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1 Introduction

Comparing molecules and solids across structural
and alchemical space’

Sandip De,®” Albert P. Barték,© Gabor Csanyi,© and Michele Ceriotti **?

Evaluating the (dis)similarity of crystalline, disordered and molecular compounds is a critical step
in the development of algorithms to navigate automatically the configuration space of complex
materials. For instance, a structural similarity metric is crucial for classifying structures, searching
chemical space for better compounds and materials, and driving the next generation of machine-
learning techniques for predicting the stability and properties of molecules and materials. In the
last few years several strategies have been designed to compare atomic coordination environ-
ments. In particular, the Smooth Overlap of Atomic Positions (SOAP) has emerged as an elegant
framework to obtain translation, rotation and permutation-invariant descriptors of groups of atoms,
driven by the design of various classes of machine-learned inter-atomic potentials. Here we dis-
cuss how one can combine such local descriptors using a Regularized Entropy Match (REMatch}
approach to describe the similarity of both whole molecular and bulk periodic structures, introduc-
ing powerful metrics that enable the navigation of alchemical and structural complexity within a
unified framework. Furthermore, using this kernel and a ridge regression method we can predict
atomization energies for a database of small organic molecules with a mean absolute error below
1kcal/mol, reaching an important milestone in the application of machine-learning techniques te
the evaluation of molecular properties.

automated tools to analyze, classify” ! and represent!2-16 largr

The increase of available computational power, together with
the development of more accurate and efficient simulation algo-
rithms, have made it possible to reliably predict the properties of
materials and molecules of increasing levels of complexity. Fur-
thermore, high-throughput computational screening of existing
and hypothetical compounds promises to dramatically acceler-
ate the development of materials with the better performances
or custom-tailored properties 1®.

These developments have made even more urgent the need for
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amounts of structural data, as well as techniques to leverage this
wealth of information to estimate inexpensively the properties of
materials using machine-learning techniques, circumventing the
need for computationally demanding quantum mechanical calcu-

lations 17-28,

At the most fundamental level, the crucial ingredient for all
these techniques is a mathematical formulation of the concept of
(dis)similarity between atomic configurations, that can take the
form of a distance - that can be used for dimensionality reduc-
tion or clustering - or of a kernel function, that could be used for
ridge regression or automated classification. 32 The most ob-
vious choice for a metric to compare atomic structures would in-
volve the Euclidean distance between the Cartesian coordinates of
the atoms, commonly known as root mean square displacement
(RMSD) distance, that can be easily made invariant to relative
translations and rotations. It is however highly non-trivial to ex-
tend the RMSD to deal with situations in which atoms in the two
structures cannot be mapped unequivocally onto each other. The

Journal Name, [year], [vol.], 1-19 |1



Physical Chemistry Chemical Physics

deterministic evaluation of a “permutationally invariant” RMSD
scales combinatorially with the size of the molecules to be com-
pared33, and introduces cusps at locations where the mapping of
atom identities changes. Furthermore, as we will discuss later on,
the RMSD is perhaps the most straightforward, but not necessar-
ily the most flexible or effective strategy to compare molecular
and condensed-phase configurations.

In the last few years, a large number of “fingerprint” func-
tions have been developed to represent the state of structures,
or of groups of atoms within a structure. Structural descriptors
have been developed based on graph-theoretic procedures (e.g.
SPRINTs3%), as well as on analogies with electronic structrure
methods (e.g. Hamiltonian matrix, Hessian matrix, Overlap ma-
trix of Gaussian type Orbitals (GTO) or even Kohn-Sham eigen-
values fingerprints33). Most of these approaches have been in-
troduced to provide a fast and reliable estimate of the dissim-
ilarity between structures. Several other descriptors have been
also used in machine learning, to predict properties of materials
and molecules circumventing the need for an expensive electronic
structure calculation. A non-comprehensive list of such methods
include Coulomb matrices!”, bags of bonds28, “symmetry func-
tions” 3%, scattering transformation applied on a linear superposi-
tion of atomic densities23.

A particularly promising approach to compare structures in a
way that is invariant to rotations, translations, and permutations
of equivalent atoms, is to start from descriptors designed to rep-
resent local atomic environments and that fulfill these require-
ments, and combine them to yield a global measure of similar-
ity between structures. This idea typically relies on finding the
best match between pairs of environments in the two configura-
22,33,36 and can also be traced back to methods developed
to compare images based on the matching of local features37.

tions

In the present work we start from a recently-developed strat-
egy to define a similarity kernel between local environments —
the smooth overlap of atomic positions (SOAP)38 — and discuss
the different ways one can process the set of all possible match-
ings between atomic environments to generate a global kernel
to compare two structures. In particular, we introduce a regu-
larized entropy match (REMatch) strategy that is based on tech-
niques in optimal-transport theory3?, and that is both more ef-
ficient and tunable than previously-applied methods. We dis-
cuss the relative merits of different approaches, and generalize
this strategy to the comparison between structures with differ-
ent numbers and kinds of atoms. We demonstrate the behavior
of the different global kernels when applied to completely dif-
ferent classes of problems, ranging from elemental clusters, to
bulk structures, to the conformers of oligopeptides and to a het-
erogeneous database of small organic molecules. We visualize
the behavior of the distance associated with these kernels using
sketch-map 13, a non-linear dimensionality reduction technique,
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and demonstrate the great promise shown by the straightforward
application of the REMatch-SOAP kernel to the machine-learning
of molecular properties. Finally, we present our conclusions.

2 Theory

Let us start by introducing the notation we will employ in the rest
of the paper. We will label structures to be compared by capital
letters, use a lowercase Latin letter to indicate the index of an
atom, and when necessary use a Greek lowercase letter to mark
its chemical identity. For instance, the position of the i-th atom
within the structure A will be labeled as x!'. The environment
of that atom, i.e. the abstract descriptor of the arrangement of
atoms in its vicinity will be labelled with a calligraphic upper case
letter, e.g. 27, and the sub-set of such environment that singles
out atoms of species ¢ will be indicated as ﬂfiA’a.

Among the many descriptors of local environments that have
been developed in the recent years 1-3:5:6,17-22,24-28,33.36 \ye wil]
refer in particular to the SOAP fingerprints>8, that have been
proven to be a very elegant and robust strategy to describe co-
ordination environments in a way that is naturally invariant with
respect to translations, rotations and permutations of atoms. We
will use the notation k(2",2”) to indicate the similarity ker-
nel (normalized to one) between two environments — which one
would use in a kernel ridge regression method31:3240 _ and
d(2, X2 =2-2(Z,2Z") to indicate the (squared) kernel dis-
tance between the environments — which one would use in a di-
mensionality reduction method 13:16, In what follows we will dis-
cuss different ways by which environment kernels can be com-
bined to yield a a global similarity kernel between two struc-
tures K(A,B), and the associated squared distance D(A,B)? =
2—2K(A,B).

