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ANALYST

Sedimentation Coefficient Distributions of Large
Particles

Peter Schuck

The spatial and temporal evolution of concentration boundaries in sedimentation velocity analyti-
cal ultracentrifugation reports on the size distribution of particles with high hydrodynamic resolu-
tion. For large particles such as large protein complexes, fibrils, viral particles, or nanoparticles,
sedimentation conditions usually allow migration from diffusion to be neglected relative to sed-
imentation. In this case, the shape of the sedimentation boundaries of polydisperse mixtures
relates directly to the underlying size-distributions. Integral and derivative methods for calculating
sedimentation coefficient distributions g∗(s) of large particles from experimental boundary profiles
have been developed previously, and are recapitulated here in a common theoretical framework.
This leads to a previously unrecognized relationship between g∗(s) and the time-derivative of
concentration profiles. Of closed analytical form, it is analogous to the well-known Bridgman rela-
tionship for the radial derivative. It provides a quantitative description of the effect of substituting
the time-derivative by scan differences with finite time intervals, which appears as a skewed box
average of the true distribution. This helps to theoretically clarify the differences between results
from time-derivative method and the approach of directly fitting the integral definition of g∗(s) to
the entirety of experimental boundary data.

1 Introduction

The determination of the size and polydispersity of large macro-
molecules and nanoparticles is a traditional application of analyt-
ical ultracentrifugation (AUC). 1,2 It is an absolute method based
on first principles and combines the virtues of an exquisite hy-
drodynamic resolution, afforded by the strongly size-dependent
migration in the centrifugal field, with a size range spanning
three orders of magnitude in Stokes radius. In the present
work we recapitulate the theoretical relationships underpinning
the different differential and integral approaches for determin-
ing sedimentation coefficient distributions of particles with neg-
ligible diffusion from experimental sedimentation data. These
are of interest for the characterization by AUC of large particles
including protein complexes, 3,4 fibrils, 5,6 viral particles, 7,8 en-
tire organisms, 9, nanoparticles such as carbon nanotubes, 10–12

nanocrystals, 13 gold nanoparticles and their conjugates, 14 quan-
tum dots, 15 and other colloids, 16 both in research and in regu-
latory environment. 17,18 Furthermore, sedimentation coefficient
distributions have been the basis for determining molar mass
distributions of such particles, 19,20 and apparent sedimentation

Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging

and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bio-

engineering, National Institutes of Health, Bethesda, Maryland 20892; E-mail:

schuckp@mail.nih.gov

coefficient distributions of diffusing species have been used for
estimating molar mass 21–23 and assess protein conformational
changes. 24

Over the history of AUC several strategies to determine sedi-
mentation coefficient distributions of non-diffusing particles have
been described for different detector configurations. In 1942,
Bridgman has presented a transformation of radial signal pro-
files a(r) into a sedimentation coefficient distribution g∗(s) by
virtue of the radial derivative da/dr, 25 which was naturally suited
for Schlieren measurement of concentration gradients. Later,
Scholtan & Lange developed an approach for determining the
sedimentation coefficient distribution of latex particles from the
time-course of signal obtained at a fixed-radius detector. 26 This
could be combined with an increase of the rotor speed with time,
providing an efficient characterization of particles over a large
size range, which was adopted for industrial applications in sev-
eral laboratories. 26–29 With computer-based analysis becoming
routinely available in the early 1990s, Stafford has introduced
a time-derivative method "dcdt" to calculate g∗(s) from consec-
utively acquired radial concentration profiles across the solution
column.30–32 Coinciding with the introduction of a new genera-
tion of commercial AUC instrumentation equipped with Rayleigh
interference optics capable to produce digital fringe profiles at
a high rate, it became widely popular for the study of apparent
sedimentation coefficient distributions of medium-sized proteins
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and their interactions. 23,24 In particular, the dcdt-method has the
virtue of being independent of time-invariant, radial-dependent
baseline noise that is dominant in interference data at low sample
concentrations. Most recently, the introduction of algebraic noise
elimination techniques 33,34 and application of modern mathe-
matical strategies for solving integral equations 35,36 made it pos-
sible to carry out least-squares fit to the entire temporal evolution
of concentration profiles a(r, t) with explicit distribution models,
ls-g∗(s), 37 as a special case for large particles of a more general
diffusion-deconvoluted particle sedimentation coefficient distri-
bution c(s). 38

Even though these approaches share the same definition of
the sedimentation coefficient distribution, different results may
be obtained due to their differences in the strategies to accom-
modate experimental noise, and due to different approximations
required in their practical application. In the present work we
recapitulate the theoretical basis, and establish new relationships
between the different approaches that help to understand their
advantages and disadvantages.

2 Theory

Throughout we consider particles that are sufficiently large so
that contributions of diffusion to migration in the centrifugal field
can be neglected. Traditionally this approximation finds applica-
tion also for diffusing species that form boundaries indistinguish-
able from distributions of non-diffusing species, in which case
the resulting sedimentation coefficient distributions are consid-
ered ‘apparent’, and may be subject to secondary analysis to un-
ravel the effects of finite diffusion 23,24. Practical application of
the sedimentation coefficient distribution analysis of large parti-
cles may require the consideration of size-dependent signal in-
crements, for example, from scattering, dependent on the optical
detection used. This question is excluded from the present work,
as it can be accounted for separately, as needed, by a renormal-
ization of the distribution, which can be calculated at first entirely
in signal units as concentration units.

