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We provide a perspective on the role of non-integer electron number in the 

density functional theory approach to chemical reactivity (conceptual DFT), 

emphasizing that it is important to not only treat reagents as open systems, but 

also as non-isolated systems, in contact with their surroundings.  The special case 

of well-separated reagents is treated in some detail, as is the case where reagents 

interact strongly. The resulting expressions for the chemical potential of an acid, 

µacid = –(αI + A)/(1+α), and a base, µbase = –(I + αA)/(1+α), elucidate and 

generalize the assumptions inherent in the chemical potential models of Mulliken 

(α=1) and Gazquez, Cedillo, and Vela (α=3). In the strongly-interacting limit, it is 

appropriate to model the effects of the environment as a state-specific effective 

temperature, thereby providing a rigorous justification for the phenomenological 

effective-temperature model one of the authors previously proposed. The 

framework for the strongly interacting limit subsumes our model for weakly-

interacting subsystems at nonzero temperature, the case of open but otherwise 

noninteracting subsystems, and the zero-temperature limit. 

 

1. Introduction 

The study of chemical reactivity is today, and it will likely remain, one of the most active 

areas of research in chemistry. In contrast to the purely empirical nature of this field in the 

distant past, chemists can now probe deeper and reveal the intricacies of chemical reactions, 

using the fundamental principles of quantum mechanics. That is why, in concert with the 
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 2

development of more precise and powerful experimental techniques, there is great interest in 

sharpening the theoretical tools we need to understand and predict the behavior of chemical 

reagents. To this end one can identify two broad classes of theoretical approaches, those that 

pursue a quantitative description (typically using state-of-the-art computer software and 

hardware) and those that aim for a qualitative understanding (often using simplified models and 

broad chemical principles). In this work we will analyze a popular approach that lies in the thin 

overlapping region between these two families: conceptual density functional theory (DFT), also 

known as chemical reactivity theory within DFT, DFT for chemical reactivity, and density 

functional reactivity theory.
1-7

 

One of the simplest ways to present conceptual DFT is through the perturbative 

expansion:
7
 

 
( ) ( )

( )
( )

( )
( )

( ) ( )
( ) ( )

2
2

2

2 2

1

2

1

2

v vN

N

E E E
E N v d N

N v N

E E
N v d v v d d

v N v v

δ
δ

δ δ
δ δ δ

   ∂ ∂ ∆ = ∆ + ∆ + ∆ +    ∂ ∂    

   
′ ′∆ ∆ + ∆ ∆ +   ′∂   

∫

∫ ∫

r r

r r
r

r r r r r r
r r r

...

   (1) 

The simple idea behind Eq. (1) is that any molecular system can be characterized by its number 

of electrons, N, and its external potential, v(r). Accordingly, a chemical process can be described 

by its respective ∆N and ∆v(r) variations. Therefore, the change of any state function (e.g. the 

energy) associated to this process could be calculated as in Eq. (1). 

From a mathematical point of view, Eq. (1) is nothing more than an attempt to calculate 

(or at least approximate), the value of a function in one point in function space, 

( ) ( )E N N v v+ ∆ + ∆  r r,  , starting from another point of its domain (from now on referred to as 

the “initial state” or “initial point”), ( )E N v  r,  . This could seem like an unnecessarily indirect 

approach for computing the difference ( ) ( ) ( )E E N N v v E N v∆ = + ∆ + ∆ −      r r r, , , but the 

main attraction of conceptual DFT does not rest in the quantitative accuracy of such expressions. 

The great advantage of an approach based on Eq. (1) lies in the possibility of working with the 

coefficients of the expansion, namely, the (functional) derivatives 
( )

a

b a b

E

v N

δ
δ −∂r

  (which can in 

principle be calculated using any quantum chemical method).
2 

 These coefficients, which depend 

only on the molecular system being studied and not on the properties of its reaction partner,
7
 are 
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 3

widely regarded as reactivity descriptors, and there is a great body of work supporting the fact 

that they can be used to quantify a variety of chemical concepts, such as the electronegativity
8-10

 

and the chemical hardness.
11-16

 In this way it is easy to understand why Eq. (1) has played such 

an important role in the modern study of chemical reactivity. A chemical reaction can be viewed 

as a change in its reactants, and the change in the reactants can be modeled using the partial 

derivatives in Eq. (1) evaluated at the initial stage of the reaction. These partial derivatives 

determine how the molecule’s energy changes in response to a perturbation, and therefore 

whether a specific change is favorable (or less unfavorable). Then, the more favorable (or less 

unfavorable) responses will indicate which reactions are more likely to occur.
2
 It is important to 

note that usually one does not need to evaluate many of the coefficients (descriptors) appearing 

in Eq. (1), which is usually truncated at second order.
7
 If in the reaction of interest charge 

transfer effects are predominant over the purely electrostatic changes, then one can consider only 

the terms associated with the ∆N changes (e.g. 
( )v

E

N

∂ 
 ∂  r

 , 

( )

2

2

v

E

N

 ∂
 ∂  r

 and perhaps 
( )

2E

v N

δ
δ

 
 

∂ r
 ). 

The converse is true if electrostatic interactions predominate. Finally, while we have centered 

our discussion on the energy of the system, the above formalism can be reformulated for other 

state functions.
2, 10, 17-19

 This allows one to include, for example, solvent effects and entropic 

contributions. 

This elegant mathematical framework, together with the great number of applications 

using conceptual DFT, support the use of Eq. (1) as an attractive and powerful method for 

studying chemical reactivity. However, as straightforward and clear as this procedure might 

appear, there are a number of essential issues that must be addressed in order to provide it with a 

strong physical justification. For example: How should one select the initial state/point at which 

the perturbative expansion is centered? Is there a way to justify the presence of derivatives with 

respect to the number of electrons, since this requires considering non-integer numbers of 

particles? Do the descriptors appearing in Eq. (1) depend solely on a given reactant? What are 

the possible working expressions for the descriptors? These, and other similar questions, will be 

our main concern in the present work, as we intend to go deeper into the physical foundations of 

conceptual DFT than usual. Our primary focus will be the problem of the variation of the 

molecular properties with respect to the number of electrons, and especially variations in the 

energy (e.g. the E vs. N problem). This is a fundamental problem in conceptual DFT due to the 
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 4

presence of the derivatives with respect to N in the descriptors presented above, since the precise 

mathematical definition of these quantities requires working with systems with non-integer 

numbers of particles. In the next section we will discuss the general results concerning this 

problem when formulated for isolated reagents at 0 Kelvin, showing the inadequacy of that 

approach for chemical reactivity studies. Then we explore the natural generalizations of this 

procedure, pointing out the necessity of taking into account both finite temperatures and the 

interaction with the molecular surroundings in order to properly describe reacting species. 

