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Computational cell analysis for label-free detection of cell 

properties in a microfluidic laminar flow 
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Although flow cytometer, being one of the most popular research and clinical tools for biomedicine, can analyze cells 

based on cell size, internal structures such as granularity, and molecular markers, it provides little information about the 

physical properties of cells such as cell stiffness and physical interactions between cell membrane and fluid. In this paper, 

we propose a computational cell analysis technique using cells’ different equilibrium positions in a laminar flow. This 

method utilizes a spatial coding technique to acquire the spatial position of the cell in a microfluidic channel and then uses 

mathematical algorithms to calculate the ratio of cell mixtures. Most uniquely the invented computational cell analysis 

technique can unequivocally detect the subpopulation of each cell type without labeling even when the cell type shows a 

substantial overlap in the distribution plot with other cell types, a scenario limiting the use of conventional flow 

cytometers and machine learning techniques. To prove this concept, we have applied the computation method to 

distinguish live and fixed cancer cells without labeling, count neutrophil from human blood, and distinguish drug treated 

cells from untreated cells.  Our work paves the way for using computation algorithms and fluidic dynamic properties for 

cell classification, a label-free method that can potentially classify over 200 types of human cells.  Being a highly cost-

effective cell analysis method complementary to flow cytometers, our method can offer orthogonal tests in companion 

with flow cytometers to provide crucial information for biomedical samples.  

Introduction 

For decades, flow cytometers have been used to measure 

physical properties of cells such as their size and granularity [1-

7]. Although labelling allows further differentiation of cells 

from fluorescent signals [7-13], cell labelling could 

unintentionally modify the property of cells [8] and in some 

cases affect cell viability [14-15] in addition to adding cost and 

process complexity. Therefore, significant efforts have been 

devoted to attaining as much cell information as possible 

without labelling [16-21].  In this paper we demonstrated 

enhanced abilities of label-free detection and analysis of cells 

in a laminar flow by employing innovative computation 

algorithms. Indeed, there have been numerous successful 

examples [22-23] for applications of computation algorithms 

to obtain extra cellular information from biological samples, as 

demonstrated in super-resolution microscopy [24-28] and 

imaging flow cytometer [29]. 

Realizing that cells of different physical properties find 

different equilibrium positions in a microfluidic laminar flow 

[30-39], we can acquire valuable cellular information from cell 

positions in principle.  However, up to now such information 

has not become much useful because different types of cells or 

the same type of cells in different conditions (e.g. drug 

treatments or infections) often produce very small position 

differences in a fluidic channel.  To overcome this problem, at 

first we have to find a scheme to detect very small (a fraction 

of cell size) positional changes. A few years ago, we invented a 

space-time coding method to detect the cell position with 

better than one micrometer resolution [40-45].  However, we 

still face another challenging problem resulted from the 

intrinsic inhomogeneity of biological cells.  In other words, the 

property variations within the same cell group can be 

comparable to or even greater than the variations between 

two different cell groups.  As a result, the distribution plots of 

two different cell groups may seriously overlap that no 

machine learning methods such as support vector machine 

(SVM) algorithms are able to separate the two groups [41].  

The key contribution of this paper is to devise an entirely new 

concept to address this critical issue.  Instead of trying to 
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classify each individual cells, we detect cells and their 

properties by groups.  For two or more groups of cells with 

slightly different properties, our computation algorithms can 

(a) determine the cell population of each group, and (b) 

determine the spread and inhomogeneity of the properties 

within each cell group.  Using the proposed computation 

method, we have demonstrated that even though the two cell 

groups have their distribution plots overlapped by 80% or 

more, one can still accurately measure the population of each 

group of cells in samples of cell mixture.  To showcase 

potential applications of the computational cell analysis 

method, we demonstrate such unique capabilities in two 

examples.  For point of care, we count neutrophil in whole 

blood for neutropenia detection, a critical and frequent test 

for chemotherapy patients [46-51]. For drug testing based on 

phenotypical properties, we detect cellular response to drugs 

for target proteins (e.g. G-protein-coupled receptors) [52-53]. 

 

Experimental Method 
 
Computational cell analysis technique 

1. Measurement of cell position within a microfluidic channel 

In a microfluidic channel, cells of different physical properties 

(size, shape, stiffness, morphology, etc.) experience different 

magnitudes of lift and drag force, thus yielding different 

equilibrium positions in the laminar flow [30-39].  

 

To determine the equilibrium position of a particular cell in the 

microfluidic channel, a spatial coding method was used to 

obtain the horizontal position and the velocity of the cell. The 

design and configuration of the system is illustrated in figure 1. 