Sedimentation boundaries of individual non-diffusing species
approach step-functions. The comprehensive mathematical
framework of generalized functions (mathematical distributions)
was only developed in the 1950s 39 — decades after the devel-
opment of analytical ultracentrifugation and the analysis of sed-
imentation coefficient distributions. However, Heaviside step-
functions and Dirac δ -functions provide very efficient tools for
the mathematical analysis of sedimentation and hydrodynam-
ics.31,37,40–45 Specifically, step-functions naturally lend them-
selves to the description of boundaries of non-diffusing, non-
interacting31,37 or interacting 45 species in the context of size-
distributions, and can be easily numerically implemented. 37

2.1 g∗(s) as a Sedimentation Coefficient Distribution of Poly-
disperse Mixtures of Large, Non-Diffusing Particles

We assume particles are initially distributed uniformly at unit con-
centration in a solution column with meniscus m. They are then
subjected to the centrifugation at angular velocity ω. This causes
particles of a single class of sedimenting species to migrate with

the sedimentation coefficient s, such that after time t a boundary
at a radius rb(t) is formed. Simultaneously, the plateau concentra-
tion decreases due to the dilution caused by increasing separation
of radially moving particles. In more detail, the concentration dis-
tribution of this single class of particles χ1,nd(r, t) is

χ1,nd(s, r, t) = e−2sω2tH (r − rb(t)) = e−2sω2t

{
0 for r < rb(t)
1 else

(1)
where rb(t) = mesω2t (Figure 1A). It can be easily shown that this
function satisfies the Lamm equation 46 — the master equation for
sedimentation in the gravitational field based on fluxes in radial
geometry — for the special case of D = 0. The middle identity in-
troduces the Heaviside step-function H(x), which has a discontin-
uous step from 0 to 1 at the origin, and is constant 0 for negative
and constant 1 for positive values. 39

Based on the sedimentation of a single, non-diffusing species,
in the following, it will be useful to highlight the general relation-
ship between a radial position r∗ and the sedimentation coeffi-
cient s∗ of a non-diffusing species whose boundary arrives at that
position at time t:

r∗(t) = mes
∗ω2t (2)

The asterisk distinguishes these as variables that relate the radial
and sedimentation coefficient dimension, rather than coordinates
of a boundary.

A polydisperse distribution of species with different s-values
then sediments with the temporal evolution of total concentration

c(r, t) =

smax∫

0

g∗(s′)χ1,nd(s
′, r, t)ds′ (3)

with g∗(s)ds representing the total loading concentration of
species with s-values between s and s+ds. smax is an upper limit
of what could possibly be described, usually imposed by the time
point and radial range of observation. As is custom, we apply
an asterisk to the distribution as a reminder of the neglect of
diffusion. The total concentration c(r, t) is what would be mea-
sured in an ideal experiment at radius r and time t; for clarity
we assume this not to be subject to any time-invariant or radial-
invariant baseline offsets that usually are superimposed to exper-
imental data. 47 These are not the subject of the present work;
for strategies how to address these noise contributions see, e.g.,
refs32–34,47.

2.2 Direct Solution of the Integral Equation for g∗(s)

It is possible to directly numerically solve the integral equation
(3) in a least-squares fit to the experimental data, termed ls-
g∗(s). 37 This is accomplished by discretizing the s-values into a
grid si from i = 1. . .N and determining the corresponding distri-
bution values g∗(si) such that the sum of their boundaries matches
as closely as possible all available data points at radii rm and times
tn:

Min
g∗(si)



∑
m,n

(

c(rm, tn)−
N

∑
i=1

g∗(si)χ1,nd(si , rm, tn)

)2


 (4)
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If the experimental data are from the observation of an ideal sedi-
mentation process of non-diffusing particles, then the residuals of
the fit are solely random noise of data acquisition, which may be
verified with bitmap representations or residual histograms. 47,48

Eq. (4) leads to a linear equation system, and with N usually be-
ing in the range of 100–500, the computational effort is minor
and takes only seconds on office computers. 49 To avoid noise am-
plification it is essential that the solution of (4) be combined with
regularization, usually Tikhonov regularization 37 or Bayesian ap-
proaches if other prior knowledge is available. 50 Time-invariant
and radial-invariant noise can both be simultaneously included
in the calculation. 33,34. One of the major virtues of the integral
approach is that all experimental data can be incorporated, and
as an explicit model for the sedimentation process, ls-g∗(s) can be
compared transparently with the experimental data in the origi-
nal data space to examine the quality of fit. The approach is very
general, and without any further complications refinements on
χ1,nd are possible to account for solvent compressibility, 51 time-
varying centrifugal fields, 52, the finite scanning speed of the scan-
ning systems, 3 optical signal magnification gradients, 53 or spatio-
temporal modulation of signal increments in fluorescence detec-
tion.54

Fig. 1 Sedimentation profiles (A), and their spatial derivatives (B) and
temporal derivatives (C) of a single, non-diffusing species at a unit
signal concentration with sedimentation coefficient of 100 S in a solution
column with meniscus at 6.0 cm from the center of rotation, spinning at
10,000 rpm after a time of 5,000 sec (green) and 10,000 sec (blue).
Both spatial and time derivatives involve δ -functions, which are depicted
as arrows.