Throughout this paper, we will focus on the chemical potential, leaving the detailed analysis of 

other conceptual DFT descriptors for subsequent work. 

 

2. Isolated reagents at absolute zero 

Though it may seem that the notion of “a fraction of an electron” lacks any physical 

meaning, it can be provided with a sound theoretical basis for this idea by considering quantum 

open systems.
10, 20, 21

 Specifically, if a system is allowed to exchange particles (i.e. electrons) 

with its surroundings, then the average number of such particles can be an arbitrary (non-

negative) real number. (Formally, the states of these systems do not necessarily have to be 

eigenstates of the number of particles and so, in the following, when we talk about the number of 

electrons/particles in the system we will be referring to the average number of particles.) This fits 

naturally with our interest in chemical reactivity, since in virtually every chemical reaction 

electrons flow between the molecular reagents, between the reagents and their surroundings, and 

even between different regions of the same reagent. 

Quantum open systems can be described using the grand-canonical (GC) formalism.
10, 21-

23
 In this framework, quantum states are described not by a state function, but by a density matrix 

(DM), which has the general form: 

 M M M

k k k

M k

D ω= Ψ Ψ∑∑    (2) 

In this expression the microcanonical density matrices M M

k kΨ Ψ  
 

represent pure states 

where the index k runs over a complete basis for every number of particles M ∈ �  . The 

coefficients M

kω  are just statistical weights, and as such they satisfy normalization (

1M

k

M k

ω =∑∑ ) and non-negativity ( 0 M

kM k ω∀ ≤, : ) constraints. In full analogy with the wave 
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 5

function in the closed system picture, knowledge of the DM is all we need to calculate the 

average value, Q, of any observable Q̂  : 

 ( )TrQ QD= ˆ    (3) 

where ( )Tr B̂  indicates the trace of operator B̂ . 

The next step is to determine the values of M

kω  that are chemically relevant for studying 

chemical systems and their changes. For chemical reactions and molecular rearrangements 

occurring on the ground-state potential energy surface, it is natural to consider the ground state 

of the system. The ground state can be determined invoking the variational principle,
10, 24

 which 

can be stated in two different (but entirely equivalent) ways. Either we find the minimum of the 

expectation value of the Hamiltonian, ( )Tr HDˆ , over all GC-DMs corresponding to the given 

number of particles: 

  ( )
( ){ }
{ ( )0

ˆTr

ˆmin Tr

D DN N

E N HD

=

=  , (4) 

where ˆTr DN N  =   constrains the number of particles to be correct and N̂  is the number 

operator. Or, on the other hand, we perform an unconstrained minimization with respect to the 

number of particles, imposing this condition via a Lagrange multiplier, µ: 

 ( ) ( ){ }Tr Tr 0HD DNδ µ− =ˆ ˆ   (5) 

where µ is chosen so that ( )( )0
Tr D N N N=ˆ , where ( )

0
D N  denotes the solution of Eq. (5) (and 

hence also of Eq. (4)). This Lagrange multiplier can be shown to be the chemical potential of the 

system,
9
  

 
E

N
µ

∂
=

∂
  (6) 

Here, and in the following, we dropped the sub-index indicating that the partial derivative must 

be taken at constant external potential v(r).  

One key feature of the chemical potential is that for the ground state of any system, it is a 

global constant, and does not depend on position in space or on the specific molecular fragment 

in a supersystem.
1, 9, 25

 This is easily proved by noting that, in the ground state, there is no net 
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 6

transfer between different regions in the system and it is the mathematical statement of 

Sanderson’s principle of electronegativity equalization.
26

 

If the ground state energy is a convex function of the number of particles (there are no 

known exceptions for isolated Coulomb systems like molecules), the solution to Eqs. (4) and (5) 

can be stated explicitly,
20, 27-29

 

 ( ) ( )1 1

0
1M M M MD N M x x x+ += + = Φ Φ + − Φ Φ   (7) 

where 0 1x≤ ≤  and M Φ  represents the ground state of the (closed) system with M electrons. 

As it has been remarked before, this solution relies in the fact that the corresponding integer-

particle states are not degenerate (an assumption we will make in the following). Another 

consequence of the convexity of E is that its Legendre transform is well defined,
2, 30

 so we can 

equivalently study the same system using the new state function: 

 G E Nµ= −   (8) 

The variational principle in terms of G is just Eq. (5). Now, the independent variables necessary 

to describe the state of the system are µ  and ( )v r . This opens the possibility of analyzing a 

perturbative expansion analogous to Eq. (1), replacing E with G and N with µ . This is known as 

the “open system picture” (as opposed to the “closed system picture” of Eq. (1)) in the traditional 

conceptual DFT terminology.
2
 However, it must be noticed that both “pictures” are based on 

states given by Eq. (2). Then, in the sense of Malek and Balawender
30

 (MB from now on), we 

could consider that both pictures correspond to open systems (following their nomenclature, the 

closed picture will correspond to partially-open systems); they only differ in the independent 

variables chosen to describe the states and their changes. This is a natural (and, as argued 

previously, necessary) consideration, since is the only way to physically account for non-integer 

numbers of particles. This terminology indicates that the nature of the quantum open systems we 

consider are determined by the way we describe their states (e.g., their DMs), rather than by the 

state functions (which are determined by the selected independent variables). As MB pointed 

out, the difference with the usual thermodynamical approach relies on the fact that classical 

closed (canonical) systems are supposed to have a constant, integer, number of particles, while in 

this picture, a partially open system is one where there are no fluctuations of N, but N can 

nonetheless be any non-negative real number.
30
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 7