The spatial mask has two oppositely oriented trapezoidal slits 

with the base lengths being 100�� and 50�� (figure 2(a)). An 

LED source was used to illuminate from the bottom of the 

microfluidic channel. The transmitted signal was detected by a 

variable gain photoreceiver made of a Si photodiode and a 

transimpedance amplifier (Thorlab). All light blocking areas on 

the spatial mask was coated with a layer of Ti/Au on a glass 

slide. When cells flew through the spatial mask area, their 

forward scattering signal gave rise to a characteristic 

waveform encoded by the mask.  The microfluidic channel is 5	��  long and has its inlet and outlet at the ends. The 

rectangular cross section of the channel is 100�� wide and 50	�� high. The mask is located at 4.5	�� from the inlet. In 

the following discussion, we will represent the channel width 

direction as x-axis and channel height direction as y-axis. The 

intensity modulated FS signal by the trapezoidal slits displays 2 

peaks, as shown in figure 2(b). The ratio between the width of 

the first peak and the second peak provides information of the 

cell position in the X-axis; and the absolute value of the signal 

width gives information about cell velocity. Knowing the 

position along the x-axis and the cell velocity, the cell position 

along the y-axis can be obtained using the property of laminar 

flow that gives rise to a parabolic velocity profile represented 

by the following relation [39-44]: 

 

 

 

 

In the above equation, 
 is the cell position in the channel 

height direction (y-axis), � is the half channel height, 25�� in 

this work. 
 is the horizontal position. ��
, 
� is the velocity at 

a specific position.	� is the channel width in the horizontal 

direction, in our case 100	��.  ����  is the maximum velocity 

occurring at the center of the channel (i.e. 
 � � 2⁄ , 
 � 0, in 

our case, 
 � 50	��, 
 � 0	�� ). The target cells are 

suspended in PSB buffer solution ( � � 10��� ∙ ���, � �1.05 � 10�� ! ∙ ") The flow rate used in the experiment is 

180 ��/�$% . The microchannel hydraulic diameter, &' ��2( � ��/�( ) *�, is 66.7��, where ( and * are the width 

and height of the channel. The Reynolds number is calculated 

to be 38.1. 

 

Fig. 1 Experiment setup with space coding method  

 

2. Computational cell analysis methods 

 

Basic algorithms 

For a given type of cells in a channel, their equilibrium 

positions can be represented by a characteristic distribution +�
, 
�. The characteristic distribution can be obtained in a 

diluted sample to avoid any effects caused by cell-cell 

interactions in the flow. Figure 3 shows the characteristic 

distribution of live MDA-MB-231 cells.  Without cell-cell 

interactions in the fluid, the spatial distribution of a sample 

containing multiple cell groups is the linear combination of the 

characteristic functions of each cell type. 

 

                           (a)         (b) 

Fig. 2 (a) Spatial mask design with two oppositely oriented 

trapezoidal slits.  W1 and W2 represent the widths of the slits 

 

 � � � ,1 - ��
, 
����� � .1 - �
 - �/2�/2 �/0 
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experienced by a cell traversing the mask from different 

positions.  Also shown are the anticipated waveforms for cells 

crossing the mask area via different paths. (b) Intensity 

modulated forward scattering signal by the trapezoidal slits. 

 

If +1�
, 
� and +2�
, 
� are the characteristic functions of cell 

type A and cell type B, the spatial distribution, 3�
, 
�, for a 

mixture of cell A and cell B can be described by Eq. (1) where 

the coefficient, C, is the fraction of cell A in the sample. 

  3�
, 
� � 	4 � +1�
, 
� ) �1 - 4� � +2�
, 
�  (1) 

 

Since both +1�
, 
�  and +2�
, 
�  are normalized over the 

entire cross section of the fluidic channel, 5 +1�
, 
�6
6
�,7 � 1	and		5 +2�
, 
�6
6
�,7 � 1 

 

Fig. 3 Spatial characteristic function of live MDA-MB-231 cell. 

 

The distribution function 3�
, 
�  for the sample is also 

normalized as in (2). 

 ∬ 3�
, 
�6
6
�,7 � 	4 �∬ +1�
, 
�6
6
�,7 ) �1 - 4� �∬ +2�
, 
�6
6
�,7 � 1 (2) 

 

If we already know +1�
, 
�, +2�
, 
� from the training data 

and measure 3�
, 
� from the sample, we can find from Eq. 1 

the only unknown, 4, being the population of cell A, which is 

the information of interest. 