2.3 The Spatial Derivative and the Bridgman Equation for
g∗(s)

To the extent that the distribution is additive in the species contri-
butions, the relationships between g∗(s) and derivatives of c(r, t)
can be established by considering derivatives of χ1,nd(r, t). First

we consider the radial derivative at a particular time t1:

∂c(r, t1)
∂ r

=

smax∫

0

g∗(s′)
∂ χ1,nd(s′, r, t1)

∂ r
ds′ (5)

The derivative of the Heaviside function is the Dirac δ -function,
which can be imagined as a spike with the property

∫ +∞

−∞
f (x)δ (x−x0)dx= f (x0) (6)

39 and for dχnd,1/dr we have

∂ χ1,nd(s, r, t1)

∂ r
= e−2sω2t1δ (r − rb(t1)) (7)

(Figure 1B). The coordinate transformation based on (2) allows
us to express the radial coordinate r in terms of the sedimentation
coefficient s∗. With the chain rule for δ -functions39 δ (φ(x)) =
δ (x)×|dφ(c)/dx|−1 at φ(c) = 0 we can re-write (7) as

∂ χ1,nd(s, r(s∗), t1)

∂ r
= e−2sω2t1

(
ω2t1mesω2t1

)−1
δ (s∗ −s) (8)

, and obtain after insertion into (5)

∂c(r(s∗), t1)
∂ r

=

smax∫

0

g∗(s′)
e−3s′ω2t1

mω2t1
δ (s∗ −s′)ds′ (9)

Executing the integral using the property (6) we arrive at the
familiar Bridgman relationship 25

g∗(s∗, t1) = ω2t1×
r3

m2 ×
∂c′(r, t1)

∂ r
(10)

with the radial coordinate linked to the s∗-value, r(s∗), as in (2).
It provides a recipe to determine the sedimentation coefficient
distribution g∗(s) on the basis of the spatial derivative of the total
concentration profile, followed by transformation of the radial to
the s∗ coordinate.

2.4 The Relationship Between g∗(s) and the Time-Derivative

An alternative avenue to determine g∗(s) is the time-derivative.
We can proceed analogously for the temporal derivative of the to-
tal concentration distribution observed after a time t1 at the radius
r, which is additive in the temporal derivative of each species:

∂c(r, t1)
∂ t

=

smax∫

0

g∗(s′)
∂ χ1,nd(s′, r, t1)

∂ t
ds′ (11)

The temporal derivative of a single non-diffusing species (1)
has two terms: First, the derivative arising from the bound-
ary can be found using the chain rule ∂H (r − rb(t))/∂ t =
(∂H (r − rb(t))/∂ rb )× (∂ rb/∂ t ) = −(∂ rb/∂ t )δ (rb(t)− r). But in
addition, all positions at higher radii experience a radially uni-
form concentration change due to the decreasing plateau concen-
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tration with time:

∂ χ1,nd(s, r, t1)

∂ t
=−e−sω2t1mω2sδ (rb(t1)− r)

−2ω2se−2sω2t1H (r − rb(t1))

(12)

(Figure 1C). Inserted in (11) to expand the relationship for
the whole distribution, the coordinate transform δ (rb(t1)− r∗) =

(ω2t1mes
′ω2t1)

−1
δ (s′ −s∗) leads to

∂c(r(s∗), t1)
∂ t

=−
1
t1

smax∫

0

g∗(s′)s′e−2s′ω2t1δ (s′ −s∗)ds′

−2ω2
smax∫

0

g∗(s′)s′e−2s′ω2t1H
(

r∗ −mes
′ω2t1

)
ds′

(13)

The δ -function resolves again the integral of the boundary term,
whereas the step-function resolves into a limit for the integration
range: Rather than integrating to the maximum considered value
smax, non-zero contributions can only be made for species that
have not migrated past r∗(s∗). Together, this leads to

∂c(r(s∗), t1)
∂ t

= −g∗(s∗)e−2s∗ω2t1 s∗

t1
−2ω2

s′=s∗∫

0

g∗(s′)s′e−2s′ω2t1ds′

(14)
With the abbreviation

g◦(s) = g∗(s)se−2sω2t1 (15)

the integral equation (14) simplifies to

g◦(s∗) = −t1
∂c(r(s∗), t1)

∂ t
−2ω2t1

s′=s∗∫

0

g◦(s′)ds′ (16)

and differentiation with regard to s∗ leads to a first-order linear
differential equation

∂g◦(s∗)
∂s∗

= −t1
∂ 2c(r(s∗), t1)