2.1 SOAP similarity kernels and local environment distance

We will first focus on the comparison between the environment
of two atoms in a pure compound made up of a single atomic
species o. The crucial ingredient in making the comparison is a
kernel function based on the distribution of atoms in the two envi-
ronments. In the context of SOAP kernels one represents the local
density of atoms within the environment 2 as a sum of Gaussian
functions with variance 2, centered on each of the neighbors of
the central atom, as well as on the central atom itself:

(xi—r)

pr(= ¥ exo (220, W
iex 20°

The SOAP kernel is then defined as the overlap of the two local

atomic neighbour densities, integrated over all three-dimensional

rotations R,

n

W2, 2" = / dzé‘/ p2(£)pg (Rr)dr @)
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Note that in the n = 1 case the two integrals can be switched, and
therefore the kernel looses all angular information, so we focus
on the n = 2 case exclusively. For most applications it is helpful to
normalise the kernel so that the self-similarity of any environment
is unity, giving the final kernel

K22 =K, 22 20227 @)

It is a remarkable property of the SOAP kernel that the integration
over all rotations can be carried out analytically. First, the atomic
neighbour density is expanded in a basis composed of spherical
harmonics and a set of orthogonal radial basis functions {g,(r)},

P2 () =Y coimgp(t))Yim(R), 4)
blm

then the rotationally invariant power spectrum is given by

P2 )byt = Y (Coyim)  Chyim- (5)
m
Collecting the elements of the power spectrum into a unit-length
vector p(Z"), the SOAP kernel is shown 38 to be given by

K2, 27) =p(2)-p(27) 6
eventually leaving a definition of the distance as

d(Z,2") =v2-2p(2)-p(Z") (7)
The SOAP kernel can be written in the form of a dot product,
therefore it is manifestly positive definite, which implies that the
distance function (7) is a proper metric.

2.2 From local descriptors to structure matching

The vectors that enter the definition of the environments are
defined in such a way that their dot product is the overlap of
(smoothed) atomic distributions. Given two structures with the
same number N of atoms, we can compute an environment covari-
ance matrix that contains all the possible pairings of environments

Cij(A.B) =k (2, 27). ®)

This matrix contains the complete information on the pair-wise
similarity of all the environments between the two systems. Based
on it, one can introduce a global kernel to compare two structures
or molecules. We will discuss and compare four different ap-
proaches. All of them are meant to be normalized, i.e. the given
expressions for K(A,B) are to be divided by /K(A,A)K(B,B)
whenever the kernel is not normalized to one by construction.

Physical Chemistry Chemical Physics

Average structural kernel A first possibility to compare two
structures involves computing an average kernel

_ 1
K(A,B) :WZCU(A,B) =
)

9

1

%ﬂ} - [;,Zp(%f)} .
J

One sees that K can be computed inexpensively by just storing
the average SOAP fingerprint between all environments of the
two structures. This kernel is also positive-definite, being based
on a scalar product*!, and therefore induces a metric D(A,B) =
\/2—2K(A,B). On the other hand, it is not a very sensitive metric:
two very different structures can appear to be the same if they are
composed of environments that give the same fingerprint upon
averaging.

Best-match structural kernel Another possibility, that has
been used previously with different kinds of structural finger-
prints22:33:42:43 {5 to identify the best match between the envi-
ronments of the two structures,

K(A,B) = %mngcmi(A,B). (10)

which can be accomplished with an ¢(N3) effort using the
Munkres algorithm44. The corresponding distance has the prop-
erties of a metric, which means it can still be safely used to as-
sess similarity between structures and molecules. Unfortunately,
this “best-match” kernel is not guaranteed to be positive-definite,
which makes it less than ideal for use in machine-learning ap-
plications. Furthermore, the distance obtained by a best-match
strategy is continuous, but has discontinuous derivatives when-
ever the matching of environments changes. These problems can
be solved or alleviated by matching the environments based on a
different strategy, that combines features of the average and the
best-match kernels.

Regularized entropy match kernel The best match problem
can be also stated in an alternative form, namely

R - . - hY
K(A,B) = PGZE%M lzj:c,j (A,B)P;. an
where % (N,N) is the set of N x N (scaled) doubly stochastic ma-
trices, whose rows and columns sum to 1/N, i.e. ¥,;P;j =Y ;P; =
1/N. We can then borrow an idea that was recently introduced in
the field of optimal transport3? to regularize this problem, adding
a penalty that instead aims at maximizing the information en-
tropy for the matrix P subject to the aforementioned constraints
on its marginals. Such “regularized-entropy match” (REMatch)
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kernel is defined as

KY(A,B) = TrPYC(A,B),

P”= argmin ) P;(1—Cjj+7InP;), (12
Pe% (N,N)'§j

where the regularization is given by an entropy term E(P) =
—YijPjInP;. PY can be computed very efficiently, with O(N?)
effort, by the Sinkhorn algorithm3° (see Appendix C). For y — 0,
the entropic penalty becomes negligible, and K¥(A,B) — K(A,B).
For y — oo, one selects the P with the least information con-
tent, that is one with constant P;; = 1 /N2. Hence, in this limit
KY(A,B) = K(A,B).

Permutation structural kernel For the sake of completeness,
we also discuss a fourth option: rather than summing over all
possible pairs of environments, one can consider each pairing of
environments separately, and sum over all the N! possible permu-
tations that define the pairings. In order to kill off more rapidly
the combinations of environments that contain bad matches, one
can multiply the kernels that appear in each pairing, and define a
permutation kernel

= %;qum,m =permC(A, B). (13)
This choice corresponds to the evaluation of the permanent of
the environment kernel matrix, and has some appeal as it is guar-
anteed to yield a positive-definite kernel4>.
the permanent of a matrix, however, has combinatorial computa-
tional complexity*. Its application is limited to small molecules,
and we will not discuss it further in the present work.

The evaluation of

2.3 Matching structures containing multiple species

When comparing structures that contain different atomic species,
the first problem that has to be addressed is that of extending
the local environment metric so that the presence of multiple ele-
ments is properly accounted for.

SOAP descriptors provide a straightforward way to do this: a
separate density can be built for each atomic species

X; — 2
pG-(r)="Y exp (—%) (14)

€2y

and a (non-normalized) kernel be defined by matching separately

« Although stochastic algorithms do exist to compute it to a desired precision in poly-
nomial time 40

the different species:
U7 = [ ] [ L0505 (e
“ a
= Z Pop (2
op

(15)
) Pap(2”).

Here we have introduced “partial” power spectra p,g that encode
information on the relative arrangement of pairs of species, and
can be written as

2
B 8 B
P2 )it = 577 ;(c;‘i‘,,m)*cbz,m, (16)

where we built in the angular channel dependent weights into
the elements of the power spectrum. The expansion coefficients
describe the atomic density of species o

sz' (I‘) = Z c[?lmgb(‘r‘)Ylm(f) (17)
blm
in terms of a basis set, which is a combination of spherical har-
monics and orthogonal radial functions. The kernel in Eq. (15)
can then be normalized as in Eq. (3).

