Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/methods

1	Development of a multi-residue method for 58 pesticides in
2	soil using QuEChERS and gas chromatography-tandem
3	mass spectrometry
4	Yong Yu ^{1, 2} , Xiaowei Liu ^{1, 2} , Zeying He ¹ , Lu Wang ¹ , Ming Luo ¹ , Yi Peng ¹ , Qiwen Zhou ^{1, 2} *
5	¹ Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, P.R. China
6	² Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
7	*Corresponding author:
8	Qiwen Zhou, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191,
9	P.R. China; Tel.: +86 022-23612262; Fax: +86 022-23611006;
10	E-mail: caezhouqiwen@126.com
11	ABSTRACT
11 12	ABSTRACT This study developed a method for simultaneous determination of 58
11 12 13	ABSTRACT This study developed a method for simultaneous determination of 58 pesticides in soil including those from organochlorine, organophosphorus,
11 12 13 14	ABSTRACT This study developed a method for simultaneous determination of 58 pesticides in soil including those from organochlorine, organophosphorus, pyrethroid, carbamate and triazole classes and others commonly used in
11 12 13 14 15	ABSTRACT This study developed a method for simultaneous determination of 58pesticides in soil including those from organochlorine, organophosphorus,pyrethroid, carbamate and triazole classes and others commonly used inagricultural practice. The procedure was based on the quick, easy, cheap,
11 12 13 14 15 16	ABSTRACT This study developed a method for simultaneous determination of 58pesticides in soil including those from organochlorine, organophosphorus,pyrethroid, carbamate and triazole classes and others commonly used inagricultural practice. The procedure was based on the quick, easy, cheap,effective, rugged and safe (QuEChERS) sample preparation method. The
11 12 13 14 15 16 17	ABSTRACT This study developed a method for simultaneous determination of 58 pesticides in soil including those from organochlorine, organophosphorus, pyrethroid, carbamate and triazole classes and others commonly used in agricultural practice. The procedure was based on the quick, easy, cheap, effective, rugged and safe (QuEChERS) sample preparation method. The choice of the buffer, type of the extract solvent, shaking time and a
 11 12 13 14 15 16 17 18 	ABSTRACT This study developed a method for simultaneous determination of 58 pesticides in soil including those from organochlorine, organophosphorus, pyrethroid, carbamate and triazole classes and others commonly used in agricultural practice. The procedure was based on the quick, easy, cheap, effective, rugged and safe (QuEChERS) sample preparation method. The choice of the buffer, type of the extract solvent, shaking time and a dispersive solid phase extraction (d-SPE) clean-up were optimized. The
 11 12 13 14 15 16 17 18 19 	ABSTRACT This study developed a method for simultaneous determination of 58 pesticides in soil including those from organochlorine, organophosphorus, pyrethroid, carbamate and triazole classes and others commonly used in agricultural practice. The procedure was based on the quick, easy, cheap, effective, rugged and safe (QuEChERS) sample preparation method. The choice of the buffer, type of the extract solvent, shaking time and a dispersive solid phase extraction (d-SPE) clean-up were optimized. The analysis was performed using gas chromatography-tandem mass
 11 12 13 14 15 16 17 18 19 20 	ABSTRACT This study developed a method for simultaneous determination of 58 pesticides in soil including those from organochlorine, organophosphorus, pyrethroid, carbamate and triazole classes and others commonly used in agricultural practice. The procedure was based on the quick, easy, cheap, effective, rugged and safe (QuEChERS) sample preparation method. The choice of the buffer, type of the extract solvent, shaking time and a dispersive solid phase extraction (d-SPE) clean-up were optimized. The analysis was performed using gas chromatography-tandem mass spectrometry (GC-MS/MS). Validation experiments were performed in

Analytical Methods Accepted Manuscript

22	spiking levels ranged from 69% to 119% with relative standard deviation
23	(RSD) below 20%. The method limits of quantification (LOQ) ranged
24	from 0.1 μ g kg ⁻¹ to 5 μ g kg ⁻¹ . The correlation coefficients (R ²) were
25	higher than 0.9961 in the linearity range of 0.25-500 μ g kg ⁻¹ for all the
26	pesticides. The optimized method was then applied to the test of real soil
27	samples collected from three regions in China, demonstrating the
28	feasibility of the method.
29	Key words: Pesticides multi-residue; Soil; QuEChERS; GC-MS/MS.
30	Abbreviations:
31	QuEChERS, quick, easy, cheap, effective, rugged and safe;
32	d-SPE, dispersive solid phase extraction;
33	GC-MS/MS, gas chromatography-tandem mass spectrometry;
34	RSD, relative standard deviation;
35	LOQ, limits of quantification;
36	R ² , correlation coefficients;
37	OCPs, organochlorine pesticides;
38	SPE, solid-phase extraction;
39	LLE, liquid-liquid extraction;
40	PSA, primary and secondary amine;
41	EI, electron ionization;
42	MRM, multiple reaction monitoring;
43	LOD, limits of detection;