 Substituting Eq. (7) into Eq. (3) gives an expression for how any observable varies with 

the number of electrons for a system in its ground state. The only thing that remains to be 

specified before the perturbative series (Eq. (1)) can be evaluated, then, is the initial state. One 

could argue that states with integer numbers of electrons are the most convenient. First, reagents 

have an integer number of electrons before the reaction starts, and second, the vast majority of 

the computational quantum chemistry methods perform poorly (if they are even defined!) for 

systems with non-integer N .
31, 32

 However, choosing an N to be an integer has an apparent 

drawback. Since Eq. (7) is, by construction, consistent with a GC formulation and leads to: 

 ( ) ( )( )0
TrM M ME H E M D M H= Φ Φ = =ˆ ˆ   (9) 

when M is an integer, a recently proven theorem implies that either (a) the chemical potential is 

zero for every M or (b) this model is not differentiable at integer numbers of particles
33

. While 

both possibilities are problematic, the former is actually more devastating. Since the negative of 

the chemical potential can be identified with the tendency of a system to gain electrons (e.g. –µ is 

a measure of a system’s electronegativity),
9, 10

 a constant, zero value, of µ for every integer 

electron number is in clear disagreement with experimental facts. Fortunately, this is not the 

case, and it is well known that the model derived from Eq. (7) is nondifferentiable at integer N. 

Instead, at these points we will have one-sided derivatives, which can be easily calculated as: 

 
( ) ( ) 1

0

M M M

x

E M x E M
E E A

x
µ +

+ +

→

+ −
= = − = −lim   (10) 

 
( ) ( ) 1

0

M M M

x

E M x E M
E E I

x
µ −

− −

→

+ −
= = − = −lim   (11) 

where I and A stand for the ionization potential and electron affinity of the M-electron system. 

 Similarly, one can define higher-order one-sided derivatives, and rewrite the perturbative 

series in Eq. (1) as two formulas, one appropriate for electron-acceptance and one appropriate for 

electron donation: 

 [ ] [ ] ( )
1

1 k
kM

k
k N M

E
E E M N E M N N

k N
µ

+

+

> =

 ∂
∆ = + ∆ − = ∆ + ∆ ∂ 

∑
!

 if 0N∆ >   (12) 

 [ ] [ ] ( )
1

1
M k

kM

k
k N M

E
E E M N E M N N

k N
µ

−

−

> =

 ∂
∆ = + ∆ − = ∆ + ∆ ∂ 

∑
!

 if 0N∆ <   (13) 
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 8

While these equations are mathematically correct (notice that we have not made any 

assumptions), their chemical relevance merits further discussion. To this end, consider a simple 

chemical process where two reagents, X and Y, combine to form a product XY. First, note that— 

independently of the sign of N∆ —every partial derivative 
k

k

E

N

∂
∂

 with 1k >  is identically equal 

to 0, which is not surprising considering the linear nature of the model shown in Eq. (7). This 

implies that chemical descriptors such as the hardness, 
2

2

E

N
η

∂
=

∂
� , play no role in the analysis of 

Eqs. (12) and (13).
34, 35

  

Second, note that in order to apply Eqs. (12) and (13), we must first know the direction of 

net charge transfer. In principle, this can be easily done by considering both possibilities: net 

electron flow from X to Y ( )X Y→  and net electron flow from Y to X ( )Y X→ , then choosing 

the most energetically favorable. For example, if the process of moving 0N∆ >  electrons from X 

to Y is more favorable than moving them from Y to X we must have: 

 X Y Y XE E→ →∆ < ∆   (14) 

where: 

 
X Y X Y X Y

X YE E E→ → →∆ = ∆ +∆   (15) 

 

X Y

X X

X Y

Y Y

E N

E N

µ

µ

→ −

→ +

∆ = − ∆

∆ = ∆
  (16) 

with equivalent expressions holding for the Y X E→∆  change. (For simplicity, we have omitted for 

the supra-indexes in the chemical potentials indicating that they are calculated for integer 

numbers of particles, M). Substituting Eqs. (10), (11), (15) and (16) in Eq. (14) we thus obtain 

the criteria for electrons to go from X to Y, namely: 

 X Y Y XI A I A− < −   (17) 

Now it is easy to see another problem with this procedure. Since the largest atomic electron 

affinities are lower than the lowest atomic ionization energies, neither charge transfer process 

will be energetically favored. Therefore, as noted by Perdew, Parr, Levy and Balduz, this model 

predicts that there will be no electron transfer in any neutral diatomic molecule.
20

 This result is a 

mere consequence of the initial assumptions considered in this section—isolated systems at 

absolute zero temperature—and indeed it is the only reasonable outcome in this situation. This 
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 9

strongly suggests that we should consider other frameworks as our starting point for studying 

chemical reactivity. 

 

3. Finite temperature 

Since the consideration of GC states of isolated systems at 0 Kelvin is not suitable for 

studying chemical reactivity, we must look for generalizations of these conditions. As we cannot 

renounce the GC description of the states, the next logical step is to look for a formulation that 

explicitly accounts for the role of temperature.
21, 30, 36-38

 This brings a qualitative difference with 

respect to the previous case, because now the most adequate states to describe our system and its 

changes are not the ground but equilibrium states.
10

 In complete analogy with the zero-

temperature case, we can determine such states using either of two state functions: the Helmholtz 

free energy, A , or the grand-potential (or thermodynamic potential), Ω :
10, 30

 

 E TS= −A   (18) 

 E TS NµΩ = − −   (19) 

where S represents the (electronic) entropy. As in the previous section, minimization of Eq. (18) 

must be performed over the set of GC-DMs having the correct number of electrons, while in Eq. 

(19) we can use any GC-DM. 

In fact, both variational principles can be shown to follow from a general, maximum 

entropy, principle that has a similar form to Eq. (5):
30

 

 ( ) ( ) ( ){ }ˆ ˆTr Tr 0S D HD DNδ β µ − − =    (20) 

Here, 1 Tβ =  and the entropy is a function of the DM of the state, which has the familiar form: 

 ( ) ( )Tr lnS D D D= −
.
  (21) 

(Following MB we are working with temperatures expressed in energy units, thus the absence of 

Boltzmann’s constant in the previous expressions.) 