Note that, even though the overlap between the environments
of the different species is considered to be zero, the kernel is
sensitive the relative correlations of different species. This is
because, due to the squaring of the density overlap within the
rotational average, the SO(3) power spectrum vectors contain
mixed-species components. One could also introduce a notion
of “alchemical similarity” between different species. For instance,
when comparing structures of III-V semiconductors one could dis-
regard the chemical information on the identity of an atom as
long as it belongs to the same column of the periodic table. Such
a notion can be readily implemented, defining an alchemical sim-
ilarity kernel k3 which is one for pairs that should be considered
interchangeable, and tend to zero for pairs that one wants to con-
sider as completely unrelated. The expression then becomes

2
% 27 /dR‘/ Z Kaa’Py )P%r(lér)dr
aa a8)
Z paﬁ(%) 'pa’ﬂ’(%/)Kaa’Kﬁﬁ"

_aﬁa’ﬁ’

The original expression (15) can be recovered by setting kg =
Oqp. Global similarity kernels can then be transparently in-
troduced to compare structures composed of different atomic
species, with geometry and alchemical composition treated on
the same footings and the possibility of adapting the definition of
similarity to the system and application.
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2.4 Matching structures with different numbers of atoms

The definitions above can be readily extended to compare struc-
tures containing different numbers of atoms N4 and Ng. We dis-
cuss two possible strategies. When comparing crystalline, peri-
odic structures, it may be the case that one of the structures cor-
responds to a slight distortion of the other, that needs a larger
unit cell for a proper representation. Comparing the structures
using the average kernel (9) does automatically the “right thing”,
that is performing the comparison in a way that is independent of
the number of times the two structures have to be replicated to
match atom counts. In the case of the permutation kernel and of
the best-match kernel, the most effective way to perform the com-
parison is to evaluate the least common multiple N of N4 and Np,
and replicate the environment similarity matrix to form a square
matrix. One can then proceed to compute the permanent, or the
linear assignment problem, based on such replicated matrix. The
advantage of this procedure is that one does not need to explic-
itly find the relation between the shape of the two unit cells and
replicate them to perform the comparison: the environment simi-
larities can be evaluated including periodic replicas, and the min-
imum number of comparisons will be naturally performed among
any pairs of structures. However, the least common multiple can
become very large, making even the best-match kernel (10) im-
practically demanding, although the cost can be reduced by ex-
ploiting the redundancy in the extended environment covariance
matrix. As shown in the Appendix, the REMatch kernel (12) can
be computed easily also for a rectangular matrix, which consti-
tutes an additional advantage of formulating the environment
matching problem in terms of a regularized transport optimiza-
tion.

When comparing molecules or molecular fragments, it may be
advisable to proceed differently — since in that case the chemical
composition might differ, and it may not make sense to compare
molecules as if they were part of an infinite periodic assembly. A
possible strategy is then to consider, given a molecular database,
the smallest pool (“kit”) of atoms from which every molecule in
the set can be constructed. Then, when comparing each pair of
structures, the atoms that are not needed to form either of the two
molecules would still be part of the comparison, in the form of
idealized “isolated” species. Alternatively, for instance when the
full database is not known a priori, such “reference kit” could be
chosen dynamically for each pair of molecules. Since the SO(3)
fingerprints that underlie the definition of the SOAP kernel can
also be evaluated for isolated atoms’, it is then possible to in-
troduce a natural definition of the covariance between an envi-
ronment and an isolated atom. One of the advantages of such
approach is that the global kernels will then vary smoothly if a

+ The density of atoms defined in equation (1) contains the central atom.

Physical Chemistry Chemical Physics

molecule is continuously broken up into its constituent atoms,
which lends itself to a very effective description of atomization
processes.

2.5 Representing (al)chemical landscapes

In this work we will demonstrate the flexibility, transferability and
effectiveness of the framework we have just introduced to com-
pare molecular and condensed-phase structures. To this aim, we
will build two dimensional maps that represent proximity rela-
tions between the structures — as assessed by the kernel-induced
metric — using sketch-map !3, a non-linear dimensionality reduc

tion (NLDR) scheme specifically designed to deal with atomistic
simulation data. As we will demonstrate, the combination of
SOAP-based structural metrics and NLDR representation provides
a broadly applicable protocol to generate an insightful representa-
tion of the structural and alchemical landscape of complex molec-
ular and condensed-phase systems. Of course, one could use the
SOAP-based global kernels, or the corresponding distances, as
the basis of other non-linear dimensionality reduction techniques,
such as multi-dimensional scaling*” or diffusion maps12:16:48,

We refer the reader to the relevant literature for a detailed ex-
planation of the sketch-map algorithm3-1>. The main idea de-
rives from multi-dimensional scaling, and is based on optimizing
a non-linear objective function

$2=Y [F [D(X:,X})] - f [d(x:,x))]] (19)
ij

where {X;} and {x;} correspond respectively to high-dimensional
reference structures and to vectors in a low-dimensional space.
The metric 4 in low dimension is typically taken to be the Eu-
clidean distance, whereas the metric in high dimension could be
more complex. In this case, X; can be regarded as an abstract
descriptor of a structure or molecule, and D is one of the kernel-
based distance metrics discussed above. F and f are non-linear
sigmoid functions of the form

F(r)=1— (147" =1)(r/0)") "/, (20)

which serve to focus the optimization of (19) on the most signif-
icant, intermediate distances, disregarding local distortion (e.g
induced by thermal fluctuations) and the relation between com-
pletely unrelated portions of configurational landscape. The
choice of the parameters in the sigmoid functions is discussed
in Ref. 1>, Here we will label synthetically each sketch-map repre-
sentation using the notation 6-A_B-a_b where A and B denote
the exponents used for the high-dimensional function F, a and b
denote the exponents for the low-dimensional function f, and o
the threshold for the switching function. Open-source software tu
perform the dimensionality-reduction step, as well as to compute
the different similarity kernels we have introduced, is available

1-19 |5
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Fig. 1 The figure compares the value of global structural similarities for different pairs of structures taken from the 80 local energy minima of Cg
discussed in Ref.*? The structural similarities considered include the absolute difference in energy per atom, the (permutation invariant33) RMSD per
atom, and the best-match combination of SOAP kernels computed with different cutoff distances (2A, 3.5A, 7A). The correlation between RMSD and
D based on 2A-cutoff SOAP is enlarged, color-coded based on energy differences and annotated with selected pairs of structures corresponding to
different distances.
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from the authors upon request. Interactive versions of the struc-
tural maps discussed in the text are provided in the supporting
information (SI), and are available as an on-line repository4°.

3 Examples and applications

After having described the theoretical and algorithmic back-
ground of our strategy to define a structural similarity kernel, let
us present a series of applications. In order to demonstrate that
our approach can be seamlessly applied to the most diverse atom-
istic simulation problems, we have chosen examples of increasing
complexity, from clusters, to crystalline and amorphous solids, to
biological molecules and a database of small organic compounds,
containing varying number of both atoms and atomic species. As
we will discuss, SOAP-based structural kernels contain several ad-
justable hyperparameters, that can be regulated to focus the dis-
similarity measure onto the desired features. Unless otherwise
specified, however, we have not explored fully this possibility, and
we have simply chosen reasonable values of the parameters with-
out much fine-tuning.

3.1 The energy landscape of Cg clusters

Let us start with a relatively simple test case. We consider the
same set of 80 local minima for Cg discussed in Ref. 4%, which
were obtained by exploring the Density Functional Theory energy
landscape of Cg using the Minima Hopping > global structure
search algorithm. Figure: 1 contrasts different similarity matri-
ces: the permutation-invariant RMSD 32, the absolute difference
between the potential energy, and the best-match distances ob-
tained from SOAP descriptors computed with different environ-
ment cutoff. RMSD distance does not correlate very well with
SOAP-based metrics, particularly for the smaller cutoff value. The
D(2A)-RMSD correlation plot is enlarged, and allows us to discuss
the source of this discrepancy. Hollow fullerene-like structures (A,
with reference to the labeling in the figure) and compact struc-
tures containing internal connections (A,G) are extremely differ-
ent from the point of view of the short-range connectivity, but
differ comparatively less in terms of RMSD, since they are both
fairly compact. On the other hand, flake-like structures based
on a honeycomb motif (F,E) have the same basic first-neighbor
connectivity as the defective fullerene structures (C,D) but have
much different spatial extent. Then, one sees that the discrep-
ancy between RMSD and small-cutoff D indicates just the focus
on different structural features: the global arrangement of atoms
in the first case, and the local connectivity in the latter. In the
case of SOAP-based metrics, however it is easy to extend the sen-
sitivity of the metric to longer distances just by increasing the
cutoff: by going from 2A to 3.5 and 7, one sees that D and RMSD
become progressively more correlated, as the focus shifts from
the nearest-neighbor coordination to the overall geometry of the
cluster.