44 MEs, matrix effects.

1 Introduction

As an essential cultivating additions, pesticides play an important role in modern agriculture. Hundreds of them are commonly used in current agricultural practices.¹ They can protect plants from disease, weeds and insect damage.² But, to obtain a higher agricultural productivity, pesticides were commonly with an extensive use.³ Most of the pesticides have not been exploited by plants directly and then migrated into soil and water, causing the soil and water contaminations and creating potential threats on non-target organisms and human health.^{1,} ^{4, 5} Although organochlorine pesticides (OCPs) such as DDT and its isomers have been banned years ago in China, they still can be found in soil samples due to their persistence.³ Until now, there are no residue limit standards for pesticide residues in soil except for HCH in China. Thus, it is of great importance for monitoring these pesticides in soil to protect the environment and human health.⁶

Because of the wide diversity of chemical classes and the different physicochemical properties, an optimal extraction process of sample preparation before the determination is necessary. ⁷ Several common extraction methods for soil samples have been recently established, including Soxhlet extraction (SOX), ⁸⁻¹² shaking, ¹³ ultrasonic assisted extraction (UAE), ^{9, 14}microwave assisted extraction (MAE), ^{8, 9, 12, 15} solid

Analytical Methods Accepted Manuscript

liquid extraction (SLE), ^{11, 16} supercritical fluid extraction (SFE) and pressurized liquid extraction (PLE).^{12, 15, 17, 18} After extraction, clean-up are commonly performed by solid-phase extraction (SPE) and liquid-liquid extraction (LLE).¹⁸⁻²⁰²¹ The most popular clean-up method is based on SPE. Although these methods are acknowledged to be effective, there are some drawbacks such as time and solvent consuming, large amount usage of hazardous chemicals organic solvents such as dichloromethane and n-hexane and requirement of expensive apparatus and consumables.²¹

A method named QuEChERS (quick, easy, cheap, effective, rugged and safe) was first introduced for pesticide residues analysis in plant origin samples by Anastassiades et al.²² There are two kinds of standard methods for QuEChERS regarding to the extract buffer: the AOAC Offical Method, ^{23, 24} which use acetate buffer, and the CEN method, ²⁵which use citrate buffer. Since Lesueur first used QuEChERS methods in soil samples,³ the QuEChERS procedure has been increasingly applied for the extraction of organic compounds from environmental samples. This method was based on a salting out extraction with magnesium sulfate and sodium chloride.²⁶ The majority of studies for soil samples used acetonitrile as an extraction solvent, and followed by a d-SPE as the clean-up procedure, which uses anhydrous magnesium sulfate to remove the excess water and sorbents to remove interfering substance from the

Analytical Methods

organic extract in a centrifuge tube. ^{7, 27}Additionally, it is easy and rapid
for clean extracts to be obtained for the multi-residue analysis and
consumes less solvent compared to SPE.

The objective of this study was to develop and validate a fast, effective and reliable analytical procedure for 58 pesticides which are of concern in agriculture soils in China. This work involved QuEChERS extraction method, followed by d-SPE clean-up, and GC-MS/MS determination. To our knowledge, QuEChERS method combined with GC-MS/MS determination for the analysis of dozens of pesticides in agricultural soils was rarely reported. This proposed method provides an effective way for pesticide screening in soil.

2 Experimental

2.1 Chemicals and materials

Certified pesticide reference standards of high purity (>98%) were purchased from Chem Service (West Chester, PA, USA) and Dr. Ehrenstorfer (Ausberg, Germany). Acetonitrile, acetone, n-hexane, methanol, methylene chloride and ethyl acetate were HPLC grade and purchased from Fisher Scientific (Fair Lawn, NJ, USA). Water was purified using a Milli-Q (Millipore, Billerica, MA, USA) system. 50 mL volume polypropylene centrifuge tubes for initial extraction, sorbents (PSA and C18) and 15 mL volume polypropylene centrifuge tubes for

Analytical Methods Accepted Manuscript

d-SPE were purchased from Agilent (Agilent Technologies, Palo Alto,
CA, USA). Anhydrous Magnesium sulfate was analytical grade and
purchased from Sigma-Aldrich (Steinheim, Germany).
Individual stock solutions were prepared at concentrations of 100 µg
mL⁻¹ in ethyl acetate. A stock standard mixture was obtained from

Internal standard solution (Heptachlor epoxide, 1 μ g mL⁻¹) were prepared in ethyl acetate. Solutions were stored at -20 °C until use.

individual stock solutions in ethyl acetate with concentration of 1 μ g mL⁻¹.

2.2 Equipment

A vortex mixer (Thermo Fisher Scientific, Waltham, MA, USA),
Neofuge 23R centrifuge (Heal Force LTD, Hong Kong), laboratory
shaker (Jiamei CO. LTD, Jintan, China) and N-EVAP Nitrogen
Evaporators (Organomation, MA, USA) were used in sample extraction.

122 2.3 GC-MS/MS conditions

A GC system Agilent 7890A equipped with 7693 Autosampler was interfaced to a 7000C Triple Quadrupole MS. The GC separation was achieved on HP-5 MS UI (30 m× 0.250 mm× 0.25 μ m) purchased from Agilent Technologies. The column was set at a constant flow rate of 1 mL min⁻¹ using helium as carrier gas. An aliquot (1.0 μ L) of the sample extract was injected in splitless mode at 280 °C. Purge flow rate to split vent was set at 30 mL/min for 0.75 min (20 mL/min gas saver after 2 min). The tandem mass spectrometer was operated in EI mode. The

temperature of ion source and transfer line were both set at 280 °C, electron energy was 70 eV. The GC oven temperature programme was 60 °C for 1 min raised to 120 °C at 40 °C min⁻¹, ramped to 310 °C at 5 °C min⁻¹. The total GC run time was 40.5 min divided into 11 time segments. Data acquisition (5-40.5 min) used MRM and detailed in Table 1. The MS/MS method included two optimal ion transitions for each pesticide which allowed simultaneous quantification and identification of any residues detected. Quantitation by GC-MS/MS was based on an internal standard method using the MassHunter software (B.05.00, Agilent).