∂s∗∂ t
−2ω2t1g◦(s∗) (17)

As shown in Appendix A, for t1 > 0 it has a solution

g◦(s∗) = −t1e−2s∗ω2t1

s′=s∗∫

0

∂ 2c(r(s′), t1)
∂s′∂ t

e2s′ω2t1ds′ (18)

. Reinserting g∗ via (15) we find the compact expression

g∗(s∗, t1) = −
t1
s∗

s′=s∗∫

0

∂ 2c(r(s′), t1)
∂s′∂ t

e2s′ω2t1ds′ (19)

It is possible to resolve the double differentiation through integra-
tion by parts (making use that the time-derivative at the meniscus
vanishes for t1 > 0, and species with s= 0 only contribute to the

baseline):

g∗(s∗, t1) =−
t1
s∗

∂c(r(s∗), t1)
∂ t

e2s∗ω2t1

+
t1
s∗

2ω2t1

s′=s∗∫

0

∂c(r(s′), t1)
∂ t

e2s′ω2t1ds′
(20)

For convenience of relating this result to changes of experi-
mentally measured radial concentration profiles, we can back-
transform to radial coordinates (using ds′ = (ω2t1r ′)

−1
dr′ and

e2s∗ω2t1 = r∗2/m2 ):

g∗(s∗, t1)=−
t1
s∗

×
r∗2

m2 ×



∂c(r(s∗), t1)
∂ t

−
2

r∗2

r ′=r∗(s∗)∫

0

∂c(r ′, t1)
∂ t

r ′dr′





(21)
This is the analogue of the Bridgman equation (10) for the time-
derivative. That it solves Eq. (14) is shown in Appendix B. The
second term provides a correction for the radial dilution. It repre-
sents a squared radial-average of the time-derivative centripetal
to r∗. The relative magnitude of these terms can be discerned
from Figure 2, for the example of a Gaussian sedimentation coef-
ficient distribution g∗(s) (blue): The first term generates an over-
estimate at the high s-values (green dashed), and which is com-
pensated by the radial dilution term (magenta) in (20).

In the same framework, we can examine the response to sedi-
mentation profiles from a single species with s= s1, which has the
concentration profiles and time-derivative given in (1) and (12),
respectively. This was carried out in Appendix C, arriving at the
single-species distribution at unit concentration

g1
∗(s∗) = δ (s1−s∗) (22)

as expected, showing consistency and correctness of the new ex-
pression Eq. (21).

2.5 Approximation of g∗(s) from Time-Differences

Using the result (22) for a single species, it can be useful to
rewrite the distribution as a linear combination of its normalized
single-species response function g1

∗

g∗(s∗) =

smax∫

0

g∗(s′)g1
∗(s′)ds′ (23)

. This is a reflection of the fact that g∗(s∗) in (20) is additive in
the concentrations (and time-derivative, respectively) of different
species. Eq. (23) seems redundant at first, but this considera-
tion is useful for analyzing the effect of the substitution of finite
time-differences for the time-derivative, as is required in practice
when the data sets consist of a sequence of scans with finite time
interval. Eq. (23) reduces the problem of what the impact of this
practical imperfection is on the entire distribution to the question
how a single-species response function is affected. We will label
distributions arising from finite time-difference substitution with
a tilde, and refer to the single-species response as g̃∗1(s

∗, t,Δt), and
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Fig. 2 Contributions to g∗(s) from theoretical time-derivative data of an
ensemble of non-diffusing particles with Gaussian sedimentation
coefficient distribution centered at 100 S sedimenting at 10,000 rpm,
shown at 9,000 sec (blue). Using only the first term of Eq. (21),
corresponding to the simple transformation and normalization of the
time-derivative into a s∗-space (green dashed) leads to an overestimate
of populations at high s-value, due to radial dilution of small species
contributing to the time-derivative at high radii and high s-values. The
second term of Eq. (21) corresponds to the magnitude of this radial
dilution contribution (magenta), such that the difference of both terms
produces the correct distribution (blue).

the entire distribution as

g̃∗(s∗, t,Δt) =

smax∫

0

g∗(s′)g̃∗1(s
′, t,Δt)ds′ (24)

If we take the time-interval between t1 and t2 (with t1 < t2 and
Δt = t2− t1) we have

Δχ1,nd(s, r, t)

Δt
=

1
Δt

[
e−2sω2t2H (r − rb(t2))−e−2sω2t1H (r − rb(t1))

]

(25)
. If this time difference is inserted in Eq. (21) in the place of the
time-derivative we obtain

g̃∗1(s
∗, t,Δt) =−

t
s∗

r∗2

m2

Δχ1,nd(s, r∗, t)

Δt

+
t
s∗

r∗2

m2



 2

r∗2

r ′=r∗(s∗)∫

0

Δχ1,nd(s, r ′, t)

Δt
r ′dr′





(26)

As shown in the Appendix D, this simplifies to

g̃∗1(s
∗, t,Δt) =

t
s∗Δt

[H (r∗ − rb(t1))−H (r∗ − rb(t2))] (27)

, i.e., a segment of a hyperbola 1/s∗ from s∗1 = st1/t to s∗2 = st2/t .
Thus, substitution of the time-derivative with the analogous dif-
ference expression leads to an error that amounts to the convo-
lution of the true g∗(s) with a hyperbola segment. The width of
this hyperbola segment is Δs= s∗2−s∗1 = sΔt/t1 , and the relative
width is Δs/s = Δt/t1 (Figure 3). As a visual guide for the relative
broadening to be expected, in the rectangular approximation of
the solution column we find Δs/s ≈ Δrb/(rb−m) , i.e., the relative

width of convolution in s is similar to the ratio of boundary mi-
gration during the time interval and the boundary distance from
the meniscus.