Physical Chemistry Chemical Physics

It is worth stressing that the RMSD, albeit a very natural mea-
sure of structural similarity, is not necessarily the best metric to
compare configurations. To see why, consider the absolute en-
ergy difference as a measure of similarity: even though one can
obviously have configurations with very different geometry and
similar energies, in general one would expect that on the con-
trary large energy differences should be associated with highly.
dissimilar structures in a given system — which is not the case
for RMSD. One sees that the intermediate-cutoff D(3.5A) shows a
nice correlation between energetic and structural differences.

These considerations underline a theme that will recur in other
examples: SOAP-based structural metrics offer a mathematically
sound framework that can be transparently adapted to focus on
the aspects that are most relevant to a given application. For in-
stance, power-spectrum based environment kernels are invariant
to mirror symmetry, and therefore the derived metrics cannot dis-
tinguish enantiomers. If one needed to do so, however, it would
be sufficient to use a bispectrum-based SOAP kernel®® — which
corresponds to n = 3 in eq. (2) and is invariant to rotations but
not to mirror symmetry operations — as the basis for obtaining a
global comparison that is sensitive to chirality.

Having established a connection between traditional structural
similarity metrics and the best-match SOAP kernel, let us use the
example of Cgy to compare the three main strategies we proposc
to build a global kernel: the average kernel K, the best-matcl:
kernel K, and the regularized entropy match kernel K with ai
intermediate regularization parameter y = 0.1.

The distance-distance correlation plot for each pair of struc-
tures, that compares the distances induced by the three kernels,
is reported in Fig.2. The D — D plot shows overall linear corre-
lation except for very small values of D. This is expected as the
average kernel is under-determined, and could in principle label
two structures as identical even though they might be composed
of different environments. The best-match kernel, therefore, pro-
vides better resolving power. As we will discuss in more detai’
later on, the regularized best-match kernel D? can be tuned to in-
terpolate between these two extremes. As an example, we chose
here an intermediate value y=0.1: as shown in Fig. 2, the result-
ing distance correlates strongly with both D and the conventional
best-match distance D.

Fig.2 also shows annotated sketch-maps obtained based on the
three metrics. Once the sketch-map parameters have been ad-
justed following the guidelines in Ref.1%, the three maps are ef-
fectively equivalent — indicating that the three kernels give similar
qualitative information on the similarity between different struc-
tures. Given the much lower computational cost associated with
the evaluation of the average kernel, this observation suggests i
might conveniently be used to preliminarily screen a dataset be-
fore proceeding to a more accurate comparison of similar struc-
tures based on the best-match, or REMatch distance.
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Fig. 2 The figure compares the value of global structural distances induced by the average, best-match, and REMatch kernels discussed in

Section 2.2, for 80 local-minimum structures of C4y. On the diagonal we report the sketch-map projections of the structural landscape based on the
three metrics, colored according to the energy of each structure, as obtained by Sandip et al. 4. Eight representative structures and their positions on
the Sketch-maps have been indicated with letters on color coded disks. The numeric value on the top of each structure represents their energy in eV,
relative to the global minimum. SOAP descriptors were computed using a cutoff of 3.5A and the Sketch-map parameters are indicated on the map
according to the syntax described in the text.
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Fig. 3 Sketch-map of 1274 crystalline and amorphous silicon structures obtained by sampling different phases from the phase diagram (disks),
polymorphs obtained by ab initio random structure search®' (+ signs) and by minima hopping 32 (x signs). The color and size of the points varies
according to their atomic energy and atomic volumes respectively. Regions of the plot which represents different phases have been outlined with
dotted contours.
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3.2 Natural and hypothetical polymorphs of silicon

As a second example, let us move on to a condensed-phase ap-
plication. Here we start from a database of 1274 bulk silicon
structures containing ideal and distorted configurations from the
phase diagram (e.g. diamond, simple hexagonal, B-tin, liquid
and quenched amorphous structures). SOAP environment kernels
with a 5 A cutoff distance were used, and combined with a best-
match strategy to obtain the (dis)similarity matrix ¥ We selected
100 landmark configurations out of this data set (using farthest
point sampling based on kernel distance) and built a sketch-map,
on which the rest of configurations were projected. The outcome
of such mapping procedure is shown in Fig. 3, where points are
colored according to the DFT atomic energy, and point sizes are
scaled to a size proportional to volume per atom. As seen in the
Fig. 3 the map is extremely well correlated with both atomic en-
ergy and density. Furthermore, structures that were obtained by
distorting and heating up structures coming from different por-
tions of the phase diagram are clustered together: rough outlines
have been drawn on the map to indicate different phases.

Although the map has been built using only reference config-
urations from a few of the conventional Si phases, we have also
projected on it (using out-of-sample embedding) two sets of hy-
pothetical configurations obtained by minima hopping®? and by
ab initio random structure search (AIRSS)°1->3. These structures
were not included in the landmarks selection phase. Still, the
out-of-sample embedding procedure correctly identifies not only
that in most cases AIRSS structures differ significantly from sta-
ble phases of silicon, but also clusters together hypothetical poly-
morphs that share common features. For instance, the AIRSS
structures outlined in the lower portion of the map are all taken
from Ref.>3. The structures were proposed as possible metastable
polymorphs arising as a result of a microexplosion (induced by
powerful, ultrashort and tightly focused laser pulses) in crys-
talline cubic diamond silicon phase, hence their structural mo-
tif naturally carries resemblance with silicon diamond phase. It
is interesting to see that they indeed are projected close to the
diamond phase on the map. All of the minima hopping low-
density Si polymorphs are also clustered together, which is con-
sistent with the fact that they are all based on combinations of a
few base motifs. Thus, Figure 3 shows not only that SOAP-based
structural similarity distances can be very effective in the study
of bulk crystalline structures, but also testifies the extrapolative
power of a sketch-map representation based on such a metric.

I Some of the structures in the overall data set have numbers of atoms in the unit cell
that would lead to a large least common multiple when repeating the environment
similarity matrix to form a square matrix. One can keep the cost of computing the
similarity matrix low by exploiting the redundancy in the similarity matrix, or by
approximating K using a REMatch kernel with a small entropy regularization.

3.3 Arginine Dipeptide

Having shown that SOAP-based structural similarity kernels are
equally effective for clusters and for bulk configurations of ele-
mental materials, let us consider a case of a multi-species chem-
ical compound. We selected a library of 5062 locally stable con-
formers of arginine dipeptide (845 with and 4217 without a Ca>*
counterion) from a public database of oligopeptides structures de-
veloped by Ropo et al>*. We used a cut-off of 3.5A in the defini-
tion of environment SOAP kernels, and combined them using a
best-match strategy. Since H atoms stay at almost fixed positions
relative to their neighboring atoms, we decided to include them
in the environment descriptors of other atoms, but did not in-
clude them explicitly as centers of atomic environments. This is
another example of how SOAP-based structural metrics are effec-
tive in a broad variety of contexts, but at the same time can be
easily and transparently refined based on intuition, prior experi-
ence, or a clear understanding of the objectives of the structural
comparison.