 

In practice, the values of +1�
, 
�, +2�
, 
�, !%6	3�
, 
�  at 

each specific position �
, 
� are random variables. We divide 

the whole area of the channel cross section into meshes so the 

sets of random variables +1�
, 
�, +2�
, 
�, !%6	3�
, 
� follow 

the relations: 

 <+1�
, 
��,7 � 1	!%6	<+2�
, 
��,7 � 1 

 

<3�
, 
��,7 � 4 �<+1�
, 
��,7 ) �1 - 4� �<+2�
, 
��,7 � 1 

(3)                                                                        

 

Due to the statistical nature of the problem, the resulting 

value of C, calculated at each position �
, 
�, is also a random 

variable. Thus we can plot the distribution of C, the percentage 

of cell A in the sample, in a histogram. The mean value of the 

histogram produces the most likely percentage for cell A in the 

sample and the spread of the histogram provides a good 

indication of the quality of the measurement. Figure 5 shows 

an example of the histogram for C. 

 

Fig. 4. Illustration of the steps to calculate the cell ratio in a 

sample of cell mixture. The yellow and blue patterns represent 

the characteristic distributions for cell A and cell B.   

 

 

Fig. 5. Histogram of the live MDA-MB-231 cell  ratio, C. 

 

Therefore, for any cell type possessing even a slightly different 

physical property than the rest of the cells in the sample, 

manifested by its largely overlapped spatial distribution with 

the rest of the samples, our method is still able to find the 

relative population of such specific cell type in a cell mixture.  

This is a unique capability of the proposed method. 

 

Obtaining characteristic functions from practical, non-

purified, samples 

In some practical cases, pure samples of a single cell type are 

not always available to allow us to obtain the characteristic 

functions (e.g. +1�
, 
�, +2�
, 
�, =>�.).  Even in the cases 

where one can use cultured cells to produce samples of pure 

cells, the distributions obtained from the cultured cells may be 
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different from the real cells of the same type in physiological 

conditions.   

 

In the following we describe how one can obtain the 

characteristic functions (i.e. +1�
, 
�, +2�
, 
�, =>�.) from cell 

mixtures directly without pure samples.  These cell mixtures 

can come directly from patient samples. To elucidate this 

method, let us start with two (or more) samples with different 

ratios (i.e. 4? and 4/) of mixture between cell A and cell B.  We 

obtain the following relations: 3?�
, 
� � 4?+1�
, 
� ) �1 - 4?�+2�
, 
� 3/�
, 
� � 4/+1�
, 
� ) �1 - 4/�+2�
, 
�  (4) 

 

For training samples, we can label cells A and B so that one can 

use a conventional flow cytometer to find the cell ratios, 4? 

and 4/ of the two training samples.  The left hand side (LHS) of 

Eq. (4) are the measured distribution functions for the two 

mixtures. Then at each position �
, 
�, we can use Eq. (4) to 

find the characteristic functions +1�
, 
� and +2�
, 
� for cells 

A and B since 4? and 4/ are already known.  Note that we only 

need to perform the above experiment once to establish the 

“library” of the characteristic functions for all cells of interest, 

and then these characteristic functions can be used for all 

future analysis of samples consisting of various cell mixtures. 

This process is further illustrated in figure 6. 

 

Fig. 6. Use of cell mixtures as training samples to obtain the 

characteristic function of specific cell type. 

 

Fig. 7. Test Sample Ratio calculation. 

 

For a mixture of two cell types with an unknown mixing ratio 

(C3), we can find its value using the same method described 

above (figure 7). 

 

Note that the distribution function +�
, 
� for each sample 

represents a set of position dependent random variables, so 

the reliability of its value at each position depends on the size 

of the ensemble within each mesh.  To assure a good 

ensemble size at each position and to obtain the highest 

possible spatial resolution for +�
, 
�, we design meshes using 

the quad-tree algorithm that balances the weight of each 

mesh and the spatial resolution to yield the most distinctive 

and statistically sound results for cell detection.   

 

Mesh definition for distribution functions: the quad-tree 

algorithm 

Since the spatial distribution of the cell is not uniform across 

the channel, the weight of each mesh will be inevitably biased 

if the channel is divided up into meshes of uniform size. In 

such case, the information contained in those meshes with few 

cells flowing through (i.e. fewer data points) is less reliable. 

Those meshes, which may represent the majority of meshes 

for a distribution function concentrated to a relatively small 

area, can produce large noise and degrade the accuracy and 

confidence level of the result. On the other hand, for those 

meshes where there are too many cells flowing through, we do 

not take full advantage of the spatial resolution the data offer. 