As in the past section, the independent variables for A  are N and ( )v r , while for Ω  we 

change the number of particles using the chemical potential. Then, the equilibrium state 

determined by means of A (Ω ), will correspond to the system under the constraint of constant N 

( µ ).  (As it is well known from Statistical Mechanics, both descriptions are equivalent in the 
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 10 

thermodynamic limit.) In this context however, the chemical potential is not defined as in Eq. (6)

, but instead as:
10

 

 
N

µ
∂

=
∂
A

  (22) 

There are several advantages related to this definition, which Kaplan argued is the only 

appropriate choice.
39

 First, since we are basing our study in the state functions shown in Eqs. 

(18) and (19) it is natural to replace the perturbative series Eq. (1) by their analogues in terms of 

the new state functions, namely: 

 
( ) ( )

( )
( )

( )
( )

( ) ( )
( ) ( )

2
2

2

2 2

1

2

1
...

2

v r v rN

N

N v r dr N
N v r N

N v r dr v r v r drdr
v r N v r v r

δ
δ

δ δ
δ δ δ

   ∂ ∂ ∆ = ∆ + ∆ + ∆ +      ∂ ∂    

   
′ ′∆ ∆ + ∆ ∆ +      ′∂   

∫

∫ ∫

A A A
A

A A
  (23) 

and 

 
( ) ( )

( )
( )

( )
( )

( ) ( )
( ) ( )

2
2

2

2 2

1

2

1

2

v r v r

N

v r dr
v r

v r dr v r v r drdr
v r v r v r

µ

δ
µ µ

µ δ µ

δ δ
µ

δ µ δ δ

     Ω∂Ω ∂ Ω
∆Ω = ∆ + ∆ + ∆ +    ∂ ∂    

   Ω Ω ′ ′∆ ∆ + ∆ ∆ +   ′∂   

∫

∫ ∫ ...

  (24) 

These equations allow us to redefine all the traditional reactivity indicators in an equivalent way 

but now, since we are working at finite temperatures, these descriptors include not only 

energetic, but also entropic effects. It is easy to see that all the well-known relationships between 

reactivity descriptors (e.g. the Berkowitz-Parr relation)
40

 automatically hold, since the 

mathematical structure of the theory remains unaltered. If, on the other hand, we had chosen to 

retain Eq. (6) as the definition of the chemical potential, many of these relations would be lost, 

even the simple inverse relation between the hardness and the softness.
1, 37, 41

 While the retention 

of these sorts of identities is convenient, the principal reason to adopt Eq. (22) as the definition 

of the chemical potential is because only in this way we can recover Sanderson’s principle,
1, 26

 

which is the most important property of the chemical potential. 

Another qualitative difference between the energy-based approach (section 1) and the 

approach based on the free energy or the grand potential is that the variational principle, Eq. (20)

, contains a non-linear dependence on the DM in the form of the entropy. This equilibrium DMs 

likewise vary nonlinearly (Eq. (7) is no longer true) with the number of particles, as do other 
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 11 

observables. Specifically, the equation for the equilibrium GC-DM of a system with chemical 

potential µ  and temperature T, is:
10, 30

  

 

( )
( )
( ){ }

( )

( )
,

,

ˆ ˆexp

ˆ ˆTr exp

exp

exp

T

M M M

i i i

M i

M

i

M i

H N
D

H N

E M

E M

β µ
µ

β µ

β µ

β µ

 − − =
 − − 

 Φ Φ − − 
=

 − − 

∑

∑

  (25) 

where the sub index i  labels the different excited states of the system. This DM also corresponds 

to a given number of electrons, N, which can be determined by applying Eq. (3): 

 ( )
( )

( )
,

,

exp

exp

M

i

M i

M

i

M i

M E M

N
E M

β µ
µ

β µ

 − − 
=

 − − 

∑

∑
  (26) 

It is convenient to rewrite Eq. (25) as a function of N, instead of µ. Because the state functions 

we consider are strictly convex, the function N(µ) is invertible. Inserting its inverse into Eq. (25) 

gives an expression for the N-electron GC-DM, 

 ( )
( )( )
( )( ){ }Tr

T

H N N
D N

H N N

β µ

β µ

 − − =
 − − 

ˆ ˆexp

ˆ ˆexp
  (27) 

 Until now we have not made any assumptions, but to explore practical applications of 

this model we need to restrict the allowed states so that the sum-over-states in Eqs. (25)-(27) has 

a tractable number of terms. If we restrict ourselves to systems at temperatures that are low 

compared to the spacing between energy levels, and to the situation where the number of 

electrons is in the vicinity of a specified integer M, then we can neglect the excited states and 

deal only with the ground states of the systems with M, M + 1, and M – 1 electrons. This greatly 

simplifies the equations, and the results can be conveniently expressed in terms of the ionization 

potential, I, and electron affinity, A. For example, the expression for the (average) number of 

electrons is: 

 
( ) ( )

( ) ( )
exp exp

1 exp exp

A I
N M

I A

β µ β µ

β µ β µ

   + − − +   = +
   + − + + +   

  (28) 
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 12 

As discussed previously, it is sensible to choose systems with integer N as the initial states for 

the perturbative expansions. In contrast to the treatment in section 2, however, differentiation 

with respect to the number of electrons at integer N is now unproblematic. In particular, from Eq. 

(28) is easy to verify that: 

 ( )
2

I A
Mµ

+
= −   (29) 

It is also clear that the chemical potential is an increasing function of the number of electrons, 

i.e., 

 ( ) ( )∆ 0 0N M N N Mµ µ µ= − > ⇒ ∆ = − >  . (30) 

 We can also derive expressions for other reactivity descriptors. For example, assuming 

again the simplified 3-state model constructed from the ground states of the M, M–1, and M+1 

electron systems, the second derivative of the Helmholtz free energy, called the hardness and 

denoted η, can be evaluated as: 

 ( )
2

1

2
P Q

N
η

− ∂
= = + ∂ 

A
  (31) 

with 

 
( )( ) ( )( ){ }
( )( ) ( )( )

exp exp

1 exp exp

A N I N
P

A N I N

β β µ β µ

β µ β µ

   + + − +   =
   + + + − +   

  (32) 

 

( )( )
( )( )

( )( )
( )( )

( )( ) ( )( ){ }2

exp exp

exp exp

1 exp exp

A N A N

I N I N
Q

A N I N

β µ β µ
β

β µ β µ

β µ β µ

     + +      
  

   + − + − − +       = −
   + + + − +   

  (33) 

Here we have used the fact that, due to the convexity of the involved state functions, there is a 

one-to-one mapping between N and µ . Therefore, as in the previous equations, ( )Nµ  is taken 

as a function of the number of particles (e.g. the inverse of the function given in Eq. (26)). 