In Fig. 4 we show the sketch-map representation for these two
sets of structures, highlighting the correlation between the loca-
tion on the map and structural and energetic properties of the
conformers. In the absence of a complexing cation, the dipep-
tide can exist in a very large number of local minima, spanning a
relatively narrow range of energies. The map shows very clearly
partitioning of configuration space in four disconnected regions.
Conventional wisdom®> assumes that the C, dihedral angles ¢
and y are the most important descriptors of oligopeptide struc-
ture. One quickly realizes, however, that the order parameters
corresponding to the four lobes are connected to the cis-trans iso-
merization of the two peptide bonds. Within each of the lobes,
configurations with different ¢-y dihedral angles are clearly clus-
tered together, but in this case they constitute features of sec-
ondary importance. This observation demonstrates the advan-
tages of using a general-purpose descriptor, that does not rely on
pre-conceived assumptions on the behavior of the molecule being
studied, but instead captures automatically the intrinsic structural
hierarchy of minima in the configuration landscape.

The presence of a Ca* cation has a dramatic impact on the
landscape for the dipeptide. The distribution of configurations be-
comes considerably more sparse and spans a broader range of en-
ergies. The strong electrostatic interaction with the cation means
that there is not a clear separation anymore between the energy
scale for ¢-y flexibility of the backbone and the isomerization of
the peptide bonds.

A remarkable observation in this analysis is the realization that
the presence of the cation catalyzed unexpected proton transfer
reactions, that change the chemical structure of the molecule.
Configurations that underwent a chemical reaction are clustered
on one side of the map (Fig. 5), with further internal structure
reflecting the fact that SOAP-based structural metrics treat on the
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Fig. 5 Sketch-map representation of stable configurations of Arginine
dipeptide complexed with a Ca>* ion. The structures that have
undergone a proton transfer reaction relative to the neutral molecule
have been highlighted, and a few representative snapshots of the
molecular structure are also reported.

same footing information on the chemical bonding and on the
conformational variability of the molecule. It is again worth not-
ing that by changing the cut-off value for the SOAP descriptors,
one can “focus” the structural metric on different molecular fea-
tures. A short cutoff of 2A makes the chemically different struc-
tures stand out more as outliers — which would for instance be
useful to detect automatically this kind of unwanted transitions
in an automatically-generated data set — while on the contrary a
longer cutoff would give more importance to the difference be-
tween collapsed and extended molecular conformers.

3.4 Mapping (al)chemical space

As a final example of the evaluation of a structural and alchem-
ical similarity metric, and its use to represent complex ensem-
bles of compounds, let us consider the QM7b database24. This
set of compounds contains 7211 minimum-energy structures for
small organic compounds containing up to seven non-hydrogen
atoms (C, N, O, S, Cl), saturated with H to different degrees. This
database constitutes a small fraction of a larger chemical library
that contains millions of hypothetical structures screened for ac-
cessible synthetic pathways>°.

This is an extremely challenging data set to benchmark a struc-
tural similarity metric: molecules differ by number of atoms,
chemical composition, bonding and conformation. To simplify
the description, we decided to use SOAP descriptors with a cut-
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Fig. 6 Correlations between structural similarity distances induced by
the average kernel K, the best-match kernel K, and regularized
best-match kernels K7 with different regularization parameters y.
Distances are computed between pairs of 200 structures, randomly
selected from the QM7b database 2456,
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Fig. 7 Sketch-map representation of minimum-energy structures from a database of molecules containing up to 7 non-hydrogen atoms (C O N S Cl),
and saturated with hydrogen to varying degrees?*. Left-hand panels show the map colored according to the atomization energy as computed by DFT.
In the right-hand images, the points are colored according to the number of constituent C, O, N, S atoms. The top row corresponds to an alchemical
kernel that treats all species as different, the middle row treats all the non-H atoms as the same species, whereas the bottom row introduces an
alchemical kernel that depends on the difference in electronegativity between species.
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off of 3A, and to include H atoms in the environments but not
as environment centers, to simplify the description — considering
also that in the case of arginine dipeptide this choice did not pre-
vent clear identification of isomers that only differed by a proton
transfer reaction. We used a best-match strategy to compare con-
figurations, and topped them up with isolated atoms up to the
maximum number of each species that is present in the database.
This effectively corresponds to choosing a “kit” (in other terms,
a fully atomized reference state) starting from which all of the
compounds can be assembled.

This is a fairly extreme case for the application of our idea of
compounding local structure matching to obtain a global struc-
tural metric, so it is worth returning on a comparison of the dif-
ferent strategies we proposed. Fig. 6 compares average and best-
match distances to REMatch kernels using different regulariza-
tion parameters. Despite the very different context, the outcome
is similar to what we observed in Figure 2 for Cg( clusters. The
average kernel is reasonably well correlated with the more de-
manding best-match kernel, although in most cases it has poorer
resolution. By varying 7, the regularized match distance DY varies
between these two extremes, and for y < 1 provides a smooth, in-
expensive approximation to the best-match distance.

For the sake of simplicity (and given we reduced the size of the
environment covariance matrix C not considering H atoms as en-
vironment centers) we used the conventional best-match distance
for the rest of our analyses. As shown in Fig. 7, the SOAP-based
metric nicely separates out “islands” with homogeneous composi-
tion in terms of the number of non-H atoms. Within each group of
atoms, one can recognize some sub-structure, with configurations
roughly arranged in terms of the atomization energy — which in
turns strongly correlates with the degree of H saturation. As it
can be seen from inspection of the database (see the SI) in many
cases one can notice that structures with similar chemical skele-
ton (presence of cycles, chemical groups, etc.) are clustered close
to each other in the map. However, it is of course very difficult to
quantitatively assess how well the map corresponds to chemical
intuition, and how much departures from it are to be considered a
failure of the metric, of the sketch-map procedure or of the notion
of “chemical intuition”.

Our objective here is more to demonstrate how the fingerprint-
based structural metric we introduced can cope with widely dif-
ferent classes of problems, and how it can treat on the same
footings alchemical and structural variability. As an example we
have also computed the similarity matrix and mapped the QM7b
landscape using a modified alchemical similarity metric between
the non-H atoms (we always take kg = O4y). First, we set
Kgp = 1 (which means we are treating species « and f as the
same species) for all of atoms except H. The clear separation of
the map into islands with the same stoichiometry is lost. How-
ever, there is now near-perfect correlation between position on

the map and atomization energy, and at the same time one can
see some residual clustering of molecules with similar composi-
tion. This can be explained because information on the alchemi-
cal identity of the atoms is encoded in their atomic coordination
and bond lengths. This is for instance evident for sulfur, that has
considerably larger bond lengths, leading to better clustering of
sulfur-containing compounds than in the case of oxygen or nitro-
gen.

Obviously, assuming that all atom kinds are interchangeable
is an extreme choice, and it is hard to imagine circumstances
in which this “element agnostic” metric would be advantageous
over one that exploited knowledge of the chemical identity of
atoms. On the other hand, one could foresee to encode informa-
tion on the “alchemical similarity” using one of the many quan-
tities chemists have used historically to rationalize trends in re-
activity across the periodic table. As an example, we used the
electronegativity Ey to define

_ 7(Ea*E[;)z/2A2 (21)

where A is a parameter that determines how sensitive is the al-
chemical kernel to differences in electronegativities. We used
A =1 to generate the last set of maps in Fig. 7. The map now sepa-
rates out quite accurately regions with homogeneous stoichiome-
try. Whereas in the k5 = 8o the different “islands” were roughly
arranged according to a square grid pattern corresponding to ng
and ny along two orthogonal directions, now stripe-shaped is-
lands are arranged in 1D, following numbers of ng and nc, with
the number of nitrogen atoms coming out clustered in adjacent
“stripes”, but less clear-cut partitioning than for the other two el-
ements. This is perhaps unsurprising given that nitrogen has an
intermediate electronegativity between that of oxygen and car-
bon, and the metric tries to separate most efficiently the elements
that differ most based on the alchemical similarity kernel.