To address these issues, we adopt meshes with non-uniform 

size based on the quad-tree algorithm [53]. The quad-tree 

algorithm chooses mesh sizes dynamically based on the 

density of recorded cell positions. The channel is first divided 

into 4 meshes, each of which is further divided into another 4 

meshes.  Such process continues to form a quad tree. Then the 

number of cells travelling through each mesh in each 

generation of quad in the tree is counted. If the number of 

cells within an older generation of quad (i.e. larger sized quad) 

is greater than the threshold for a statistically reliable 

ensemble, the next generation of quad will be used to gain a 

higher spatial resolution with a reduced ensemble size. The 

process continues until the smallest quads with slightly above 

threshold cell counts are reached.  Figure 8 shows how meshes 

are determined for a spatial distribution using the quad-tree 

algorithm. In this example, the distribution function was 

obtained by flowing 10,000 cells through a 100	��	 � 	50	�� 

channel. 

 

Fig. 8. Spatial distribution of live MDA-MB-231 cells using 

meshes created by the quad-tree algorithm. 

 

Experimental results  
Detection of the population of live and fixed cells 
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Without labelling, today’s flow cytometers cannot find the 

percentage of live and dead cells in a culture because the 

scattering signals (forward, side, and back scattering) between 

live and dead cells overlap significantly in the distribution plot. 

We demonstrate that in spite of the high similarity in their 

physical properties of live and dead cells, the computation cell 

analysis technique enables us to give an unequivocal answer to 

the subpopulation of live cells from dead cells. 

We used live and fixed MDA-MB-231 cells to demonstrate the 

concept. MDA-MB-231 is a cell line for human breast cancer.  

In the experiment, we fixed one group of cultured MDA-MB-

231 cells and labelled them fluorescently (Propidium lodide), 

and then mixed these fixed cells with live cells in different 

ratios. Each sample with a specific ratio of live and fixed cells 

was divided into two parts, one running through our device 

and the other running through a commercial flow cytometer. 

Figure 9(a) shows the distribution plot for forward and side 

scattering signals from a flow cytometer. It was impossible to 

determine the ratio between live and fixed MDA-MB-231 cells 

from the scattering signals by any gating or machine learning 

algorithms due to the significant overlap of the signals from 

live and dead cells. The only reliable method for a flow 

cytometer to detect the relative population of live cells from 

dead cells is by fluorescent labelling as shown in Figure 9(b). 

Next we demonstrate how the computation cell analysis 

method can solve this problem.  

To produce characteristic functions for live and dead MDA-MB-

231 cells, we ran through our system with two samples with 

100% live MDA-MB-231 and 100% fixed MDA-MB-231. Figure 

10 shows the characteristic functions of live MDA-MB-231 cells 

and fixed MDA-MB-231 cells over the proposed quad-tree 

meshes. Figure 11 shows the characteristic functions in a way 

that each mesh was assigned an index according to the 

ascending value of the characteristic function. Figure 11 clearly 

reveals the differences in the characteristic function between 

live and fixed MDA-MB-231 cells. Then we ran multiple test 

samples with different ratios of live and fixed MDA-MB-231 

cells. For each test sample, we ran the experiment 10 times, 

taking 3 minutes for each run, to test the reproducibility and 

reliability of the results. Figure 12 shows comparisons between 

our method and the flow cytometer results by detecting the 

fluorescent signals of fluorescently labelled fixed cells. The 

excellent agreement and similar repeatability (10 repeats) of 

the results from both methods demonstrate the accuracy and 

reliability of our label-free computation cell analysis method. 

                         (A)                                                    (B) 

 

Fig. 9. (A) Forward and side scattering of live and fixed MDA-

MB-231 cells; (B) fluorescent signal of live and fixed MDA-MB-

231 cells. The cluster on the left was auto fluorescence from 

live cells and the cluster on the right was Propidium lodide 

labelled fluorescent signal from fixed cells. 

 

 

 

 

Fig. 10. Characteristic function for fixed and live MDA-MB-231 

cells. 

 

 

 

Fig. 11. Characteristic function difference between live(Orange) 

and fixed(Blue) MDA-MB-231 cells.  The steeper rise in the 

orange curve indicates that the live MDA cells are spatially 

more concentrated to certain ares in the channel than the 

fixed MDA cells. 
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Fig. 12. Measured mean value of live cell percentage in 4 

samples.  The error bars show the variations for 10 repeats for 

cytometer (Accuri C6). 

 

 

Neutrophil counter for point-of-care applications 

There are three major types of white blood cells, neutrophil, 

lymphocyte, and monocyte. Neutrophil count is an indicator of 

patient’s immunity to infections and is particularly important 

for cancer patients undergoing chemotherapy since the 

treatment can lower neutrophil count. Neutropenia develops 

when the neutrophil count falls below certain levels, 

substantially increasing the risk of infections [46-47]. 

Therefore, the neutrophil count of chemotherapy patients has 

to be closely monitored, presenting the need for point-of-care 

neutrophil counter without fluorescent labelling.  In the 

following we demonstrate how the computation cell analysis 

technique can count neutrophil in a point-of-care setting.  