2.4 Preparation of soil samples

Pesticide free soil samples were collected from agricultural areas in Tianjin, China for method development and validation. These samples were tested and shown to be absence of detectable target pesticides to influence the development of method (Fig. 1). Other soil samples were collected from Shandong (samples 1-5), Jiangsu (samples 6-9) and Liaoning (samples 10-16) province with a long history of widespread use of pesticides. Physicochemical properties of all the soil samples are given in Supplementary Information, Table S 1. After removal of litter, plant roots, and stones, pesticide free soil samples were air-dried at room temperature, mixed to homogenize. And then sieved using a 0.3 mm mesh and stored at ambient temperature prior to analysis.

Analytical Methods Accepted Manuscript

2.5 Extraction and clean-up procedure

Analytical Methods Accepted Manuscript

An aliquot of 5 g blank soil samples were placed into 50 ml polypropylene centrifuge tube and spiked at the required fortification level by adding an appropriate volume of mixed standard solution containing 58 pesticides. Then the resulting mixture was hand-shaken gently to mix them homogeneous. After that, add 10 mL water for 30 min to hydrate soil samples before 10 mL of acetonitrile with 1% acetic acid and a ceramic homogenizer (Agilent Technologies) were added. And then the tube was shaken at 250 times/min on a shaker for 10 min. After adding 4 g anhydrous MgSO₄ and 1 g NaOAc into the tube, the resulting mixtures were immediate hand-shaken vigorously for 1 min and centrifuged at 2823 rcf for 5 min.

Transfer 6 mL of supernatant to a 15 mL polypropylene centrifuge tube that contained 900 mg of MgSO₄, 150 mg PSA and 150 mg C18. Then the extract was swirled on a vortex mixer for 1 min before centrifuged at 2823 rcf for 5 min. Transfer 2.0 mL of supernatants into a 10 mL glass centrifuge tube and add 50 µL of internal standard solution (Heptachlor epoxide, 1 μ g mL⁻¹) and then concentrated to dryness under a gentle stream of nitrogen in water-bath at 40 °C. The residue was re-dissolved in 1.0 mL of ethyl acetate (1 g/mL) and filtered through a PTFE filter (0.22 μ m) for GC-MS/MS analysis.

2.6 Validation of the method

Matrix matched standards were prepared by redissolving the blank

Analytical Methods

2		
3 4	175	soil ext
5 6	176	of ethyl
7 8 9	177	Lir
10		
12	178	over a
13 14 15	179	where
16 17	180	demons
18 19	181	Re
20 21 22	182	and pre
23 24	183	recover
25 26 27	184	fortifica
28 29	185	area in
30 31 22	186	known
32 33 34	187	lowest s
35 36	199	satisfact
37 38	100	Satistae
39 40	189	3 Resu
41 42 43	190	3.1 Sam
44		
45 46	191	Th
47 48	192	physica
49 50 51	193	influenc
52 53	194	analysis
54 55 56	195	repeatal
57 58	196	extraction
59 60		

soil extracts with 1.0 mL of pesticide standard solution instead of 1.0 mLof ethyl acetate.

Linearity was assessed by using matrix matched calibration curves over a wide range of concentrations 0.25-500 μ g kg⁻¹. For compounds where method LOQ was higher than 0.25 μ g kg⁻¹, linearity was demonstrated from LOQ to 500 μ g kg⁻¹.

Recovery study was carried out to determine the method accuracy and precision. The fortification levels were 50 and 5 μ g kg⁻¹ and mean recovery and RSD values were based on analysis of 5 replicates at each fortification level. Recoveries were determined by comparing the peak area in the sample to peak areas of matrix-matched standards prepared at known concentration. The LOQ for each pesticide was determined as the lowest spiked concentration with 5 replicates that can be quantified with satisfactory recovery values (70-120%) and RSD≤ 20%. ^{28, 29}

3 Results and discussion

3.1 Sample extraction

The studied pesticides exhibit very different characteristics and physical/chemical properties such as acid-base properties, which strong influence their water-acetonitrile partition. Besides, as a complex matrix, analysis of soil requires rigorous sample preparation to obtain a repeatable and sensitive analysis. Therefore, to determine the best extraction step, the choice of the buffer, the nature of the solvent and the

Analytical Methods Accepted Manuscript

197 shaken time were studied.