 At integer numbers of particles 0Q =  and Eq. (31) simplies to 

 ( ) ( )
( )

1
2

1
2

1 2exp

2 exp
M

βη
η

β βη
+ −

=
−

%

%
  (34) 

where Xη% is the Parr-Pearson hardness,
12, 30

 defined as: 
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 13 

 X X XI Aη = −%   (35) 

Notice that, consistent with the derivative discontinuity that occurs in absence of temperature 

effects, in the zero-temperature limit (β→∞), the expression for the chemical hardness in Eq. 

(34) diverges,
27, 34, 35, 42

 

 { ( )lim M
β

η
→∞

= ∞   (36) 

 In the zero-temperature case, charge transfer was completely forbidden. (I.e., molecules 

having integer numbers of electrons in all situations.) To analyze this in the present context let us 

consider two species, X and Y, which, according to our initial assumptions, do not interact with 

each other. From Eq. (30) it follows that if two molecules exchange electrons, the electrons flow 

from the reagent with larger chemical potential (less electronegativity) to the reagent with lower 

chemical potential (greater electronegativity). This means that X will donate electrons to Y if the 

Mulliken electronegativity
43

 of Y is greater or, in terms of chemical potentials, if 

 
2 2

X X Y YI A I A+ +
− > −   (37) 

In this case, the charge transfer is said to occur indirectly between the molecules, since each of 

them is only allowed to interact with their corresponding (ideal) electron reservoirs (i.e. the 

molecules are “externally open but mutually closed”).
44

 Initially, the reservoirs’ chemical 

potentials correspond to those of the molecule with an integer number of electrons, Xµ  and Yµ , 

as given in Eq. (29). Then, after the charge transfer takes place, both reservoirs will have the 

same chemical potential, XYµ . It is important to remark that during this process, X and Y are in 

equilibrium with their reservoirs, and their geometries remain unchanged. 

 To analyze the spontaneity of this process we will consider the overall change in the 

grand-potential: 

 X Y∆Ω = ∆Ω + ∆Ω   (38) 

with: 

 ( ) ( )XYX XX Xµ µ∆Ω = Ω −Ω   (39) 

For a given equilibrium state: 

 ( ) ( ){ }( )1
, ln Tr ex ˆp ˆH Nµ β β µ

β
 Ω = − − −    (40) 

So, the charge transfer will take place if: 
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 14 

 ( )exp 1β∆Ω >−   (41) 

In the specific case of our 3-state model: 

 

( )
( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ){ }
( )

1 exp exp
exp

1 exp exp

1 exp exp

1 exp exp

exp

exp

X XY X XY

X X X X

Y XY Y XY

Y X Y Y

XY

X

X Y

X YY

M M

M M

A I

A I

A I

A I

β µ β µ
β

β µ β µ

β µ β µ

β µ β µ

β µ

β µ µ

    + + + − +   − ∆Ω =  
    + + + − +    

    + + + − +   × 
 

+

+

  + + + − +    

    ×
    

  (42) 

where XM  indicates the (integer) number of particles of the system with chemical potential Xµ . 

If we denote X XY Xµ µ µ∆ = − , this equation can be rewritten in a more elucidative form: 

 

( )
( ) ( )

( ) ( )

( ){ }
( )

1 exp exp exp
2

exp

1 2exp
2

1 exp exp exp
2

1 2exp
2

exp

exp

X
X X

X

Y
Y Y

Y

X Y

X Y

XY

X Y

M M

M M

ηβ µ β µ β
β

ηβ

ηβ µ β µ β

ηβ

β µ

β µ µ

   + − ∆ + ∆ −    − ∆Ω =  
  + −    

   + − ∆ + ∆ −    × 
 

+

+

+ −    

    ×
    

%

%

%

%
  (43) 

Since  2e eα α−+ ≥ , with equality only for α = 0, the first two terms of this expression are 

automatically greater or equal than 1. This means that a sufficient condition for the charge 

transfer to occur is that: 

 ( )XXY XX YYYM M M Mµ µ µ+>+   (44) 

 To study this inequality in more detail, we employ the traditional conceptual DFT 

approach to this problem, which uses Taylor series expansion in the (free) energy, truncated at 

second order. That is, we start from the expressions: 

 ( )
2

2

2

1

2

X
X X X XN N

N
µ

 ∂
∆ = ∆ + ∆ ∂ 

A
A   (45) 
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 ( )
2

2

2

1

2

Y
Y Y Y YN N

N
µ

 ∂
∆ = ∆ + ∆ ∂ 

A
A   (46) 

And then we look for the minimum in free energy by minimizing X Y∆ +∆A A , subject to the 

constraint that X YN N∆ = −∆ , where the extent of charge transfer is given by: 

 
( ) ( )

( ) ( )
exp exp

1 exp exp

X XY X XY

X

X XY X XY

A I
N

I A

β µ β µ

β µ β µ

   + − − +   ∆ =
   + − + + +   

  (47) 

As the Taylor series does not truncate exactly, we should verify that contributions from 

the third- and higher-order derivatives are negligible; this is true for sufficiently small amounts 

of charge transfer. Now we can determine the chemical potential after the charge transfer is 

complete: 

 X Y Y X
XY

X Y

µ η µ η
µ

η η
+

=
+

  (48) 

Substituting this expression in Eq. (44), and, for simplicity, restricting ourselves to the 

isoelectronic case (e.g. X YM M= ) we will have: 

 ( ) ( ) 0Y X X Yη η µ µ− >−   (49) 

It is easy to see that the hardness, as expressed in Eq. (34), is a monotonically increasing function 

of the Parr-Pearson hardness (e.g. Y X Y Xη η η η⇔> >% % ). Then, the above inequality can be 

rewritten as: 

 ( ) ( ) 0Y X X Yη η µ µ >− −% %   (50) 

If we consider that the electron affinity is negligible compared to the ionization potential (which 

is known to be the case for most neutral organic molecules) we will have: 

 ;
2

X
X X X

I
Iµ η≈ − ≈%   (51) 

So Eq. (50) reads: 

 ( )2
0

Y X
I I− >   (52) 

which is obviously true. 