 

We performed the experiment using purchased blood from 

San Diego blood bank. After red blood cell lysing, the blood 

was diluted with 1X PBS solution.  Since we were interested in 

neutrophil count, we treated neutrophil as cell A and all non-

neutrophil WBCs as cell B. Then we represent the 

characteristic function for neutrophil as +1�
, 
� and all non-

neutrophil white blood cells (WBCs) as	+2�
, 
�. To obtain +1�
, 
� and +2�
, 
�, we did not use blood samples with 

100% pure neutrophils since complete removal of neutrophil 

from the samples can be practically difficult.  Instead, we 

chose two blood samples with different neutrophil to non-

neutrophil ratios. We used superparamagnetic beads 

(Dynabeads from ThermoFisher) to remove some neutrophils 

from the blood to produce samples with lower than normal 

amounts of neutrophil, which also simulated neutropenia 

patients. Using the aforementioned protocol, the 

superparamagnetic beads--Dynabeads CD15--that were 

covalently coupled with an anti-human CD15 antibody were 

used to deplete human CD15+ myeloid cells, predominantly 

neutrophils, directly from whole blood. Different 

concentrations of Dynabeads CD15 were used to create blood 

samples having various percentages of neutrophil [55]. 

 

Using the above mentioned algorithm (see Fig. 6), we obtained 

the characteristic functions of neutrophil and non-neutrophil 

as shown in Figure 13. From these characteristic functions, one 

could apply Eq. (4) to find the neutrophil ratio from samples of 

an unknown neutrophil population.  Again, we have divided 

each test sample into two parts, one going through our device 

and another going through a commercial flow cytometer 

(Accuri C6).  For each sample the test was repeated 10 times.  

Figure 14 shows the comparison of results from both methods. 

The experiment was designed to cover the whole range of 

neutrophil ratio to simulate healthy samples and samples with 

different degrees of neutropenia.  

 

Table 1 summarizes results from another set of experiment 

out of 8 purchased blood samples from San Diego blood bank. 

The excellent agreement between the proposed method and 

the commercial flow cytometer shows that the computational 

cell analysis device, being a highly flexible and versatile 

technique, can operate as a cost effective, point-of-care 

neutrophil counter. 

 

 

 

 

 

 

 

 

Fig. 13. Neutrophil and Non-neutrophil characteristic 

functions. 

 

 

 

 

Fig. 14. Measured mean value of neutrophil percentage over 

WBCs in 3 samples.  The error bars show the variations for 10 

repeats for each sample using our method and a commercial 

flow cytometer (Accuri C6). 
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Table 1 Measured neutrophil percentage over WBCs from 8 

blood samples using our method and a commercial flow 

cytometer. Samples 9 and 10 were used to obtain the 

characteristic functions for neutrophil and non-neutrophil. 

 

 

 

Drug response test from cell’s phenotypical characteristics 

The computational cell analysis technique is capable of 

capturing minor changes in cell properties (e.g. cell size, shape, 

granularity, stiffness, surface properties, etc.) that are often 

hard to detect under conventional histology analysis. The 

unique ability of detecting such otherwise hard-to-detect cell 

property changes provides valuable insight and complements 

the existing methods in drug discovery. Drug responses of 

cells, especially the early stage response or responses under 

low drug dosage, may not be obvious and can skip people’s 

attention [9]. We have performed preliminary studies to 

investigate our method’s capability of detecting subtle 

changes of cell properties under drug treatments.  

 

We divided breast cancer cells (MDA-MB-231) into two groups. 

For the first group, 15nM of Paclitaxel was introduced to 

around one million cells for 48 hours. As a cytoskeletal drug, 

Paclitaxel stabilizes the microtubule cytoskeleton against 

depolymerization [56], and is reported to affect cell surface 

roughness and stiffness [57] due to increase in microtubule 

rigidity [56]. As a control group, we introduced no drug to the 

second group of cells that were also cultured for 48 hours. 

Then the two groups of cells were run through our 

computation cell analysis system, yielding two characteristic 

functions corresponding to the drug treated and untreated 

cells.  In figure 15, the X-axis is the index of the meshes 

following the quad-tree algorithm (see Figure 8), and the Y-axis 

is the value of characteristic function. The difference of the 

characteristic function between the drug treated and 

untreated cells was presented in figure 15 where each mesh 

was assigned an index according to the ascending value of the 

characteristic function. Such representation helps us visualize 

and quantify the differences of characteristic functions 

between cells.  From figure 15 we observed clear differences 

between MDA-MB-231 cells with and without Paclitaxel 

treatment, suggesting the fluid mechanic properties of the 

cells have been affected by the drug although the alterations 

of cell’s phenotypical features were not apparent under 

fluorescent microscope (figure 16). 