Fig. 3 Response function g̃∗1(s
∗, t,Δt) for step-function boundaries of a

single 4 S species sedimenting at 50,000 rpm, observed at 7,200 and
7,500 sec. Shown are the resulting g(s*) from DCDT (kindly provided by
Dr. Walter Stafford) as solid cyan line, the result from DCDT+ (kindly
provided by Dr. John Philo) as solid magenta line, and the theoretical
prediction Eq. (27) as black dotted line.

3 Results and Discussion
In the present work we have applied a concise theoretical frame-
work to comprehensively study different approaches for deter-
mining g∗(s). A discretized form of the integral definition of g∗(s)
via step-functions can be fitted directly to the entirety of avail-
able data in the ls-g∗(s) approach, and the well-known Bridg-
man equation for the radial-derivative approach arises naturally
from the derivative properties of step-functions. We have found
an analogous, previously unrecognized simple expression for the
time-derivative.

A key feature of the time-derivative is the radial dilution term,
which is superimposed to the boundary term. The radial dilution
term makes significant contributions, as shown in Figures 1C and
2. For example, one can imagine that when using a fixed-radius
detector recording a continuous time-trace of the macromolecu-
lar depletion, the signal will decrease already prior to any particle
boundaries traversing the detector. If it would not be accounted
for, then the steady radial dilution of all small particles would be
mistaken for a broad population of large particles. Accordingly,
for the interpretation of the signal with a fixed-radius detector,
Scholtan & Lange 26 have solved the problem exactly in a recur-
sive approach by starting at the latest time points working back-
wards to earliest times, accounting for radial dilution at earlier
times of the particles passing through the detector at later times.

In practice, however, the single fixed-position detector ap-
proach has the drawback of providing significantly lower infor-
mation content and correspondingly lower statistical precision.
Perhaps more importantly, the lack of radial scans monitoring the
entire solution column prohibits diagnostics of systematic errors
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in the model or experimental problems, including significant con-
tributions to particle migration from diffusion, convection, sys-
tematic noise contributions, and/or signal offsets from sediment-
ing small co-solute molecules. Fixed-radius detection has been
applied recently in conjunction with a multiwavelength detector
design for AUC 55, and is used in disc centrifuges 56–58. However,
in the latter approach, similar to band centrifugation configura-
tions in AUC, samples are injected causing sedimenting lamella
that will exhibit reduced, but more complex simultaneous detec-
tion and radial dilution effects.

For the time-derivative approach, which takes differences of
entire scans, Stafford has initially neglected the radial dilution
terms,30 but later applied an iterative scheme to approximately
account for radial dilution 31 via a numerical solution of the im-
plicit integral equation Eq. (14). However, it stops short of an an-
alytical solution. To still achieve the desired theoretical analogy to
the Bridgman equation, Stafford has presented an equation pos-
tulating a single derivative term (dc/dt)corr , where a correction
was conceptualized to account for the radial dilution. However,
no expression could be provided for the conceptualized correc-
tion, and instead (dc/dt)corr was defined only indirectly after first
approximately solving the implicit equation Eq. (14).

Developing the theory further, in the present work we find that
a simple closed-form expression can be given, which now allows
to directly define Stafford’s (dc/dt)corr in a physically meaningful
way as

(
dc
dt

)

corr
=

dc
dt

−
2

r∗2

r ′=r∗(s∗)∫

0

dc(r ′, t)
dt

r ′dr′ (28)

The correction corresponds to the radial dilution contributions of
all smaller species, in satisfying agreement with the corrections
described earlier by Scholtan & Lange.

In principle, this should be useful to replace the iterative ap-
proach of current dcdt implementations by a more precise direct
calculation. However, an added complication is the necessity to
approximate the time-derivative in practice by a time difference
expression, due to the finite time differences between scans. De-
pendent on the rotor speed, sample number, and scan settings the
time between successive scans of the same cell may be between
1 and 5 min (or longer in some configurations). The theoreti-
cal analysis shows that this approximation of the time-derivative
leads to an error in the resulting distribution corresponding to a
convolution with a hyperbola segment. A similar prediction was
made previously on the basis of the approximation of rectangular
solution geometry 37, and is shown in the current framework to
hold strictly also for sector-shaped geometry. The effect of this is
a convolution that will simultaneously broaden and skew the dis-
tribution; this corresponds well with experimental observations
discussed previously. 21,37

Accounting for the finite time resolution, it is of interest to com-
pare the new explicit expression (Eq. 21) with the performance
of the iterative scheme. To this end, we calculated theoretical
boundary profiles of a hypothetical non-diffusing 4 S species sed-
imenting at 50,000 rpm, observed at 7,200 and 7500 sec via Eq.
(1) and created synthetic scan files. The resulting radial bound-

ary profiles were analyzed with the programs DCDT and DCDT+.
As may be discerned from Figure 3, there is a close correspon-
dence between the iteratively calculated results using DCDT and
DCDT+ and the theoretical expectation for this single-species
case (Eq. 27), modulo an inconsequential small scale factor of
unknown origin in DCDT. This agreement confirms both the soft-
ware and the theoretical derivations for single species.