In fact, the buffered system of AOAC and EN official methods are able to keep pH constant around 5. This pH value achieves satisfactory recoveries for acid-sensitive pesticides and without degradation for base-sensitive ones. In this study, these two buffers were compared, which the acetate buffer containing 1.0 g of NaOAc and 4.0 g of MgSO₄, and the citrate buffer containing 1.0 g of sodium citrate, 4.0 g of MgSO₄ and 1.0 g of NaCl, 0.5 g of sodium hydrogeneitrate sesquihydrate. Besides, a no buffer method use only 4.0 g MgSO₄ and 1.0 g NaCl was also carried out. Average recoveries obtained from the extraction of pesticides in soils ranged between 72% and 121% (RSD \leq 19%) for AOAC buffer method. EN buffer method also obtained satisfactory recoveries (67-123%; RSD \leq 15%) except for dichlorvos (Supplementary Information, Table S 2), but the recoveries of a number of pesticides were slightly lower than AOAC method. The recoveries of most pesticides for no buffer method were not as satisfactory as those obtained with buffers. And the recoveries were lower than 70% for approximately 30% of all these pesticides, especially for dichlorvos, quintozene, p,p'-DDT, propargite and fenpropathrin, whose recoveries were blow 60%. In this context, AOAC buffer method was finally chosen for the extraction. And this buffer method has also been used to extract antibiotics in soil.²⁷

The original method and most other studies used acetonitrile as the

Analytical Methods

extraction solvent for soil samples.^{7, 30} While there are studies that use acetone/n-hexane mixture (1:1, v/v) to extract OCPs in soil, ³¹ and obtained a satisfactory result. Besides, some studies used ethyl acetate to fluopicolide, propamocarb, penconazoles and chlorinated extract compound in soil matrices.^{32, 33} For the development of this method, all of these solvents (acetonitrile, acetone/n-hexane (1:1, v/v), ethyl acetate) were studied and compared for extraction of pesticides in soil. Among the various tests performed, acetonitrile allowed for the highest recoveries. Therefore, acetonitrile was chosen as the organic solvent for the extraction.

Because of the matrix complexity, it is hard to extract compounds from soil matrices. Therefore we chose shaking as an assistant extraction produce before adding buffer salts. Shaken at 250 times/min on a shaker for 10, 20, 30, 40, 50 and 60 min were subsequently assessed. The results indicated that the time of 10 min gave satisfactorily recoveries. And the time 20 min, 30 min, 40 min, 50 min or 60 min did not increase the recoveries observably, compared to 10 min. Therefore, to obtain the best recoveries while minimizing sample preparation time, a shaking of 10 min was chosen.

3.2 Optimizing of the d-SPE clean up

An additional clean-up step was necessary to limit the presence of matrix interferents and remove the excess water. MEs (matrix effects) are

common in reports on the analysis of soil. Clean-up was performed by a
d-SPE approach with several most widely used sorbents, PSA and C18
with anhydrous MgSO₄. It was optimized according to adsorbent content
in three sets: (1) 150 mg PSA+ 150 mg C18+ 900 mg of MgSO₄; (2) 150
mg PSA+ 900 mg of MgSO₄; (3) 150 mg C18+ 900 mg of MgSO₄. The
recovery and MEs were assessed.

The ME was studied according to Equation 1 that comparing the slopes in matrix (blank soil extract) calibration solutions and pure solvent (ethyl acetate) calibration solutions.

ME (%) =
$$(S_m/S_s-1) \times 100\%$$
 (1)

S_m and S_s are the slopes in matrix and solvent. When ME (%) values were 0% no matrix effect was observed. ME (%) values between -20% and 20% were considered to be a mild matrix effect, and values between -50% and -20% or 20% and 50% were considered to be of medium matrix effect while ME values below -50% or above 50% are considered to be a strong matrix effect of signal suppression or enhancement ¹⁹.

The results indicate that most of the pesticides exhibited recoveries in the range between 70% and 120% for all the three sets (Supplementary Information, Table S 3). As can be seen in Fig. 2, most of the pesticides exhibited matrix enhancement effects. But PSA+ C18+ 900 mg of MgSO₄ set had a lower ME than other two sets. So set (1) with PAS + C18 + 900 mg of MgSO₄ was selected in the d-SPE step. In the other Page 13 of 26

Analytical Methods

hand, because three out of ten pesticides had strong MEs, the
matrix-matched calibration standards are indispensable for accurate
quantification by GC-MS/MS in this study.

3.3 Method validation

As shown in Table 2, the GC-MS/MS response for the 58 pesticides was linear over the range tested with R^2 between 0.9961-0.9999 for all pesticides, and higher than 0.9980 for most of the pesticides. The method LOQs were between 0.1 µg kg⁻¹ and 5 µg kg⁻¹.

Mean recoveries and RSD of the 58 pesticides from soil matrix are given in Table 2. Blank soil samples were spiked at 50 μ g kg⁻¹ and 5 μ g kg⁻¹ fortification levels. The results showed that mean recovery of pesticides were between 69% and 119% with RSD values at or below 20% for all the analytes except paclobutrazol (125%) and fenvalerate (122%) spiked at 5 μ g kg⁻¹. The observed slightly higher recovery of paclobutrazol and fenvalerate at a concentration of 5 μ g kg⁻¹ might be attributable to salting-out effects.¹⁶

The feasibility of the method for different types of soils was assessed using three different soil samples collected from Shandong (sample 4), Jiangsu (sample 7) and Liaoning (samples 15) province. The soil samples were both fortified at 5 μ g kg⁻¹ and 50 μ g kg⁻¹. The results (Supplementary Information, Table S 4 and Table S 5) showed that the accuracy and precision were satisfactory regardless of the type of soils.