 

Fig. 15. Difference in characteristic function for MDA-MB-231 

cell with (Blue) and without (Orange) Paclitaxel 

treatment.  The steeper rise in the blue curve indicates that 

the Paclitaxel treated cells are spatially more concentrated to 

certain ares in the channel than the untreated cells. 

 

 

 

(A)                                                 (B) 

Fig. 16. (A) is the fluorescent microscope picture of GFP 

transfected MDA-MB-231 cells without Paclitaxel treatment. 

(B) is fluorescent microscope picture of GFP transfected MDA-

MB-231 cells with Paclitaxel treatment.  It is difficult to tell the 

morphological differences using conventional histology. 

Conclusions 

In this paper, we report the invention of computational cell 

analysis as an entirely new method of detecting and analyzing 

cells from their spatial distribution in the microfluidic channel. 

A spatially coded mask was used to obtain the position of each 

cell by its optical scattering center. A mathematical algorithm 

was developed to calculate the composition of the cell mixture 

in the sample. This method is inherently label free and 

provides unique cellular information complementary to 

existing flow cytometers.  Because the information is extracted 

from computation algorithms, the hardware of the apparatus 

is simple and inexpensive, making it suitable for point-of-care 

applications and amendable to many biomedical applications. 

To show the versatility of the technique, in this paper we 

demonstrate the functions of counting the population of live 

and dead cells, counting neutrophils from whole blood for 

neutropenia detection, and detecting cell property changes 

under drug treatments. These are a few examples from a large 

number of possible applications of the technique.  We believe 

the method of computational cell analysis opens a new avenue 

for cell analysis and offers a myriad of opportunities and 

capabilities complementary to the existing methods. 

 

Acknowledgements 

Page 7 of 9 Analyst

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



ARTICLE Analyst 

8 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 20xx 

Please do not adjust margins 

Please do not adjust margins 

The authors acknowledge the technical support of the staff of 

the San Diego Nanotechnology Infrastructure (SDNI), which is 

part of the National Nanotechnology Coordinated 

Infrastructure (NNCI).  Research reported in this publication 

was supported by the National Institute of General Medical 

Sciences of the National Institutes of Health under Award 

Number R43GM109241. The content is solely the 

responsibility of the authors and does not necessarily 

represent the official views of the National Institutes of Health. 

References 

1 Godin, Jessica, et al. "Microfluidics and photonics for Bio-

System-on-a-Chip: A review of advancements in technology 
towards a microfluidic flow cytometry chip." Journal of 

biophotonics 1.5 (2008): 355.  

2 Pang, Lin, et al. "Optofluidic devices and applications in 
photonics, sensing and imaging." Lab on a Chip 12.19 (2012): 
3543-3551. 

3 Piorek, Brian D., et al. "Free-surface microfluidic control of 
surface-enhanced Raman spectroscopy for the optimized 
detection of airborne molecules." Proceedings of the 

National Academy of Sciences 104.48 (2007): 18898-18901.  
4 Wu, Jigang, Guoan Zheng, and Lap Man Lee. "Optical imaging 

techniques in microfluidics and their applications." Lab on a 

Chip 12.19 (2012): 3566-3575.  
5 Monat, C., P. Domachuk, and B. J. Eggleton. "Integrated 

optofluidics: A new river of light." Nature photonics 1.2 

(2007): 106-114. 
6 Godin, Jessica, et al. "Microfluidics and photonics for Bio-

System-on-a-Chip: A review of advancements in technology 

towards a microfluidic flow cytometry chip." Journal of 

biophotonics 1.5 (2008): 355. 
7 Vezenov, Dmitri V., et al. "Integrated fluorescent light source 

for optofluidic applications." Applied Physics Letters 86.4 
(2005): 41104-41104. 

8 Brown, Michael, and Carl Wittwer. "Flow cytometry: 

principles and clinical applications in hematology." Clinical 

chemistry 46.8 (2000): 1221-1229. 
9 Xi, Biao, et al. "The application of cell-based label-free 

technology in drug discovery." Biotechnology journal 3.4 
(2008): 484-495. 

10 Chin, Curtis D., Vincent Linder, and Samuel K. Sia. "Lab-on-a-

chip devices for global health: Past studies and future 
opportunities." Lab on a Chip 7.1 (2007): 41-57. 

