liquid solvents, but in [C4C1im][NTf2] the response is slightly

sharper with a higher maximum than in [C1C1im][NTf2]; note

that as the area under these graphs is constant the width and

height are inversely correlated. In both ionic liquids the max-

ima in the librational and translational densities of states are

blue-shifted relative to the neat liquid.

5.1 Comparison of calculated densities of states with

OKE spectra

In the study in which the solubility tests were done,

Xue et al.18 also measured the Kerr spectra of 10 mol%

CS2/[CnC1im][NTf2] mixtures for n = 1-4 using optical

heterodyne-detected Raman-induced Kerr effect spectroscopy

(OHD-RIKES). The Kerr spectra of these mixtures were fitted

by the sum of a CS2 component and an IL component, which

was taken to be equal to the Kerr spectra of the neat IL. They

found that the CS2 component was lower in frequency and nar-

rower than the Kerr spectrum of neat CS2, in agreement with

an earlier OHD-RIKES study of CS2/[C5C1im][NTf2] mix-

tures.35–37 For the purposes of the comparison with densities

of states calculated in the current simulation study, the CS2

contributions to the Kerr spectra of 10 mol% mixtures of CS2
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in [C1C1im][NTf2] and [C4C1im][NTf2] and the Kerr spec-

trum of neat CS2 at 295 K are show in Figure 8. Values of the

spectral maxima, νmax, and the first spectral moments, M1, for

both simulations and observations are listed in Table 3.

As we explained in a recent article,16 densities of states by

their very nature, cannot be directly compared to Kerr spectra,

because densities of states are calculated from single parti-

cle velocity correlation functions (VCF), whereas Kerr spec-

tra arise from the fluctuations in the collective polarizabil-

ity anisotropy. From the perspective of instantaneous normal

mode (INM) analysis one can go from a density of states to a

Kerr spectrum by weighting each of modes in the density of

states by the square of the derivative of the total polarizabil-

ity anisotropy with respect to the canonical coordinates asso-

ciated with the modes.38 In principle using a dipole-induced

dipole model Kerr spectra can also be simulated.39–43 How-

ever due to the time, RAM, and disk storage required to calcu-

late collective polarizabilities, the simulation of Kerr spectra

for ILs is challenging.44 In contrast densities of states are less

difficult to calculate than Kerr spectra. Indeed, in a recent

study of 1:1 benzene/[C1C1im][NTf2] mixture, the densities

of states were found to be consistent with the intermolecular

Kerr spectra. In the current study of CS2/[C1C1im][NTf2] and

CS2/[C4C1im][NTf2] mixtures the densities of states are only

partly consistent with the intermolecular Kerr spectra.

Table 3 shows values of the first moments, M1, of the densi-

ties of states for polarizable CS2 dissolved in [C4C1im][NTf2],

in [C1C1im][NTf2], and in neat liquid calculated from the

simulations together with values of M1 obtained from OHD-

RIKES measurements shown in Fig.8. For simulations the val-

ues of M1 are given for the translational and librational con-

tributions (M1(trans) and M1(lib)). The first moment M1 be-

ing an average over the entire spectrum provides a means of

quantifying the differences between spectra with broad asym-

metric line-shapes such as those obtained in simulations or

OHD-RIKES measurements. From the spectral moments in

Table 3, we see that the total, librational, and translational

moments are higher in frequency for CS2 in [C1C1im][NTf2]

(MMD
1 (lib) = 67 cm−1, MMD

1 (trans) = 57 cm−1) than for CS2

[C4C1im][NTf2] (MMD
1 (lib) = 56 cm−1, MMD

1 (trans) = 49

cm−1). A similar pattern is observed for values of the spectral

maxima. This difference is consistent with the OHD-RIKES

measurements where the intermolecular spectrum is higher in

frequency for CS2 in [C1C1im][NTf2] (MOKE
1 = 36 cm−1) than

for CS2 in [C4C1im][NTf2] (MOKE
1 = 35 cm−1). However, this

difference is small and within the 1 cm−1 experimental uncer-

tainty of the measurements. But Figure 8 clearly shows the

intermolecular spectrum to be higher in frequency for CS2 in

[C1C1im][NTf2] than for CS2 in [C4C1im][NTf2]. Because

the intermolecular spectra of CS2 in these ionic liquids are

characterized by single bands with well-defined lineshapes,

the spectral maxima are better indicators of the frequencies

of the Kerr spectra than the first spectral moments. Indeed,

based on the spectral maxima, the intermolecular spectrum

of CS2 is slightly higher in frequency in [C1C1im][NTf2]

(νmax = 24 cm−1) than in [C4C1im][NTf2] (νmax = 21 cm−1).