 Once again we remark that the previous discussion only gives sufficient conditions for 

the charge transfer to be spontaneous, and it may be very well the case that there are other 

situations where this could happen. What this shows is that, for systems at positive temperature, 
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there are situations where charge transfer between unlike reagents is spontaneous. In the zero-

temperature limit, Eq. (37) correctly predicts the direction of charge transfer, but this is “the right 

answer for the wrong reason” since, as discussed in conjunction with Eq. (17), at zero 

temperature fractional electron transfer is forbidden.
20

 

 By invoking finite temperatures we are able to obtain well-defined expressions for the 

reactivity descriptors and show that charge transfer is allowed in certain situations; these are 

appealing features of this formulation. Nonetheless, the tendency for the hardness to be 

enormous, and the extent of charge transfer to the correspondingly small, at the temperatures that 

are normally of chemical interest calls the utility of this treatment into question. Aside from this, 

however, there are other issues. The model predicts, correctly, that there will be no charge 

transfer between identical species. However it also predicts that there is no chemical potential 

change upon formation of any aggregate of the form Xn. In other words, this model indicates that 

atomic Chlorine and its homonuclear diatomic, Cl2, have the same tendency to gain electrons. It 

also predicts that all conformers of Xn will have the same chemical potential. The model also 

predicts the incorrect direction of electron transfer in some molecules, notably heteronuclear 

diatomic molecules like BF, CF, and CO, where the dipole moment is directed contrary to the 

expectation one would have from electronegativity considerations alone.
28

 This indicates, in fact, 

that the assumption that a system will have the same chemical response independently of its 

partner reagent should be reconsidered, and that one should design a framework that allows one 

to accommodate the peculiarities of different reaction conditions. In the treatment in section 2, 

such conditions are accommodated in a rudimentary, but useful way by stipulating that a 

molecule will have different response to nucleophilic and electrophilic attacks (cf. Eqs. (10) and 

(11)), but that approach forbade fractional electron transfer. The finite-temperature treatment in 

this section, by contrast, accommodates fractional electron transfer, but loses the ability to 

distinguish between electrophilic and nucleophilic responses. Such a treatment is adequate for 

studying the equilibrium between the system and an ideal reservoir of electrons with fixed 

temperature and chemical potential, with no consideration of any other species. Indeed, as 

pointed out by Nalewajski,
44

 the interaction with other species is not modeled directly (the 

systems which are mutually closed), but through equilibration of their corresponding reservoirs. 

 

4. Interacting reagents at finite temperature 
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 17 

 To overcome these problems, it is necessary to move beyond the description of reagents 

as isolated systems. We achieve this by considering more general initial states which include 

some information about the system’s environment.  The first advantage of this formulation is that 

charge transfer is immediately allowed between the interacting species. This is a consequence of 

the fact that the sum of the electron densities of the isolated molecules does not correspond to a 

stationary state of the combined (interacting) system. The further (spontaneous) relaxation of the 

electron density (towards the ground or equilibrium state) drives the charge transfer. 

 

Well-separated, weakly-interacting, reagents 

 Consider, for simplicity, the effects of a small external perturbation upon a given 

reactant. This can be modeled directly if we center our perturbation series on a point early in the 

reaction path, where reagents are far apart, but nonetheless already interacting with each other. 

We assume that we are working at positive temperature, so that the theoretical framework from 

section 3 is virtually unaltered. In particular, we are still looking for equilibrium states using a 

maximum entropy principle with the form: 

 ( ) ( ) ( ){ }ˆTr 0ˆS D DH Tr DNδ β µ ′− − =    (53) 

with solution (cf. Eq. (25)): 

 ( )
( )
( ){ }
ˆ ˆexp

Tr exp ˆ ˆT

H N
D

H N

β µ
µ

β µ

 ′− − =
 ′− − 

  (54) 

The only difference between these equations and the corresponding ones from the non-

interacting case is the presence of a modified Hamiltonian, Ĥ ′ , 

 ˆ ˆ ˆ
RH H P′ = +   (55) 

where Ĥ  is the Hamiltonian of the isolated system and ˆ
RP  is a perturbation that models the 

(small) interaction between the reagents. We defer specific models for the perturbation to future 

work, and focus here on the general implications of this revision. To do this, we again employ 

the three-state model used in the past section, noticing that now Eq. (28) must be rewritten as: 

 
( ){ } ( ){ }

( ){ } { } ( ){ }( )
1 1

1 1

exp 1 exp 1

exp 1 exp ) exp 1

M M

M M M

E M E M
N M

E M E M E M

β µ β µ

β µ β µ β µ

+ −

− +

   − − + − − − −   = +
     − − − + − − + − − +  

′

′

′

′ ′ 

   (56) 
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where: 

 
M M ME E ε=′ +   (57) 

are the eigenvalues of Ĥ ′  and the assumption of weak interactions means that the first-order 

perturbation theory expression should be reliable 

 ˆM

R

M MPε = Φ Φ   (58) 

and that furthermore, for all M, 0Mε ≈ . By simplifying Eq. (56), we determine an expression for 

the chemical potential of the M-electron 

 ( )
( )1 1

2

M MI A
M

ε ε
µ

− ++ + −
= −   (59) 

Here I and A refer to the ionization potential and electron affinity of the unperturbed system. It is 

interesting that this expression depends only on the perturbed energies of the states with M+1 

and M–1 electrons. Equation (59) can be rewritten in terms of a single parameter, 

 
( )
( )

1 1

1 1

M M

M M

I A

I A

ε ε
α

ε ε

− +

− +

− + −
=

− − −
  (60) 

 ( )
1

I A
M

α
µ

α
+

= −
+

  (61) 

This expression generalizes the chemical potential expressions previously propounded by 

Gázquez, Cedillo and Vela (GCV from now on),
45, 46

 using quadratic interpolation models. 