Analytical Methods Accepted Manuscript

As demonstrated above, the recoveries of different soils were generally between 60 and 120% with RSDs below 20%, except for fipronil sulfone and difenoconazole. The results indicated that the proposed method is feasible for the analysis of 58 pesticides in different types of soils.

The further validate the feasibility of this method, a traditional shaking method was conducted and compared with this proposed QuEChERS method using samples 1-16. For traditional shaking extraction method, the sample was extracted twice with one hour shaking in each time. Matrix matched calibration solution was used in both methods. These two methods had good agreement for quantitative and qualitative analysis of pesticide residues in all soil samples. However, QuEChERS method was more sensitive for some pesticides due to clean up of the extracts and a weak acid extraction buffer environment. Besides, QuEChERS was less time and solvent consuming.

The results were given in Supplementary Information, table S 6. It can be seen that, over 50% of the selected pesticides were detected in 16 samples with low residue levels. Quintozene, endosulfan- β and endosulfan sulfate were detected in sample 13 in Liaoning with concentration 4.1×10^2 µg kg⁻¹, 80 µg kg⁻¹ and 2.8×10^2 µg kg⁻¹, respectively. Phorate sulfone, endosulfan sulfate, and chlorpyrifos were detected in sample 14 in Liaoning with concentration $1.4 \times 10^2 \ \mu g \ kg^{-1}$, 1.3×10^2 µg kg⁻¹ and 2.6×10^2 µg kg⁻¹, respectively. Besides, p,p'-DDE

Analytical Methods

were found with concentration 99 μ g kg⁻¹ in sample 5 in Shandong province.

3.4 Comparison of methods

The performance of the developed QuEChERS method was compared with other existing methods from the viewpoint of sample weight, solvent type, solvent volume, extraction time, recovery, LOQ (LOD) and RSD. As listed in Table 3, this proposed QuEChERS method had comparable or lower LOQs than other reported methods. Beyond that, there were some considerable advantages over the other methods: only 10 mL of acetonitrile were used, making this method safe and environmentally friendly; extraction process was simple and efficient; no special extract equipment was needed. In summary, this method enables relatively comparable accuracy and precision with those found in literature.

4. Conclusions

In this study, several experimental factors were optimized on the basis of QuEChERS method. The modified QuEChERS procedure has been adapted successfully in extracting pesticides which are generally used in agricultural practice. Sample extraction with AOAC buffer system and clean-up using PSA and C18 was found to be the optimum conditions for analysis of 58 pesticides in the soils studied. Recoveries for all

analytes were acceptable with low LOQs below 5 µg kg⁻¹. The proposed method was applied in the analysis of real samples, and the results indicated that several pesticides may be found in soils several months after application. This rapid and simple method is expected to be further applied to the screen of larger number of target pesticides in agricultural soil and be essential in decision making regarding usage and environmental management of pesticides in China in the future. Acknowledgment This work was supported by National Natural Science Foundation of China (Grant No. 41401577). References

1. V. C. Fernandes, S. J. Lehotay, L. Geis-Asteggiante, H. Kwon, H. G. J. Mol, H. van der Kamp, N. Mateus, V. F. Domingues and C. Delerue-Matos, Food Additives And Contaminants Part a-Chemistry Analysis Control Exposure & Risk Assessment, 2014, 31, 262-270. 2. V. Andreu and Y. Picó, TrAC Trends in Analytical Chemistry, 2004, 23, 772-789. 3. C. Lesueur, M. Gartner, A. Mentler and M. Fuerhacker, Talanta, 2008, 75, 284-293. 4. R. Zhu, L. Yan, G. Lu, Y. Yang, X. Wang, H. Yi and G. Ran, Asian Journal of Chemistry, 2014, 26, 6456-6460. 5. L.-K. Chai, F. Elie and C. Jinang, International Journal Of Environmental Analytical Chemistry, 2014, 94, 519-530. 6. A. Santalad, L. Zhou, F. Shang, D. Fitzpatrick, R. Burakham, S. Srijaranai, J. D. Glennon and J. H. Luong, Journal of chromatography. A, 2010, 1217, 5288-5297. 7. J. L. d. O. Arias, C. Rombaldi, S. S. Caldas and E. G. Primel, Journal of Chromatography, A, 2014, 1360, 66-75. I. B. Slizovskiy, J. C. White and J. W. Kelsey, International Journal Of Phytoremediation, 8. 2010, 12, 820-832. 9. B. Jurado-Sanchez, E. Ballesteros and M. Gallego, Science Of the Total Environment, 2013, 463, 293-301. 10. H. Liu, X. Li, W. Li and H. Han, Guangdong Agricultural Sciences, 2012, 39, 188-190. 11. M. Nasrin Sabour, Z. Mohamad Pauzi, O. Dzolkhifli and S. Kamaruzaman, Soil & Sediment Contamination, 2012, 21, 985-995.