This last example gives perhaps the most compelling demon-
stration of how a structural similarity metric based on a combi-
nation of SOAP kernels gives an effective, broadly applicable and
easily customizable strategy to assess the similarity of materials
and molecules, and how a sketch-map construction based on such
metric provides an insightful representation of structural and al-
chemical landscapes.

3.5 Learning molecular properties

In this paper we focused mainly on the definition of a compound
structural similarity kernel, and on characterizing its behavior by
means of sketch-map representations. It is however important
to keep in mind that an effective tool to compare atomic struc-
tures can find application to a broad range of problems - one of
the most intriguing being the inexpensive prediction of physical-
chemical properties of materials and molecules. To demonstrate
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the great promise of REMatch-SOAP kernels for machine-learning
of molecular properties, we used a standard kernel-ridge regres-
sion (KRR) method3? to reproduce the 14 properties that had
been reported in Ref.24 for the 7211 molecules we described in
the previous paragraph.

We randomly selected 5000 training structures, and used the
remainder as an out-of-sample validation set. After having com-
puted the REMatch-SOAP kernel matrix K between all the struc-
tures, using a cutoff of 3A and a regularization parameter y = 0.5
— in this case including also H atoms in the list of environments —
we computed the KRR weights vector

~1
w= (Kiin+01)  Yoain: (22)

Here Kipain and Yyrain are the kernel matrix and property values
restricted to the training set, £ indicates entry-wise exponenti-
ation to tune the spatial range of the kernel, and o is a regu-
larization hyperparameter. The prediction of the properties for
the test set can then be obtained as ytest = Ktéestw, where Kiest
is the matrix containing the REMatch-SOAP kernels between the
test points and the training points. The procedure was repeated
10 times, and the average mean absolute error (MAE) and root
mean square error (RMSE) on the test set were computed.

We optimized the & and ¢ hyperparameters by minimising the
MAE on the atomization energy, and then used the same values
to perform a KRR for all the other molecular properties. Since we
did not further adjust the choice of kernel and the & exponent,
all the properties could be estimated at the same time, as dis-
cussed e.g. in Ref.>’. The results of this procedure are reported
in Table 1, and demonstrate the extraordinary performance of
REMatch-SOAP for machine-learning applications. For the at-
omization energy we can obtain a MAE of less than 1kcal/mol
— a four-fold improvement relative to previous results that were
based on a Coulomb matrix representation of structures and a
deep-neural-network learning strategy. What is more, even with-
out separately tuning the KRR hyperparameters, we can improve
or match the performance of prior methods for almost all of the
properties, the only exceptions being some of the properties com-
puted with semi-empirical methods. The fact we can obtain such
a dramatic improvement using a standard regression technique is
a testament to the effectiveness of our kernel. The crucial impor-
tance of the choice of descriptors is also apparent by noting that
a MAE of about 1.5 kcal/mol was recently obtained by regression
based on a “bag of bonds” description of molecules, coupled with
a Laplacian kernel 28,

Reaching chemical accuracy in the automated prediction of at-
omization energies is an important milestone, and the fact that
we could achieve that without fully exploring the flexibility of
the REMatch-SOAP framework (e.g. by optimizing the entropy
regularization parameter, the environment cutoff, eliminating the

Physical Chemistry Chemical Physics

Property SD MAE RMSE MAE** RMSE**
E (PBEO) 9.70 0.04 0.07  0.16 0.36
a (PBE0) 1.34 0.05 0.07  0.11 0.18
a (SCS) 1.47 0.02 0.04  0.08 0.12
HOMO (GW) 0.70 0.12 017  0.16 0.22
HOMO (PBEO)  0.63 0.11  0.15 0.15 0.21
HOMO (ZINDO) 0.96 0.13  0.18 0.15 0.22
LUMO (GW) 048 012 0.17  0.13 0.21
LUMO (PBEO) 0.68 0.08 0.12 0.12 0.20
LUMO (ZINDO) 1.31 0.10 0.15 0.11 0.18
IP (ZINDO) 0.96 0.19 0.28 0.17 0.26
EA (ZINDO) 141 0.13 0.18 0.11 0.18
E}, (ZINDO) 1.87 0.18 0.41 0.13 0.31
E} (ZINDO) 2.82 156 2.16 1.06 1.76
Inax (ZINDO) 0.22 0.08 0.12 0.07 0.12

Table 1 Mean absolute errors (MAEs) and root mean square errors
(RMSE) for the KRR estimation of 14 molecular properties, together with
previously published estimation?* for the same data set. The standard
deviation of the values of the properties across all 7211 molecules in the
database is shown in the second column. Errors in the KRR estimation
refer to a test set of 2200 randomly selected configurations, while the
remaining structures were used for training. Property labels refer to the
level of theory and molecular property, i.e. atomization energy (E),
averaged molecular polarizability (c), HOMO and LUMO eigenvalues,
ionization potential (IP), electron affinity (EA), first excitation energy
(E,«), excitation frequency of maximal absorption (E, and the

max )

corresponding maximal absorption intensity (,..c). Energies,
polarizabilities and intensities are in eV, A> and arbitrary units,
respectively.

outliers, combining multiple layers of description or using a non-
diagonal alchemical similarity matrix) highlights the potential of
our approach. Future work will be devoted to analyzing the per-
formance, convergence and limits of machine-learning of molec-
ular and materials’ properties using our SOAP-based structural
similarity kernel.

4 Conclusions

Distances between atomic structures based on combinations of
local similarity kernels provide a flexible framework to define a
metric in structural and alchemical space. Atom-centered envi-
ronment information can be combined to provide a global mea-
sure of (dis)similarity. An average kernel K provides an inexpen-
sive strategy to do so, with a cost that scales linearly with the size
of the structures to be compared, but might under-estimate the
difference between two configurations — since in principle two dif-
ferent structures might yield zero D. Alternatively, one can com-
pute the local kernel between every possible pair of environments
(which itself involves a cost scaling with the square of the numbe;
of environments), and then build a compound kernel K by finding
the best-match permutation of the environments — which gives a
metric with better resolving power, but entails solving a cubic-
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scaling linear assignment problem. Introducing an entropy regu-
larization makes it possible at the same time to reduce the size-
scaling to quadratic, and to obtain a better behaved, smoothly
varying metric, that interpolates - depending on the regulariza-
tion parameter - between the average and best-match limit.

This strategy to compare atomic configurations builds on the
very general notion that complex bulk and molecular structures
arise from the combination of local building blocks, and can be
applied seamlessly to systems as diverse as clusters, bulk phases
of an element, conformation of a biomolecules and an assembly of
small chemical compounds with varying atom kinds and number.
At the same time, the structure of the underlying SOAP kernels al-
lows for very effective fine-tuning. For instance, by choosing the
cutoff radius over which atomic densities are compared between
environments, one can make the metric more sensitive to the first-
neighbor chemical connectivity, or vice versa, include information
on the long-range conformation of flexible molecules. What is
more, it is possible to treat structural and alchemical complexity
on the same footing, by introducing an alchemical similarity ker-
nel that makes it possible to specify whether atoms of different
species should be considered completely separate, or whether a
notion of chemical distance (based e.g. on the difference in elec-
tronegativity) should be introduced to give different weights to
substitutions between elements with similar reactivity.