However, in the weakly-interacting limit 1α ≈ , in contrast to the value ( 3α = ) chosen by GCV 

for electron-donating species. 

 One feature of this approach is that it does not make the usual division of molecular 

environments into electron-accepting (electrophilic) and electron-donating (nucleophilic) 

reagents. At least in principle, the introduction of 1 1M Mε ε− +−  (equivalently, α ) allows one to 

analyze more general responses. The most obvious effect of this modification is the change in the 

tendency of the system to attract electrons. For example, 1α >  corresponds to a perturbed system 

with greater electronegativity than its isolated counterpart described by Eq. (29). This makes 

sense: 1α >  corresponds to 1 1M Mε ε− +> , indicating that the perturbation produced by the reagent 

preferentially stabilizes the M + 1 electron state, making it more energetically accessible than it 
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was in the idealized “Mulliken” case. Therefore, this perturbation will enhance the tendency of 

the system to gain electrons.  

 In their model, GCV give distinct expressions for the chemical potentials of electron 

acceptors (acids) and electron donors (bases), namely,
45

 

 ( )GCV

base

3

4

I A
Mµ

+
= −   (62) 

 ( )GCV

acid

3

4

I A
Mµ

+
= −   (63) 

Given the established utility of the GCV model,
46, 47

 it is interesting to analyze under what 

conditions expressions like these might be reliable; i.e., can a given acid/base pair be 

characterized by chemical potentials of the form 

 ( )
base 1

I A
M

α
µ

α
+

= −
+

  (64) 

 ( )
acid 1

I A
M

α
µ

α
+

= −
+

  (65) 

 Motivated by the considerations that led to the GCV model, let us start by assuming that 

the acid and the base have the same hardness, so that their differential reactivity is governed 

entirely by their chemical potential. Referring to Eq. (60), it becomes clear that Eqs. (64) and 

(65) correspond to the assumption that the differential stabilization of the M+1-electron state of 

the acid is the same as the differential stabilization of the M–1-electron state of the base. That is,  

 1 1 1 1

acid acid base base

M M M Mε ε ε ε− + + −− = −   (66) 

along with the equal-hardness assumption, 

 acid acid base baseI A I A− ≈ −   (67) 

leads to Eqs. (64) and (65). Even without these assumptions, one has the model 

 ( )
1

Base

Base
Base

I A
M

α
µ

α
+

= −
+

  (68) 

 ( )
1

Acid

Acid
Acid

I A
M

α
µ

α
+

= −
+

  (69) 

Moreover, based on the reasonable expectation that the electron-accepting states of the acid are 

stabilized and the electron-donating states of the base are stabilized by their mutual interactions, 

we may hypothesize 

Page 19 of 26 Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



 20 

 ( ) ( )1 1 1 1

acid base base base acid acid 0M M M Mη ε ε η ε ε− + − +− + − ≈% %   (70) 

and thus 

 
base

acid

1
α

α
≈   (71) 

Further insight into the behavior of α  can be gained if we analyze the Taylor expansion 

corresponding to Eq. (60): 

 
1 1 1 1

2

1 2

k
M M M M

k

ε ε ε ε
α

η η

− + − +∞

=

   − −
= + +   

   
∑

% %
  (72) 

It is clear that for similar external perturbations, systems with greater values of the Parr-Pearson 

hardness, η% , will be less affected. 

 

Strongly-interacting reagents 

 Equations (68) and (69) are appropriate only when the reagents are weakly interacting, 

and thus only for the early states of a reaction path. There are certainly effects that cannot be 

described using this approach. For example, when a Boron atom is far from a Fluorine atom, 

charge flows from Boron to Fluorine, as one would expect. It is only when the reagents are close 

together and orbital overlap is appreciable that the direction of the dipole moment reverses. 

Effects like this, and more generally, all reactions with “late” transition states, are often 

considered to be beyond the domain of conceptual DFT approaches.
48

 We wish to establish that 

this is not the case by extending the previous treatment to strongly-interacting reagents. To do 

this, we will need to center the perturbation series on a point that is far from the initiation of the 

chemical process and is, indeed, perhaps closer to the final state. As such, now we not only need 

a model for the (possibly strong!) external perturbation acting upon a given reagent, but also a 

method for defining the reagent within the supramolecular reactant complex. There is no unique 

way to partition a quantum system into subsystem;
49-51

 likewise there are several approaches for 

defining the interactions between the subsystems.
52, 53

 However, all of the schemes we are aware 

of start by determining (or at least approximating) the state of the whole system (in our case, the 

molecular complex XY), and then partition it. This approach is contrary to the spirit of conceptual 

DFT, where one wishes to find physically grounded, but simple, models that explain chemical 

reactivity in a reagent-centered way, independent of the fine details of the molecular 
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environment. For this reason, our approach to strongly interacting reagents is based on direct 

computation of the state (e.g., the density matrix) of a reagent within a supramolecular entity. 

 To avoid the derivative discontinuity/linearity problems from section 2, we will consider 

strongly interacting reagents at nonzero temperature.  Accordingly, the variational principle 

retains the form from Eqs. (20) and (53),  

 ( ) ( ) ( ){ }ˆ 0ˆS D Tr D Tr Dδ β µ − − =  
H N   (73) 

We have changed the notation for the Hamiltonian and the number operator of the subsystem to 

indicate, explicitly, that these operators must be revised, and that there is significant freedom in 

how that is done, 

 ˆ ˆˆ ˆ
R HH P C= + +H   (74) 

 ˆ ˆˆ
NN C= +N   (75) 

There is still the (intrinsic) perturbation due to the environment, ˆ
RP , but this perturbation may 

not be small. The operators ˆ
HC  and ˆ

NC  are specific to the partitioning method. We will not 

discuss the possible forms that these operators could take, but focus on the general features of 

this model. As MB and Kaplan have noticed,
30, 39

 it is useful to assume that the energy and 

particle-number in the subsystem can be measured simultaneously, so we require that these 

operators commute, 

 ˆ , 0ˆ  = H N   (76) 