Analytical Methods

359	12.	P. Wang, Q. Zhang, Y. Wang, T. Wang, X. Li, L. Ding and G. Jiang, Analytica Chimica Acta,
360		2010, 663 , 43-48.
361	13.	T. Miyawaki, K. Tobiishi, S. Takenaka and K. Kadokami, Bunseki Kagaku, 2015, 64, 533-541.
362	14.	Y. Zhu, Q. Liu, H. Li, X. Tong, S. Li and Q. Li, Acta Pedologica Sinica, 2015, 52, 888-901.
363	15.	M. N. U. Al Mahmud, F. Khalil, M. M. Rahman, M. I. R. Mamun, M. Shoeb, A. M. Abd
364		El-Aty, JH. Park, HC. Shin, N. Nahar and JH. Shim, Environmental Monitoring And
365		Assessment, 2015, 187.
366	16.	JH. Park, M. I. R. Mamun, JH. Choi, A. M. A. El-Aty, M. E. Assayed, W. J. Choi, K. S.
367		Yoon, SS. Han, H. K. Kim, B. J. Park, K. S. Kim, S. D. Kim, H. G. Choi and JH. Shim,
368		Biomedical Chromatography, 2010, 24, 893-901.
369	17.	N. Homazava, C. G. Aquillon, E. Vermeirssen and I. Werner, International Journal Of
370		Environmental Analytical Chemistry, 2014, 94, 1085-1099.
371	18.	X. Wang, X. Liu, L. Wang, M. Luo, S. Chen and Y. Peng, Journal of Agro-Environment
372		Science, 2013, 32 , 2099-2104.
373	19.	N. Mantzos, A. Karakitsou, I. Zioris, E. Leneti and I. Konstantinou, International Journal Of
374		Environmental Analytical Chemistry, 2013, 93, 1566-1584.
375	20.	N. Quinete, J. Wang, A. Fernandez, J. Castro and P. R. Gardinali, Analytical And Bioanalytical
376		Chemistry, 2013, 405, 5887-5899.
377	21.	A. Rashid, S. Nawaz, H. Barker, I. Ahmad and M. Ashraf, Journal Of Chromatography A,
378		2010, 1217 , 2933-2939.
379	22.	M. Anastassiades, S. J. Lehotay, D. Stajnbaher and F. J. Schenck, Journal Of Aoac
380		International, 2003, 86, 412-431.
381	23.	in AOAC Official Method 2007.01. Pesticide Residues in Foods by Acetonitrile Extraction and
382		Partitioning with Magnesium Sulfate, AOAC International, 2007.
383	24.	S. J. Lehotay, Journal Of Aoac International, 2007, 90, 485-520.
384	25.	in BRITISH STANDARD (BS EN 15662). Foods of plant origin-Determination of pesticide
385		residues using GC-MS and/or LC-MS/MS following acetonitrile extraction/partitioning and
386		clean-up by dispersive SPE- QuEChERS method, British, 2008.
387	26.	MV. Salvia, E. Vulliet, L. Wiest, R. Baudot and C. Cren-Olive, Journal Of Chromatography
388		<i>A</i> , 2012, 1245 , 122-133.
389	27.	MV. Salvia, C. Cren-Olive and E. Vulliet, Journal Of Chromatography A, 2013, 1315, 53-60.
390	28.	E. de Gerónimo, A. M. Botero-Coy, J. M. Marín, V. C. Aparicio, J. L. Costa, J. V. Sancho and
391		F. Hernández, Anal. Methods, 2015, 7, 9504-9512.
392	29.	J. Xu, J. Zhang, F. Dong, X. Liu, G. Zhu and Y. Zheng, Anal. Methods, 2015, 7, 9791-9799.
393	30.	M. C. Bruzzoniti, L. Checchini, R. M. De Carlo, S. Orlandini, L. Rivoira and M. Del Bubba,
394		Analytical And Bioanalytical Chemistry, 2014, 406, 4089-4116.
395	31.	Shen Xiu-li, Sun Bao-li, Dong Yiwei, Yan Zhonghui and W. Conghui, Modern Scientific
396		Instruments, 2009, 84-87.
397	32.	S. K. Sahoo, K. Mandal, R. Kumar and B. Singh, Food Analytical Methods, 2014, 7,
398		1032-1042.
399	33.	C. Garcia Pinto, M. E. Fernandez Laespada, S. Herrero Martin, A. M. Casas Ferreira, J. L.
400		Perez Pavon and B. Moreno Cordero, Talanta, 2010, 81, 385-391.
401		

402 Figure captions:

Figure 1. GC-MS/MS chromatograms of selected compounds: (a) blank soil and (b) soil extract spiked at $100 \ \mu g \ kg^{-1}$.

405 Figure 2. MEs of the comparisons between different clean-up materials in soil samples.

Figure 1. GC-MS/MS chromatograms of selected compounds: (a) blank soil and (b) soil extract spiked at 100 μ g kg-1. 224x168mm (300 x 300 DPI)

Analytical Methods Accepted Manuscript

Figure 2. MEs of the comparisons between different clean-up materials in soil samples. $180 \times 108 \text{ mm}$ (300 x 300 DPI)

Page 21 of 26

Analytical Methods

Table list:

Table 1. Acquisition and chromatographic parameters for the selected pesticides.

Table 2. Validation parameters: Mean recoveries and RSD at 2 spiking levels, LOD, LOQ and linearity of pesticides.

Table 3. Comparison of methods for the determination of pesticides in soil samples.

Table 1. Acquisition and chromatographic parameters for the selected pesticides.