Fig. 4 Panel A: Simulated sedimentation profiles of a population of
species with uniform distribution between 1,300 S and 1,700 S,
assuming a partial specific volume of 0.73 ml/g and a frictional ratio of
1.2, sedimenting at 8,000 rpm, shown in 300 sec intervals from 420 sec
to 1,020 sec (circles). The solid line is the best-fit boundary of a ls-g∗(s)
model, neglecting diffusion. Panel B: Residuals of the fit. Panel C: The
best-fit ls-g∗(s) distribution (bold line) and the distribution underlying the
simulation (thin dotted line).

Next, we aimed at testing the predictions for extended distri-
butions. To this end, we simulated sedimentation profiles of a
very simple sedimentation coefficient distribution, only consist-
ing of a constant value over a certain size range. Figure 4A shows
sedimentation profiles for species between 1,300 S and 1,700 S
with the constant distribution indicated as dotted line in Figure
4C. Such a rectangular distribution is unlikely to be found in a
practical application, but the sharp features reveal most clearly
the effects of convolution. The data were simulated in SEDFIT
for close-to-spherical proteinaceous particles sedimenting at a ro-
tor speed at 8,000 rpm. Under these conditions, diffusion effects
are very minor and indistinguishable from the effects of a slight
blurring of the sedimentation coefficient distribution. (This is ad-
vantageous for the simulation so as to remove effects from the
discrete approximation of the continuous distribution simulated.)
The effects of diffusion are reflected in the ls-g∗(s) distribution
calculated with SEDFIT, which fits the sedimentation profiles very
well (shown for the time-interval from 420 sec to 1,020 sec), but
results in an apparent sedimentation coefficient distribution with
smoother transitions than the rectangular distribution underlying
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the simulation (Figure 4C bold solid line versus dotted line).

Fig. 5 Effect of the finite time interval in the dcdt method in the analysis
of the uniform distribution of Figure 4. For reference the ls-g∗(s)
distribution from the analysis of the entire data set is shown in black.
The results from the dcdt method, calculated with DCDT+ (version
2.4.3, kindly provided by Dr. John Philo) for the same time range (bold
magenta line), for a smaller subset comprising 10 scans between 600
sec and 870 sec (bold cyan line), and for the a subset comprising only 4
scans between 690 sec and 780 sec (bold blue line). The circles are the
theoretical dcdt results calculated on the basis of the convolution Eq. 24
with the response function g̃∗1(s

∗, t,Δt) from Eq. (27), using the ls-g*(s)
distribution as an approximation of the true g*(s) distribution. In
calculating g̃∗1(s

∗, t,Δt), in analogy to the calculation in DCDT+, the
reference time was taken as the harmonic mean of times of scan pairs,
and the results averaged over all pairs of scans. The response functions
g̃∗1(s

∗, t,Δt) in the center of the time range is shown as thin lines, reduced
in scale by 1/3.

Finally, the synthetic scan files from the data of Figure 4A were
subjected to dcdtanalysis in DCDT+ using the same 600 sec time-
range (Figure 5 magenta line) and smaller time-intervals of 170
sec (cyan line) and for 90 sec (blue line). To test the prediction of
Eq. (24), we took the ls-g∗(s) distribution of Figure 4 as the cor-
rect distribution (Figure 5, black line), and convoluted it with the
respective response functions g̃∗1(s

∗, t,Δt) as given for each time
interval in Eq. (27), the latter shown in Figure 5 as thin dotted
lines in the middle of the distribution. The resulting predictions of
the convoluted sedimentation coefficient distributions g̃∗(s∗, t,Δt)
(Figure 5, symbols) are in good agreement with the numerical re-
sults in DCDT+ (Figure 5, colored lines), corroborating the theo-
retical analysis and numerical computations.

It is unfortunately not customary in the dcdt method to trans-
form the distributions back into the original data space, although
this is easily possible via insertion of g̃∗(s∗, t,Δt) into the definition
Eq. (3), implemented as a tool in SEDFIT. As shown previously, 59

this would reveal a misfit of the original scan data in cases where
the convolution from using the finite time-interval in dcdt creates
significant artifacts, and thereby provide a rational quantitative
guide for the scan selection in this method.