To impose this constraint, we write the subsystem partitioning method for the energy and 

number of electrons in terms of an auxiliary operator R̂ ,  

 ( )ˆ ˆ ˆ ˆ
RH P R= +H   (77) 

 ˆ ˆ ˆNR=N   (78) 

The operator R̂  can be considered a type of subsystem projection operator. Eq. (76) provides a 

constraint on the types of subsystem partitionings that can be considered. In particular, 

 , ,ˆ ˆ ˆ ˆ ˆ 0RR N R H P   = + =      (79) 

This choice is quite general and extremely convenient, but there may be other chemically 

sensible partitioning methods that do not fit within this framework.  
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 The framework we have selected is convenient because the equilibrium DM for the 

subsystem has a simple form, 

 

 

( )
( )
( ){ }

( )

( )
,

,

ˆ ˆ

ˆ ˆ

exp

ˆe

ex

xp

ˆTr exp

p

T

M M M

i i iM

M

i

M i

M

M i

R H N
D

R H N

E

E

M

M

β

β µ

µ

µ

β

µ
β

µ

 − −

 ′− − =
 ′− − 

′ ′ ′Φ Φ

=
 

 − ′−

∑

∑

  (80) 

where: 

 ˆ M M M

i i iH E′ ′ ′ ′Φ = Φ   (81) 

 M Mrβ β=    (82) 

 ˆ M M

i M iR r′ ′Φ = Φ   (83) 

Comparing Eq. (54) for weakly-interacting reagents and Eq. (80) for strongly-interacting 

reagents, the essential differences are that (a) we no longer may assume we are in the 

perturbative regime and (b) there is an effective temperature, Mβ , that is different for each 

different (integer) number of electrons. The effective temperature arises because coupling 

between the operators for the energy and the number of electrons in the subsystem (cf. Eqs. (77) 

and (78)). An expression like Eq. (80) has been proposed previously, purely heuristically.
54

 This 

derivation provides a rigorous and, in principle, exact mathematical framework that supports that 

model. 

 To explore the implications of this model in more detail, we derive the expression for the 

chemical potential of the M-electron system from the three-state model, namely, 

 
( ) ( ) ( )

( )

1 1

1 1 1 1 1 1

1 1 1 1

M M M

M M M M M M

M M M M

r A r I E r r r r

r r M r r

ε ε
µ

+ −
+ − + − + −

+ − + −

− + + − + −
=

+ + −
  (84) 

The relative complexity of this expression, when compared with Eqs. (29) and (61), reflects the 

more general nature of the present formalism. This framework not only requires suitable modes 

for the “intrinsic” interactions of the system with its surroundings (e.g., the changes in the energy 

eigenvalues of the subsystem, 1M ε+  and 1M ε− , which unlike the weakly interacting case need not 

be especially small), but also models for the partitioning-specific parameters 1Mr +  and 1Mr − . As 
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this framework subsumes all the other results in this paper, this model must recover those results 

in suitable limiting cases. For example, we recognize that the Mulliken formula for the chemical 

potential, Eq. (29), does not strictly require isolated reagents, but holds whenever one has a 

“completely symmetric” perturbation/partitioning, such that 1 1M Mε ε+ −=  and 1 1M Mr r+ −= . 

Similarly, if we consider subsystem partitionings that satisfy the condition 

 
1 1

1 1

1 1

M M
M M M

M M

r r
E M

r r

ε ε
µ

+ −
+ −

+ −

−
− =

−
 , (85) 

one regains a formula that is reminiscent of the weakly interacting limit in Eq. (61), namely 

 

 
1

I Aγ
µ

γ
+

= −
+

  (86) 

where the parameter 

 1

1

M

M

r

r
γ −

+

=   (87) 

is not necessarily close to one. In the limits 0γ →  and γ → ∞ , Eq. (86) recovers the linear 

model, Eqs. (10) and (11), respectively. 

 The framework in Eq. (84) remedies the shortcomings of the noninteracting reagent 

picture that were discussed at the end of section 3. For example, molecular aggregates will now 

have different chemical potentials from the isolated atoms and from molecular aggregates with 

the same composition but different structure because the chemical potentials of the aggregates 

will change depending on the molecular environment. Similarly, the flexibility of a model like 

Eq. (84) (and even models like Eqs. (64) and (65)) suffices to describe molecules where the 

direction of electron transfer is opposed to the prediction from the Mulliken formula.  

 

5.  Summary 

 In this paper, we have explored a hierarchy of models within the grand canonical 

ensemble. Based on considerations of the zero-temperature grand canonical ensemble, we 

motivate the introduction of a temperature and electronic chemical potential bath, which allows 

for fractional electron transfer but still results in a severely oversimplified reactivity model.  

 This motivated us to shift the expansion point for the perturbation series away from the 

isolated reagent limit, and consider weakly interacting open systems at nonzero temperature. The 
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resulting formula for the chemical potential, cf. Eqs. (68)-(71), generalizes and in some sense 

justifies the model that was previously proposed by Gazquez, Cedillo, and Vela. As the 

interaction between the subsystems becomes stronger, the chemical potential becomes dependent 

not only on the subsystems’ molecular environment, but on the choice of partitioning method. 

The framework we present for strongly-interacting reagents, although it is not completely 

general, is nonetheless general enough to encompass all of the aforementioned limits (the zero-

temperature limit, noninteracting subsystems, and weakly interacting subsystems) and, 

moreover, to validate the viewpoint that the interaction between strongly interacting subsystems 

can be modeled with an effective temperature.  

 This work shifts the philosophy of conceptual DFT: no longer do we consider that the 

reactivity indicators of a reagent are its intrinsic properties, independent of its molecular 

environment. Nonetheless, while we believe that it is practically useful to retain the approach of 

looking at a supramolecular complex “one reagent at a time.” Our philosophy, then, is to define 

chemical reactivity parameters for individual reagents, but within a framework that captures the 

influence of the supramolecular environment. This results in general models (e.g., Eqs. (64), (65)

, and (84)) that parameterize the molecular environment in ways that are simple enough to be 

intuitively useful, but general enough to describe a broad range of chemical processes.  
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