We also demonstrate that straightforward application of the
REMatch-SOAP kernel to the ridge-regression evaluation of
molecular properties matches or outperforms all previously-
presented approaches, reaching chemical accuracy in the pre-
diction of the atomization energies of a set of small organic
molecules. We believe that in this respect we are only scratch-
ing the surface of the potential applications to machine-learning
of our kernels, since these results were obtained without using
any of the more sophisticated techniques (e.g. introducing a hier-
archy of models to capture the variance of properties at different
structural scales 23) that have been shown to significantly improve
this kind of procedures when using other structural descriptors.

The similarity metric we introduce could find application as
the workhorse of a number of simulation protocols, machine-
learning algorithms and data mining strategies. For instance, it
could be used to detect outliers in automated high-throughput
screenings of materials, to cluster similar configurations together,
to accelerate the exploration of chemical and conformational
space of materials and molecules. Here, we show in particular
how it can be combined with a non-linear dimensionality reduc-
tion technique such as sketch-map, to give simple and insight-
ful two-dimensional representation of a given molecular or struc-
tural data set. As atomistic modelling adventures into larger-scale
structures, and unsupervised exploration of materials space, maps
such as these can provide a valuable tool to convey intuitive infor-
mation on complex structural and alchemical landscapes, to ratio-

nalize structure-property relations, and to predict physical observ-
ables of novel compounds by training machine-learning models to
libraries of known materials.
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A SOAP kernel for multi-species environ-
ments

B Derivation of the multi-species kernel

Let us show how the alchemical kernel in Eq. (18) can be derived.
The overlap kernel

ao’

2
W, 2" = / dl?’ / ar Y Kpep% (1p%. (k)| (23)

is first rewritten in terms of the expansion of the atomic density
functions (17)

M2, ") = /dlé Y Koa €%, (2]
. ao'n
Imm’ (24)
2
DL (R) e (27

mm’ nlm' >

where we carried out the spatial integration. Expanding this re-
sult, we obtain

2, 2" = / dR
Y, Ko [, (2)] DL (R)CE, (27
ao’

nlmm’

Z Kﬁﬁlcg’l’771”(%) [Dll1/1”m”’ (Ié)cf’/l’m’” (‘/GLV/) ’ > (25)
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which allows us to integrate analytically over all possible rota-
tions R and exploit the orthogonality relations of the Wigner ro-
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tation matrices.
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The final formula of the overlap kernel couples the radial, angular,
and species channels of the expansion coefficients while being
rotationally invariant

k2. 2)=Y 87:21( Kgg X
y = a7 11 Reo’ BB’
ad BB’ 21 +1

nn' lmm’
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nlm n'lm’

2. @

In terms of the power spectrum (16) the kernel may be regarded
as a dot-product kernel

K2, 2 =Y p ()P (2 koo kpp.  (28)
oo Bp’
nn'l
Finally, it is easy to see that one can recover Eq. (15) by setting
the alchemical kernel to the Kronecker-delta k5 = §4p:

nn'l

M2, 2 = Y pab (2 pab (2. 29)
af

nn'l

C Sinkhorn distance for structural similar-
ity

Let us discuss briefly how the REMatch procedure can be im-

plemented in practice. Consider for generality the N x M envi-

ronment similarity matrix C(A,B) between two structures with

N and M atoms respectively. The expression (12) given in Sec-

tion 2 for the optimal-transport-inspired definition of K general-
izes straightforwardly to non-square matrices3:

KY(A,B) =TrP"' C(A,B)
(30)
P’ = argmin Y P;(1-C;j+ynP;),
Pe% (MN)'ij
where P € %Z (N,M) is a (scaled) doubly-stochastic N x M matrix
for which };P;;=1/M and }; B = 1/N.
The Sinkhorn algorithm finds the optimal P¥ by the decom-
position P? = diagu Kdiagv = Kouv’, where o indicates the
Hadamard product, and K is the entry-wise exponential of (C —
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1)/y, ie.
Pz)// =uiexp [(Cij—1)/7]. (31)

The balancing vectors u and v can be obtained by the iteration

u ey /Kv
(32)
v <—eM/KTu‘

where (ey); = 1/N are scaled stochastic vectors, and the iteration
can be initialized by setting v = ey;.

One of the advantages of a regularized match strategy is that
the kernel becomes a smooth function of the environment kernels
Computing its derivative doK? with respect to a parameter o (a
Cartesian coordinate, for instance), is however not completely
trivial. Such a derivative is in fact composed of two terms

9aKY(A,B) = TrPY9y,C 4 Trdo PYC. (33)

The first term is easy to compute — provided that one can obtain
9o C, the derivative of all environment kernels with respect to
. The second term can be further broken down based on the
Sinkhorn decomposition of P?:

duPY = aaKouvT+Koaa(uvT) (34)

The critical issue here is that direct evaluation of dy (uvT) woulca
involve performing a separate calculation for each derivative a,
which could make the approach prohibitively expensive when, for
instance, one would want to compute derivatives with respect to
the coordinates of each atom.

By straightforward albeit tedious algebra, one can reformulate
the problem in such a way that the derivative can be computed
cheaply for any variational parameter, given dyC:

9aK¥(A,B) =TrQ" duC, (35)
with
1
Ql'j:u,'K,'jVj 1+;/(C,-j+aijuib,'+Mvjcj) . (36)

The Q matrix can be fully evaluated based on intermediate
terms that do not depend on §,C:

a=—Mvo(KoC)u
b=(1-W) T [(KoC)v+K(voa)]

c=N <b ouz) K ©7

W = diag (Nu2> Kdiag (Mvz) K’,

were with u? = uou we indicate the entry-wise square. The only
caveat here is that (1— W) is singular, and so it cannot be straight-
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forwardly inverted. Nevertheless, b can be computed by the fixed-
point iteration b <+ W'b 4y with y = [(KoC)v+K(voa)]. Due
to the potential instability of the procedure, it is crucial however
to check the convergence on the overall value of d,K?, and not to
push the convergence to higher relative accuracy levels than those
used for the original solution to the Sinkhorn balancing problem.

References

1 L. M. Ghiringhelli, J. Vybiral, S. V. Levchenko, C. Draxl and
M. Scheffler, Phys. Rev. Lett., 2015, 114, 105503.

2 T. D. Huan, A. Mannodi-Kanakkithodi and R. Ramprasad,
Phys. Rev. B, 2015, 92, 014106.

3 V. Botu and R. Ramprasad, Phys. Rev. B, 2015, 92, 094306.

4 A. G. Kusne, T. Gao, A. Mehta, L. Ke, M. C. Nguyen, K.-
M. Ho, V. Antropov, C.-Z. Wang, M. J. Kramer, C. Long and
I. Takeuchi, Scientific Reports, 2014, 4, 6367 EP —.

5 R. Ramakrishnan, P. O. Dral, M. Rupp and O. A. von Lilienfeld,
Scientific Data, 2014, 1, 140022 EP —.

6 L.-F. m. c. Arsenault, A. Lopez-Bezanilla, O. A. von Lilienfeld
and A. J. Millis, Phys. Rev. B, 2014, 90, 155136.

7 A. Rodriguez and A. Laio, Science, 2014, 344, 1492-6.

8 R. Xu and I. Wunsch, D., Neural Networks, IEEE Transactions
on, 2005, 16, 645-678.

9 G. Yu, J. Chen and L. Zhu, Knowledge Acquisition and Mod-
eling, 2009. KAM ’09. Second International Symposium on,
2009, pp. 189-192.