Numbers	Pesticides	$T_{R}(min)$	Time segment	MRM 1	CE 1	MRM 2	CE 2
1	Dichlorvos	6.11	1	109.0>79.0	5	184.9>93.0	10
2	Isoprocarb	11.02	2	121.0>77.1	20	136.0>121.1	10
3	Atrazine-desethyl	13.42	2	172.0>94.0	15	187.0>172.0	5
4	phorate	14.08	2	260.0>75.0	5	230.9>128.9	25
5	HCH-alpha	14.19	2	216.9>181.0	5	218.9>183.0	5
6	Atrazine	15.19	3	214.9> 58.1	10	214.9> 200.2	5
7	HCH-beta	15.29	3	181.0>145.0	15	216.9>181.1	5
8	HCH-gamma	15.45	3	181.0>145.0	15	216.9>181.0	5
9	PCNB	15.65	3	236.9> 118.9	25	236.9>142.9	30
10	Terbufos	15.73	3	230.9> 129.0	20	230.9>175.0	10
11	pyrimethanil	16.05	3	198.0>156.0	10	198.0>118.0	10
12	HCH-delta	16.44	3	181.0>145.0	15	217.0>181.1	15
13	Chlorothalonil	16.63	3	263.8>168.0	25	263.8>229.0	20
14	Acetochlor	17.91	4	222.9>132.2	20	222.9>147.2	5
15	Parathion-methyl	17.98	4	262.9>79.0	30	232.9>109.0	10
16	Alachlor	18.27	4	188.1>160.2	10	160.0>132.1	10
17	Phorate Sulfoxide	19.34	5	153.0>96.9	10	121.0>64.9	10
18	Malathion	19.50	5	172.9>99.0	15	157.8>125.0	5
19	Phorate Sulfone	19.63	5	124.9>96.9	5	170.9>143.0	5
20	Chlorpyrifos	19.84	5	196.9> 169.0	15	198.9>171.0	15
21	Parathion	19.87	5	138.9>109.0	5	290.9>109.0	10
22	Dicofol	19.89	5	139.0> 111.0	15	250.9>138.9	15
23	Triadimefon	19.96	5	208.0>181.1	5	208.0>111.0	20
24	Isocarbophos	20.10	5	135.9>108.0	15	135.9>69.0	30
IS	Heptachlor epoxide *	20.95	6	354.8> 264.9	15	352.8> 262.9	15
25	Pendimethalin	21.04	6	251.8>162.2	10	251.8>161.1	15
26	Fipronil Sulfide	21.26	6	351.0>254.9	20	255.0> 228.0	15
27	Fipronil	21.53	6	366.8> 212.8	25	368.8>214.8	25

28	Procymidone	21.69	6	96.0>67.1	10	96.0>53.1	15
29	o,p'-DDE	22.09	6	246.0> 176.2	30	248.0>176.2	30
30	Paclobutrazol	22.14	6	236.0> 125.1	10	125.1>89.0	20
31	Endosulfan-α	22.27	6	194.9> 159.0	5	194.9>125.0	20
32	Butachlor	22.54	6	188.1>160.2	10	236.9>160.2	5
33	Hexaconazole	22.87	7	231.0>175.0	10	256.0> 82.1	10
34	Isoprothiolane	23.10	7	162.1> 85.0	20	162.1>134.0	5
35	Profenofos	23.15	7	207.9> 63.0	30	338.8>268.7	15
36	Uniconazole	23.25	7	234.1> 165.1	10	234.1>137.0	15
37	p,p'-DDE	23.26	7	246.1>176.2	30	315.8>246.0	15
38	Buprofezin	23.67	7	105.0>77.0	20	105.0>104.1	10
39	Fipronil Sulfone	23.85	7	383.0> 255.0	20	255.0>228.0	15
40	Endosulfan-β	24.36	8	206.9> 172.0	15	194.9>158.9	10
41	o,p'-DDT	24.87	8	235.0> 165.2	20	237.0>165.2	20
42	Triazophos	25.5	8	161.2>134.2	5	161.2>106.1	10
43	Endosulfan sulfate	25.91	9	272.0> 237.0	15	274.0>239.0	15
44	p,p'-DDT	26.11	9	235.0> 165.2	20	237>165.2	20
45	Propiconazole	26.23	9	172.9>145.0	15	172.9>74	45
46	Tebuconazole	26.61	9	250.0> 125.0	20	125.0> 89.0	15
47	Propargite	26.862	9	135.0> 107.1	10	149.9>135.1	5
48	Epoxiconazole	27.24	9	192.0> 138.1	10	192.0>111.0	25
49	Iprodione	27.66	9	187.0> 124.0	25	243.9>187.0	5
50	Bifenthrin	28.14	9	181.2> 165.2	25	181.2>166.2	10
51	Fenpropathrin	28.34	9	264.9> 210.0	10	207.9>181.0	5
52	Cyhalothrin	30.09	10	197.0> 141.0	10	197.0>161.0	5
53	Spirodiclofen	31.35	10	109.1>81.1	10	109.1>79.1	15
54	Pyridaben	31.6	10	147.2> 117.1	20	147.2>132.2	10
55	Cyfluthrin	33.01	10	226.9>76.9	25	198.9>170.1	25
56	Cypermethrin	33.17	10	163.0>91.0	10	163.0>127.0	5
57	Fenvalerate	34.91	11	167.0>125.1	5	224.9>119.0	15
58	Difenoconazole	35.66	11	264.9>202.0	20	322.8>264.8	15

* Heptachlor epoxide was used as internal standard.