4 Conclusions

The uniform framework of integral and differential approaches
for sedimentation coefficient distributions has led to a satisfy-
ing analogy between methods. We found a simple analogue of
the Bridgman relationship for time-derivative (which was previ-
ously hypothesized to exist but not identified) provided an avenue
to theoretically predict the impact of approximations of time-
derivative by time-differences. This is practically relevant to inter-
pret results from the application of the dcdtmethod, and provides
simple approaches to rationally guide the selections of scans sub-
sets. Good agreement between theory and numerical results was
found, although the detailed results may further depend on the
details of implementation, such as the averaging scheme adopted
to condense sets of scans into an approximation of dcdt.

The effects of the convolution of g∗(s) observed in dcdt does
not depend on the size-range of particles, though it will be less
apparent for smaller particles with diffusion-broadened apparent
sedimentation coefficient distributions. It can be minimized by
exclusion of most of the experimental data. The absence of such
artifacts favors the application of the direct boundary modeling
approach in ls-g∗(s). This is true in particular for large parti-
cles where diffusion is negligible: In this case g∗(s) is the cor-
rect model to describe the sedimentation process across the en-
tire time of the experiment, and all data can be included in ls-
g∗(s) to produce the best possible estimate of the particle sedi-
mentation coefficient distribution. In general, the successful fit of
the experimental data with ls-g∗(s) can provide a simple and ra-
tional criterion for the application of the model of non-diffusing
particles, and establish a rigorous approach for the determina-
tion of weight-average sedimentation coefficients via the trans-
port method59 for further thermodynamic analysis.
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Appendix

A. Solution of the Integral Equation for g◦

For clarity we may rewrite the differential equation (17) in a gen-
eral way as

d f
dx

= k(x)+b f(x)

identifying x= s∗, k(x) =−t1
∂ 2c(r(x),t1)

∂s∗∂ t and b=−2ω2t1. The ansatz

f (x) = ebx




x∫

0

k(x′)e−bx′dx′ + p(x)





with any function p(x) has the derivative

d f
dx

= b f +ebx
[

k(x)e−bx−k(0)+
dp
dx

]
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. To satisfy our differential equation, we can identify

dp
dx

= k(0)

or
p(x) = k(0)x+q

, leading to the solution

f (x) = ebx




x∫

0

k(x′)e−bx′dx′ +k(0)x+q





with the unknown integration constant q. Back-substitution leads
to

g◦(s∗) =− t1e−2s∗ω2t1

s′=s∗∫

0

∂ 2c(r(s′), t1)
∂s′∂ t

e2s′ω2t1ds′

+ t1e−2s∗ω2t1

[
∂ 2c(r(s∗ = 0), t1)

∂s∗∂ t
s∗ +q

]

Based on the definition of g◦ in (15) it is easy to see that
g
◦
(s = 0) = 0 will always be true, and therefore q = 0. Further,

considering that r1(s∗ = 0) = m, and using the fact that for any
time t1 > 0 the concentration of a species at the meniscus is zero,
H (m− rb(s)) = 0, the second term in the brackets also disappears.
With only the first term in the bracket remaining we arrive at

g◦(s∗) = −t1e−2s∗ω2t1

s′=s∗∫

0

∂ 2c(r(s′), t1)
∂s′∂ t

e2s′ω2t1ds′

for t1 > 0.

B. Consistency of the Temporal Bridgman Equation

We want to examine whether the temporal Bridgman equation
(21) is a solution of the integral equation (14). To this end, we
rephrase Eq. (14) as

g∗(s∗) =−
t1
s∗

∂c(r(s∗), t1)
∂ t

e2s∗ω2t1

−
t1
s∗

e2s∗ω2t12ω2
s′=s∗∫

0

g∗(s′)s′e−2s′ω2t1ds′

In comparison with Eq. (20), which arises from (21) through
coordinate transformation, the only difference is in the second
term on the right hand side. For (20) to be true, these must be
identical:

t1
s∗

2ω2t1

s′=s∗∫

0

∂c(r(s′), t1)
∂ t

e2s′ω2t1ds′ =

−
t1
s∗

e2s∗ω2t12ω2
s′=s∗∫

0

g∗(s′)s′e−2s′ω2t1ds′

This simplifies to

s′=s∗∫

0

∂c(r(s′), t1)
∂ t

e2s′ω2t1ds′ = −
1
t1

e2s∗ω2t1

s′=s∗∫

0

g∗(s′)s′e−2s′ω2t1ds′

Differentiation with regard to s∗ resolves the left-hand-side inte-
gral, and the product rule applies on the right-hand side

∂c(r(s∗), t1)
∂ t

e2s∗ω2t1 = −
1
t1

e2s∗ω2t1g∗(s∗)s∗e−2s∗ω2t1

−
2
t1

ω2t1e2s∗ω2t1

s′=s∗∫

0

g∗(s′)s′e−2s′ω2t1ds′

which after simplification of terms reduces to Eq. (14), and is
therefore true.