10 O. Isayev, D. Fourches, E. N. Muratov, C. Oses, K. Rasch,
A. Tropsha and S. Curtarolo, Chemistry of Materials, 2015,
27, 735-743.

11 P. V. Balachandran, J. Theiler, J. M. Rondinelli and T. Look-
man, Scientific Reports, 2015, 5, 13285 EP —.

12 A. L. Ferguson, A. Z. Panagiotopoulos, P. G. Debenedetti and
I. G. Kevrekidis, Proc. Natl. Acad. Sci. USA, 2010, 107, 13597
602.

13 M. Ceriotti, G. a. Tribello and M. Parrinello, Proc. Natl. Acad.
Sci. USA, 2011, 108, 13023-8.

14 G. A. Tribello, M. Ceriotti and M. Parrinello, Proc. Natl. Acad.
Sci. USA, 2012, 109, 5196-201.

15 M. Ceriotti, G. A. Tribello and M. Parrinello, J. Chem. Theory
Comput., 2013, 9, 1521-1532.

16 M. A. Rohrdanz, W. Zheng and C. Clementi, Annu. Rev. Phys.
Chem., 2013, 64, 295-316.

17 M. Rupp, A. Tkatchenko, K.-R. Miiller and O. A. von Lilienfeld,
Phys. Rev. Lett., 2012, 108, 058301.

18 W. J. Szlachta, A. P. Bartok and G. Csanyi, Phys. Rev. B, 2014,
90, 104108.

19 A. Lopez-Bezanilla and O. A. von Lilienfeld, Phys. Rev. B, 2014,
89, 235411.

20 G. Pilania, C. Wang, X. Jiang, S. Rajasekaran and R. Ram-

18| i 1-19

21

22

23

24

25

26

27

28

29
30

31

32

33

34

35

36

37

38

39

40

41

42

Page 18 of 19

prasad, Scientific Reports, 2013, 3, 2810 EP —.

A. P. Barték, M. J. Gillan, F. R. Manby and G. Csdnyi, Phys.
Rev. B, 2013, 88, 054104.

M. Rupp, E. Proschak and G. Schneider, J. Chem. Inf. Model.,
2007, 47, 2280-2286.
M. Hirn, N. Poilvert
arXiv1502.02077, 2015.
G. Montavon, M. Rupp, V. Gobre, A. Vazquez-Mayagoitia,
K. Hansen, A. Tkatchenko, K.-R. MAijller and O. A. von Lilien-
feld, New Journal of Physics, 2013, 15, 095003.

J. C. Snyder, M. Rupp, K. Hansen, K.-R. Miiller and K. Burke,
Phys. Rev. Lett., 2012, 108, 253002.

S. A. Ghasemi, A. Hofstetter, S. Saha and S. Goedecker, Phys.
Rev. B, 2015, 92, 045131.

O. A. von Lilienfeld, International Journal of Quantum Chem-
istry, 2013, 113, 1676-1689.

K. Hansen, F. Biegler, R. Ramakrishnan, W. Pronobis, O. A.
von Lilienfeld, K.-R. Miiller and A. Tkatchenko, The Journal of
Physical Chemistry Letters, 2015, 6, 2326-2331.

J. B. Endelman, 2011, 4, year.

S. An, W. Liu and S. Venkatesh, Computer Vision and Pattern
Recognition, 2007. CVPR ’07. IEEE Conference on, 2007, pp.
1-7.

C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for
Machine Learning (Adaptive Computation and Machine Learn-
ing), The MIT Press, 2005.

T. Hastie, R. Tibshirani and J. Friedman, The Elements of Sta-
tistical Learning, Springer New York, New York, NY, 2009.

A. Sadeghi, S. A. Ghasemi, B. Schaefer, S. Mohr, M. A. Lill and
S. Goedecker, J. Chem. Phys., 2013, 139, 184118.

F. Pietrucci and W. Andreoni, Phys. Rev. Lett., 2011, 107,
085504.

J. Behler, The Journal of Chemical Physics, 2011, 134, year.

L. Zhu, M. Amsler, T. Fuhrer, B. Schaefer, S. Faraji, S. Rostami,
S. A. Ghasemi, A. Sadeghi, M. Grauzinyte, C. Wolverton and
S. Goedecker, The Journal of Chemical Physics, 2016, 144,.

K. Grauman and T. Darrell, Proc. IEEE Int. Conf. Comput. Vis.,
2005, II, 1458-1465.

A. P. Bartok, R. Kondor and G. Csédnyi, Phys. Rev. B, 2013, 87,
184115.

M. Cuturi, Adv. Neural Inf. Process. Syst. 26, Curran Associates,
Inc., 2013, pp. 2292-2300.

B. Scholkopf, A. Smola and K.-R. Miiller, Neural Comput.,
1998, 10, 1299-1319.

C. Berg, J. P. R. Christensen and P. Ressel, Harmonic Analysis
on Semigroups, Springer New York, New York, NY, 1984, vol.
100.

S. De, A. Willand, M. Amsler, P. Pochet, L. Genovese and

and S. Mallat, arXiv Prepr.




Page 19 of 19

S. Goedecker, Physical Review Letters, 2011, 106, 225502.

43 S. De, B. Schaefer, A. Sadeghi, M. Sicher, D. G. Kanhere and
S. Goedecker, Physical Review Letters, 2014, 112, 083401.

44 H. W. Kuhn, Nayv. Res. Logist. Q., 1955, 2, 83-97.

45 M. Cuturi, Int. Jt. Conf. Artif Intell. IJCAI, 2007, 732-737.

46 M. Jerrum, A. Sinclair and E. Vigoda, J. ACM, 2004, 51, 671-
697.

47 T. F. Cox and M. A. A. Cox, Multidimensional scaling, CRC
Press, 2010.

48 R. R. Coifman, S. Lafon, A. B. Lee, M. Maggioni, B. Nadler,
F. Warner and S. W. Zucker, Proc. Natl. Acad. Sci. USA, 2005,
102, 7426-31.

49 M. Ceriotti, G. A. Tribello and S. De, sketchmap.org,
http://sketchmap.org, 2016.

50 S. Goedecker, The Journal of chemical physics, 2004, 120,
9911-9917.

Physical Chemistry Chemical Physics

51 C. J. Pickard and R. J. Needs, Journal of Physics: Condensed
Matter, 2011, 23, 053201.

52 M. Amsler, S. Botti, M. A. L. Marques, T. J. Lenosky and
S. Goedecker, Phys. Rev. B, 2015, 92, 014101.

53 L. Rapp, B. Haberl, C. J. Pickard, J. E. Bradby, E. G. Gamaly,
J. S. Williams and A. V. Rode, Nature Communications, 2015,
6, year.

54 M. Ropo, M. Schneider, C. Baldauf and V. Blum, Sci. Data,
2016, 3, 160009.

55 G. Ramachandran, C. Ramakrishnan and V. Sasisekharan,
Journal of Molecular Biology, 1963, 7, 95 — 99.

56 T. Fink and J.-L. Reymond, Journal of Chemical Information
and Modeling, 2007, 47, 342-353.

57 R. Ramakrishnan and O. A. von Lilienfeld, Chimia. Int. J.
Chem., 2015, 69, 182-186.

1-19 | 19