Analytical Methods

Dagtigidag	5 μ	g kg ⁻¹	50 µ	.g kg ⁻¹	$IOO(ua las^{-1})$	\mathbf{D}^2
Pesticides	Mean	%RSD	Mean	%RSD	LOQ (µg kg)	K
Dichlorvos	101	18	89	8	0.25	0.9964
Isoprocarb	117	9	112	8	0.25	0.9963
Atrazine-desethyl	95	15	90	9	0.5	0.997
Phorate	81	19	82	10	0.25	0.999
HCH-alpha	100	5	79	6	0.1	0.9982
Atrazine	111	16	85	10	0.25	0.996
HCH-beta	95	18	85	8	0.25	0.9982
HCH-gamma	97	14	81	7	0.25	0.998
Quintozene	95	13	74	4	1	0.996
Terbufos	93	13	81	9	0.25	0.996
Pyrimethanil	100	10	80	8	2	0.996
HCH-delta	91	18	85	9	0.25	0.996
Chlorothalonil	93	11	80	18	0.25	0.998
Acetochlor	87	14	81	8	0.1	0.998
Parathion-methyl	97	12	92	7	2	0.999
Alachlor	95	5	90	10	0.5	0.999
Phorate-sulfoxide	94	14	97	7	0.5	0.999
Malathion	92	9	90	6	0.25	0.999
Phorate-sulfone	91	9	88	5	1	0.999
Chlorpyrifos	82	13	83	4	0.25	0.999
Parathion	91	13	94	6	2	0.998
Dicofol	111	15	99	5	0.25	0.996
Triadimefon	88	13	103	6	0.5	0.999
Isocarbophos	106	8	111	12	1	0.999
Pendimethalin	88	10	93	8	0.5	0.998
Fipronil Sulfide	104	3	100	7	0.2	0.999
Fipronil	111	13	114	9	0.25	0.999
Procymidone	99	11	102	10	2	0.997
o,p'-DDE	86	17	85	5	0.1	0.998

T-1.1. 2 V-1: 1-4: / •1 • • ~

Paclobutrazol	125	16	116	7	0.1	0.9985
Endosulfan-α	96	9	105	8	2	0.9994
Butachlor	95	13	109	6	2	0.9999
Hexaconazole	107	6	116	9	5	0.9996
Isoprothiolane	95	11	94	7	0.25	0.9994
Profenofos	95	13	90	6	0.2	0.9994
Uniconazole	95	12	113	10	0.5	0.9999
p,p'-DDE	97	13	76	6	0.1	0.9999
Buprofezin	91	10	90	8	0.5	0.9979
Fipronil Sulfone	100	9	108	12	0.3	0.9998
Endosulfan-β	78	16	86	5	0.25	0.9974
o,p'-DDT	89	15	69	9	0.25	0.9993
Triazophos	105	10	107	6	1	0.9998
Endosulfan sulfate	96	15	84	7	0.1	0.9996
p,p'-DDT	93	13	70	7	1	0.9991
Propiconazole	91	10	88	9	4	0.9999
Tebuconazole	97	13	104	5	0.2	0.9999
Propargite	89	8	101	9	2	0.9982
Epoxiconazole	83	19	107	12	0.5	0.9998
Iprodione	94	16	92	13	0.5	0.9990
Bifenthrin	98	19	88	11	0.3	0.9999
Fenpropathrin	99	12	88	12	0.3	0.9992
Cyhalothrin	111	7	96	11	1	0.9983
Spirodiclofen	100	16	107	10	5	0.9983
Pyridaben	105	12	119	9	0.5	0.9992
Cyfluthrin	107	6	77	12	4	0.9997
Cypermethrin	104	7	92	7	5	0.9995
Fenvalerate	122	18	86	9	2	0.9980
Difenoconazole	108	15	105	12	4	0.9986

Method	Sample weight (g)	solvent type	solvent volume (mL)	Extraction time (min)	Recovery (%)	LOQ (LOD) (µg kg ⁻¹)	RSD (%)	References
QuEChERS	5	acetonitrile	10	0.5	43-100	0.1-2.4	≤ 20	21
QuEChERS	10	acetonitrile	15	2	83-120	(1-10)	≤ 10.2	5
QuEChERS	5	acetonitrile	10	2	79.4-113.6	0.1-2.9	≤ 12.2	17
QuEChERS	10	acetonitrile	10	19	73.8-105.7	5	≤16.0	29
SLE	50	acetone	150	60	67.5-113.4	1.65-33	≤16.0	16
PLE	15	acetonitrile	40	15	75.2-112.7	(4-5)	≤13.3	18
MAE	2	acetone/n-he xane (1:1)	30	4	72-120	16.5	≤ 6.86	15
Presented method	5	acetonitrile	10	10	69-125	0.1-5	\leq 20	Presented method

- 58
- 59 60

 Modified extraction
 Optimized clean up

Satisfactory results

39x29mm (300 x 300 DPI)