11 Whitesides, George M. "The origins and the future of 

microfluidics." Nature 442.7101 (2006): 368-373. 
12 Cho, Sung Hwan, et al. "Review article: recent advancements 

in optofluidic flow cytometer." Biomicrofluidics 4.4 (2010): 

043001.  
13 Chin, Curtis D., et al. "Microfluidics-based diagnostics of 

infectious diseases in the developing world." Nature 

medicine 17.8 (2011): 1015-1019. 
14 Fu, Yingli, and Dara L. Kraitchman. "Stem cell labeling for 

noninvasive delivery and tracking in cardiovascular 

regenerative therapy." (2010): 1149-1160. 
15 Gholamrezanezhad, Ali, et al. "Cytotoxicity of 111In-oxine on 

mesenchymal stem cells: a time-dependent adverse effect." 

Nuclear medicine communications 30.3 (2009): 210-216. 
16 Gossett, Daniel R., et al. "Label-free cell separation and 

sorting in microfluidic systems." Analytical and bioanalytical 

chemistry 397.8 (2010): 3249-3267. 
17 Cheng, Xuanhong, et al. "A microfluidic device for practical 

label-free CD4+ T cell counting of HIV-infected subjects." Lab 

on a Chip 7.2 (2007): 170-178. 

18 Blasi, Thomas, et al. "Label-free cell cycle analysis for high-

throughput imaging flow cytometry." Nature 

communications 7 (2016). 
19 Shan, Xiaonan, Kyle J. Foley, and Nongjian Tao. "A label-free 

optical detection method for biosensors and microfluidics." 
Applied Physics Letters 92.13 (2008): 133901. 

20 Vollmer, Frank, and Stephen Arnold. "Whispering-gallery-

mode biosensing: label-free detection down to single 
molecules." Nature methods 5.7 (2008): 591-596.  

21 Cheung, Karen, Shady Gawad, and Philippe Renaud. 

"Impedance spectroscopy flow cytometry: on-chip label-free 
cell differentiation." Cytometry Part A 65.2 (2005): 124-132. 

22 Morrill, Gene A., Adele B. Kostellow, and Raj K. Gupta. 

"Computational analysis of the extracellular domain of the 
Ca 2+-sensing receptor: An alternate model for the Ca 2+ 
sensing region." Biochemical and biophysical research 

communications 459.1 (2015): 36-41. 
23 Rooney, Katherine E. "Computational modeling of 

extracellular dopamine kinetics suggests low probability of 

neurotransmitter release." Synapse 69.11 (2015): 515-525. 
24 Shtengel, Gleb, et al. "Interferometric fluorescent super-

resolution microscopy resolves 3D cellular ultrastructure." 

Proceedings of the National Academy of Sciences 106.9 
(2009): 3125-3130. 

25 Mortensen, Kim I., et al. "Optimized localization analysis for 

single-molecule tracking and super-resolution microscopy." 
nature methods 7.5 (2010): 377-381. 

26 Holden, Seamus J., Stephan Uphoff, and Achillefs N. 

Kapanidis. "DAOSTORM: an algorithm for high-density super-
resolution microscopy." Nature methods 8.4 (2011): 279-
280. 

27 Huang, Bo, et al. "Three-dimensional super-resolution 
imaging by stochastic optical reconstruction microscopy." 
Science 319.5864 (2008): 810-813. 

28 Huang, Bo, Mark Bates, and Xiaowei Zhuang. "Super 
resolution fluorescence microscopy." Annual review of 

biochemistry 78 (2009): 993. 

29 Han, Yuanyuan, and Yu-Hwa Lo. "Imaging Cells in Flow 
Cytometer Using Spatial-Temporal Transformation." 
Scientific reports 5 (2015).  

30 Di Carlo, Dino, et al. "Continuous inertial focusing, ordering, 
and separation of particles in microchannels." Proceedings of 

the National Academy of Sciences 104.48 (2007): 18892-

18897. 
31 Di Carlo, Dino, et al. "Equilibrium separation and filtration of 

particles using differential inertial focusing." Analytical 

chemistry 80.6 (2008): 2204-2211. 
32 Oakey, John, et al. "Particle focusing in staged inertial 

microfluidic devices for flow cytometry." Analytical chemistry 

82.9 (2010): 3862-3867. 
33 Bhagat, Ali Asgar S., Sathyakumar S. Kuntaegowdanahalli, 

and Ian Papautsky. "Enhanced particle filtration in straight 

microchannels using shear-modulated inertial migration." 
Physics of Fluids (1994-present) 20.10 (2008): 101702. 

34 Yun, Hoyoung, et al. "Simultaneous counting of two subsets 

of leukocytes using fluorescent silica nanoparticles in a 
sheathless microchip flow cytometer." Lab on a Chip 10.23 
(2010): 3243-3254. 

35 Hur, Soojung Claire, Henry Tat Kwong Tse, and Dino Di Carlo. 
"Sheathless inertial cell ordering for extreme throughput 
flow cytometry." Lab on a Chip 10.3 (2010): 274-280.  