Interestingly, we find that based on the first spectral mo-

ments, the librational and translational densities of states of

neat CS2 are lower in frequency than those of either CS2 in

[C1C1im][NTf2] or CS2 in [C4C1im][NTf2], which is incon-

sistent with the results of the OHD-RIKES measurements,

where MOKE
1 = 44 cm−1 for neat CS2 versus MOKE

1 = 35 cm−1

for CS2 in [C4C1im][NTf2] and MOKE
1 = 36 cm−1 for CS2

in [C1C1im][NTf2]. This discrepancy, which at first glance

seems surprising, can be rationalised by remembering that a

density of states is a reflection of single particle dynamics,

whereas the Kerr spectrum is related to the dynamics of the

collective polarizability anisotropy . Thus the difference may

yield further insight into the molecular interactions in mix-

tures of CS2 and ILs. In the initial OHD-RIKES study of mix-

tures of CS2 and [C5C1im][NTf2] by Xiao et al.,35 the idea

that at low concentrations CS2 molecules are isolated from

each other and are localized in the nonpolar domains of the IL

was based on the CS2 contribution to the Kerr spectrum of a

5 mol% mixture of CS2 and [C5C1im][NTf2] being similar to

the Kerr spectrum of a 5 mol% mixture of CS2 in n-pentane,

with the spectrum being lower in frequency and narrower than

that of neat CS2. Subsequent MD simulations of this mix-

ture system confirmed that CS2 molecules are isolated from

each other and mainly localized in the nonpolar domains.36 A

red-shift and line narrowing are commonly observed in OKE

spectra upon dilution of weakly interacting systems, such as

CS2 in alkane mixtures.22,23,45–47 Thus we attribute the higher

frequency in the OKE spectrum of the neat liquid compared

with the ionic liquid solutions to increased collective interac-

tions between CS2 molecules in the neat liquid.

The underlying mechanism for these effects is, however,

controversial.47 In one mechanism the spectral changes are

attributed to the softening of the effective intermolecular po-

tential seen by CS2 molecules upon dilution.24,48 In another

mechanism, the spectral changes are attributed to a decrease

in interaction-induced effects upon dilution.46 In the previ-

ous studies of CS2/IL mixtures,18,35–37 the spectral changes

were primarily attributed to softening of the intermolecular

potential. However, the current studies suggest that these

modes are not softened (see Table 3) and that the decrease

in the interaction induced effects must be playing an impor-

tant role in the observed spectral changes observed in CS2/IL

mixtures compared with the neat liquid. For liquids com-

prised of anisotropic molecules, the collective polarizability

anisotropy TCF can be resolved into a molecular autocorrela-

tion, an interaction-induced (I-I) correlation, and molecular-

induced cross correlation.49–51 The molecular term relaxes

through single-molecule reorientation, whereas the induced
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terms (autocorrelation and cross correlation) relax through in-

termolecular motions. If there is a difference in the time

scales of reorientational and intermolecular motions, which

is the case for CS2,50,51 the induced part of the polarizabil-

ity that follows reorientation can be projected out. The re-

sult is that the TCF can then be re-expressed as the sum of a

local-field modified molecular reorientation term, a collision-

induced term, and a collision-induced cross correlation, with

the collision-induced terms contributing to the high-frequency

part of the spectrum. Without invoking softening of the in-

termolecular potential, one could easily explain the red-shift

and line-narrowing of the Kerr spectra as being due to the

decrease in the contribution of the high-frequency collision-

induced terms upon dilution in going from the CS2 molecules

in the neat liquid to CS2 molecules isolated from each other

in the CS2/[C1C1im][NTf2] and CS2/[C4C1im][NTf2] mix-

tures. That the density of states of CS2 in the neat liquid is

lower in frequency than that the densities of states of CS2 in

the CS2/[C1C1im][NTf2] and CS2/[C4C1im][NTf2] mixtures

is not inconsistent with this explanation because the densities

of states being single particle properties cannot account for

collision-induced effects and in some respects would only cor-

respond to the molecular reorientational part of the time corre-

lation function of polarizability anisotropy. The data in Table

2 indicate that the interaction energy is greater for CS2 in the

ionic liquids than in the neat liquid. This would explain why

the density of states is higher in frequency for CS2 in the ionic

liquids than in the neat liquid. If we assume that the molec-

ular reorientational part of the polarizability anisotropy TCF

behaves in the same way as the densities of states, then red-

shift and line-narrowing of the Kerr spectrum of CS2 in going

from the neat liquid to the mixtures cannot be due the soften-

ing of the intermolecular potential seen by the CS2 but is due

to purely a dilution effect that results in the diminished role

of the collision-induced terms of the polarizability anisotropy

TCF.

6 Previous simulations

Prior to this study, MD simulations were performed on 5, 10,

and 20% mixtures of CS2 and [C5C1im][NTf2] and on neat

CS2 and [C5C1im][NTf2].36 As in the current study, the pre-

vious simulations were done in order to understand the Kerr

spectra of these solutions. Briefly, the total potential energy in

these simulations was described by the Amber force field with

the parameters for the [C5C1im]+ cation provided by the stan-

dard Amber force field and the parameters for the [NTf2]−

anion from the work of Lopes and Pádua.52 For CS2 a non-

polarizable rigid-body model was used that included van der

Waals and Coulombic interactions with parameters from the

Amber force field. The model used in this previous study is

therefore analogous to the charged model in the current study.