C. Testing the Temporal Bridgman Equation with Single-
Species Profiles

Let us consider the sedimentation profiles of a single non-
diffusing species sedimenting with s1. It has the concentration
profiles and time-derivative given in (1) and (12), respectively,
with a boundary at rb = rb(s1, t1). Inserted in the temporal variant
of the Bridgman equation (20), using r∗ short for r∗(s∗, t1), and af-
ter straightforward rearrangement including separation and can-
celation of terms, as well as the insertion of e−s1ω2t1 = m/rb , we
obtain

s∗rb
2

s1ω2t1
g∗(s∗, t1) = +r∗2rbδ (rb− r∗)+2r∗2H(r∗ − rb)

−2rb

r ′<r∗(s∗)∫

0

δ (rb− r ′)r ′dr′ −4

r ′<r∗(s∗)∫

0

H(r ′ − rb)r
′dr′

The two integrals can be resolved in the following way: The first
integral over the δ -function can only produce a non-zero result
for radii r∗ ≥ rb(t) (i.e., when the integration limits cover its argu-
ment across zero) which can be expressed conveniently by multi-
plying the Heaviside function H(r∗ − rb) to the executed integral,
as in

∫ x
0 f (y)δ (a−y)dy= H(x−a) f (a). In the second integral we

can eliminate the Heaviside function by adjustment of integration
limits (eliminating the range over which H = 0 and starting inte-
gration where H = 1). But, again, to express the fact that integral
can be non-zero only for radii r∗ ≥ rb(t), the analytic result of
the integration must be multiplied with a new Heaviside function
H(r∗ − rb), as in

∫ x
0 f (y)H(y−a)dy= H(x−a)

∫ x
a f (y)dy. This leads

to :

s∗rb
2

s1ω2t1
g∗(s∗, t1) = +r∗2rbδ (rb− r∗)+2r∗2H(r∗ − rb)

−2rbH(r∗ − rb)rb−4H(r∗ − rb)

r ′<r∗(s∗)∫

rb

r ′dr′
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and an equation

s∗rb
2

s1ω2t1
g∗(s∗, t1) = +r∗2rbδ (rb− r∗)+2r∗2H(r∗ − rb)

−2rbH(r∗ − rb)rb−2
(

r∗2− rb
2
)

H(r∗ − rb)

where all terms cancel out except for the first

s∗rb
2

s1ω2t1
g∗(s∗, t1) = +r∗2rbδ (rb− r∗)

Finally, with the transformation of the δ -function into s∗-space
δ (rb− r∗) = (ω2t1rb)

−1δ (s1−s∗) we arrive at

g∗(s∗, t1) =
r∗2

rb
2

s1

s∗
δ (s1−s∗) = δ (s1−s∗)

where the second identity arises from the fact that a non-zero re-
sults is only obtained at s∗ = s1, in which case also r∗ = rb. Thus,
we find the expected result for the distribution of a single species
sedimenting with s1, which was underlying the concentration pro-
file and its time-derivative.

D. The Single-Species Response with Finite Time-Difference

Instead of the time-derivative we use the difference between the
signals at times t2 and t1, which are thought to be slightly larger
and smaller than the time t, respectively:

∂ χ1,nd(s, r∗, t)

∂ t
≈

Δχ1,nd(s, r∗, t)

Δt

=
1
Δt

[
e−2sω2t2H (r − rb(t2))−e−2sω2t1H (r − rb(t1))

]

(where Δt = t2− t1, and r∗ = r∗(s∗)). If we insert this approxima-
tion into Eq. (21) in place of ∂c(r∗, t)/∂ t , after simplification, we

have

m2s∗Δt

r∗2t
g̃∗1(s

∗, t,Δt) =−e−2sω2t2H (r − rb(t2))+e−2sω2t1H (r − rb(t1))

+e−2sω2t2 2

r∗2

r ′=r∗(s∗)∫

0

H
(
r ′ − rb(t2)

)
r ′dr′

−e−2sω2t1 2

r∗2

r ′=r∗(s∗)∫

0

H
(
r ′ − rb(t1)

)
r ′dr′

The Heaviside functions in the integrals are equivalent to a
change of the lower integration limit, but non-vanishing only if
r∗ > rb(t2) and r∗ > rb(t1), respectively. As outlined above, the
latter can be conveniently expressed by multiplication of the inte-
gration result with new Heaviside functions:

m2s∗Δt

r∗2t
g̃∗1(s

∗, t,Δt) = −e−2sω2t2H (r∗ − rb(t2))+e−2sω2t1H (r∗ − rb(t1))

+e−2sω2t2 2

r∗2 H (r∗ − rb(t2))

r ′=r∗(s∗)∫

r ′=rb(t2)

r ′dr′

−e−2sω2t1 2

r∗2 H (r∗ − rb(t1))

r ′=r∗(s∗)∫

r ′=rb(t1)

r ′dr′

which, after integration and sorting of terms, leads to

m2s∗Δt

r∗2t
g̃∗1(s

∗, t,Δt) = −
rb(t2)

2

r∗2 e−2sω2t2H (r∗ − rb(t2))

+
rb(t1)

2

r∗2 e−2sω2t1H (r∗ − rb(t1))

or
g̃∗1(s

∗, t,Δt) =
t

s∗Δt
[H (r∗ − rb(t1))−H (r∗ − rb(t2))]

This function is the hyperbola segment shown in Figure 3.
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