36 Hur, Soojung Claire, et al. "Deformability-based cell 
classification and enrichment using inertial microfluidics." 
Lab on a Chip 11.5 (2011): 912-920. 

37 Mortazavi, Saeed, and Grétar Tryggvason. "A numerical 
study of the motion of drops in Poiseuille flow. Part 1. Lateral 
migration of one drop." Journal of Fluid Mechanics 411 

(2000): 325-350. 

Page 8 of 9Analyst

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Journal Name  ARTICLE 

This journal is © The Royal Society of Chemistry 20xx J. Name., 2013, 00, 1-3 | 9  

Please do not adjust margins 

Please do not adjust margins 

38 Pamme, Nicole. "Continuous flow separations in microfluidic 

devices." Lab on a Chip 7.12 (2007): 1644-1659. 
39 Godin, Jessica, Victor Lien, and Yu-Hwa Lo. "Demonstration 

of two-dimensional fluidic lens for integration into 

microfluidic flow cytometers." Applied Physics Letters 89.6 
(2006): 061106. 

40 Wu, Tsung-Feng, Zhe Mei, and Yu-Hwa Lo. "Optofluidic 

device for label-free cell classification from whole blood." 
Lab on a Chip 12.19 (2012): 3791-3797. 

41 Wu, Tsung-Feng, Zhe Mei, and Yu-Hwa Lo. "Label-free 

optofluidic cell classifier utilizing support vector machines." 
Sensors and Actuators B: Chemical 186 (2013): 327-332. 

42 Wu, Tsung-Feng, et al. "Rapid white blood cell detection for 

peritonitis diagnosis." SPIE MOEMS-MEMS. International 
Society for Optics and Photonics, 2013. 

43 Wu, Tsung-Feng, et al. "Lab-on-a-Chip Device and System for 

Point-of-Care Applications." Handbook of Photonics for 

Biomedical Engineering. Springer Netherlands, 2013. 1-30. 
44 Wu, Tsung-Feng, et al. "An optical-coding method to 

measure particle distribution in microfluidic devices." AIP 

advances 1.2 (2011): 022155.  
45 Mei, Zhe, et al. "Applying an optical space-time coding 

method to enhance light scattering signals in microfluidic 
devices." Biomicrofluidics 5.3 (2011): 034116. 

46 Deinard, Amos S., et al. "Studies on the neutropenia of 

cancer chemotherapy." Cancer 33.5 (1974): 1210-1218. 
47 Crawford, Jeffrey, et al. "Reduction by granulocyte colony-

stimulating factor of fever and neutropenia induced by 

chemotherapy in patients with small-cell lung cancer." New 

England Journal of Medicine 325.3 (1991): 164-170. 
48 Martinez, Andres W., et al. "Diagnostics for the developing 

world: microfluidic paper-based analytical devices." 
Analytical chemistry 82.1 (2009): 3-10. 

49 Mao, Xiaole, and Tony Jun Huang. "Microfluidic diagnostics 

for the developing world." Lab on a Chip 12.8 (2012): 1412-
1416. 

50 Martinez, Andres W., et al. "Diagnostics for the developing 

world: microfluidic paper-based analytical devices." 
Analytical chemistry 82.1 (2009): 3-10. 

51 Yager, Paul, et al. "Microfluidic diagnostic technologies for 

global public health." Nature 442.7101 (2006): 412-418. 
52 Klabunde, Thomas, and Gerhard Hessler. "Drug design 

strategies for targeting G-protein-coupled receptors." 

Chembiochem 3.10 (2002): 928-944. 
53 Fredriksson, Robert, et al. "The G-protein-coupled receptors 

in the human genome form five main families. Phylogenetic 

analysis, paralogon groups, and fingerprints." Molecular 

pharmacology 63.6 (2003): 1256-1272. 
54 Sullivan, Gary J., and Richard L. Baker. "Efficient quadtree 

coding of images and video." Image Processing, IEEE 

Transactions on 3.3 (1994): 327-331. 
55 Dransfield, Ian, S. Craig Stocks, and C. Haslett. "Regulation of 

cell adhesion molecule expression and function associated 
with neutrophil apoptosis." Blood 85.11 (1995): 3264-3273.  

56 Arnal, Isabelle, and Richard H. Wade. "How does taxol 

stabilize microtubules?." Current Biology 5.8 (1995): 900-
908. 

57 Kim, Kyung Sook, et al. "AFM-detected apoptotic changes in 

morphology and biophysical property caused by paclitaxel in 
Ishikawa and HeLa cells." PloS one 7.1 (2012): e30066. 

Page 9 of 9 Analyst

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