In the previous study the system sizes were approximately

half those in the current study. For example, for the 5% mix-

ture, which is comparable to the 6% mixtures in the current

study, the system was comprised of 72 ion pairs and four CS2

molecules. This previous study also differs from the current

study in that only radial distribution functions for various sites

on [C5C1im]+ and [NTf2]− relative to the C site on CS2 were

calculated. Although these previous simulations were not per-

formed with exactly the same force field as the current simu-

lations, the results are similar with regards to the location of

CS2 in the ionic liquid as reflected in the radial distribution

functions. The radial distribution functions in both simula-

tions of CS2 in [C4C1im][NTf2] and CS2 in [C5C1im][NTf2]

thus show CS2 molecules being closer to the terminal groups

of the cation alkyl tails than to imidazolium ring or the an-

ions, which is consistent with CS2 being mainly localized in

the non-polar domains of the ionic liquids.

7 Conclusions

In order to model solutions of CS2 in imidazolium ionic liq-

uids we find that it is necessary to include the polarizability

of CS2; this affects both the local structure and the energetics

of solvation in the highly polar environment of the ionic liq-

uids [C1C1im][NTf2] and [C4C1im][NTf2]. The presence of a

non-polar side chain in [C4C1im]+ reduces the concentration

of CS2 molecules near the cation ring and increases it near the

tails. However this trend is less marked when polarizability is

included and electrostatic interactions increase in importance.

The spectra of the densities of states of CS2 in the ionic liq-

uids are shifted to higher frequencies than in the neat liquid,

which is consistent with the increased interaction energy. In

contrast, the frequency of Kerr spectrum of CS2 is lower in

frequency in ionic liquid solutions than in the neat liquid. Pre-

viously, this spectral shift was attributed to a softening of the

intermolecular potential. However, the simulation results for

the density of states shows that the intermolecular potential of

a single CS2 is harder in ionic liquid solutions than in neat liq-

uid so that the spectral shift observed in the OKE spectrum is

probably a manifestation of the diminished role of interaction-

induced terms in the polarizability anisotropy time correlation

function that occurs upon dilution in the ionic liquid.
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Fig. 1 Effect of polarizability on g(r) between CS2 and cation ring

sites, C2, C4 and C5. Above: [C1C1im][NTf2] showing

Tildesley-Madden model (cyan), charged model (blue),

half-polarizable model (purple) and polarizable model (red). Below:

[C4C1im][NTf2] for the charged model (blue) and the polarizable

model (red).

Fig. 2 Effect of polarizability on g(r) between CS2 and anion sites,

N and O, in [C1C1im][NTf2] solution. Above: N site showing

Tildesley-Madden model (blue), charged model (cyan),

half-polarizable model (purple) and polarizable model (red).
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Fig. 3 Radial distribution function between the centre of CS2 and

the 4 carbon atoms in the butyl side chain. C7 is attached to the

imidazolium ring and C10 is the terminal carbon atom.

Above:charged model; below: polarizable model. Note the

preference for the tail group (C10) is decreased when polarizability

is included.

Fig. 4 Three dimensional distribution of CS2 around a [C1C1im]+

ion. Red: polarizable model, cutoff 2.5 times average number

density; blue: charged unpolarizable model, cutoff 1.3 times average

number density.

Fig. 5 Three dimensional distribution of CS2 around a [C4C1im]+

ion. Red: polarizable model, cutoff 3 times average number density;

blue: charged unpolarizable model, cutoff 1.3 times average number

density.

1–11 | 9

Page 9 of 11 Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



 0  5  10  15  20  25  30  35  40
 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 0.5 1 1.5 2 2.5

 0.5
 1
 1.5
 2
 2.5
 3
 3.5
 4
 4.5
 5

Fig. 6 Cross sections of 3d distributions of ionic liquid ions around

a polarizable CS2 molecule in [C1C1im][NTf2]. The contour scale

is the number density relative to the bulk value. The x and y scales

are in units of 0.5Å. Above: concentration of ring centres; below:

concentration of anion oxygen atoms.
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Fig. 7 Vibrational densities of states for polarisable CS2 in three

environments. Solid lines: neat CS2; dashed lines CS2 in

[C4C1im][NTf2]; dotted lines CS2 in [C1C1im][NTf2]. The

translational contributions are displaced by 1 unit relative to the

librational contributions.
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Fig. 8 Comparison of OHD-RIKES spectra of CS2 in different

environments. The height-normalized reduced spectral density of

CS2 from neat CS2 and the CS2 contributions to the reduced spectral

densities of the 10 mol% mixtures of CS2 in [C1C1im][NTf2] and

[C4C1im][NTf2] are shown. Spectral parameters are given in Table

3. The inset shows an expanded view of the spectra in the region of

the peak. Adapted from Figure 5 of Xue et al. 18

.
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