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Abstract 

There is increasing public pressure to reduce animal testing and yet maintain public safety from 

exposure to chemicals either in the environment we live in, the food that we eat or the drugs that 

we take to treat illnesses.  Computational approaches offer the attraction of being both fast and 

cheap to run being able to process thousands of chemical structures in a few minutes. As a result 

these approaches have seen an increase in interest and effort over the last decade most notably in 

the pharmaceutical industry where costs for new drug development is soaring and the failure rate 

for safety reasons is high.  Many applications and approaches have been published covering a 

wide variety of different human and environmental health issues.  As with all new technology, 

there is a tendency for these approaches to be hyped up and claims of reliability and performance 

may be exaggerated.  So just how good are these computational methods?  This review is 

intended to provide an overview of the state of the art in computational toxicology and to 

illustrate where some of the limitations of these approaches exist so that these valuable tools are 

applied and interpreted correctly.  

Introduction  

The field of computational toxicology has seen an increase in both interest and effort in recent 

years. This has been as a consequence of greater accessibility to toxicological databases, a drive 

to reduce animal testing wherever possible and the considerable practical/ economic pressures in 
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industries and agencies charged to test the safety of novel molecules in a more rapid and cost 

effective way. The specific expectations and requirements of computational toxicology tools and 

approaches are likely to be distinct across different applications. 

In the early pharmaceutical discovery process, for example, computational toxicology offers an 

opportunity to quickly identify problematic chemical space, potentially contributing to reducing 

the well-recognized high cost of discovering and developing new drugs [1]. Early guidance from 

computational predictions can be used to prioritize testing and to support the selection of 

emerging drug candidates with the best profile with regards to toxicity hazard. Such toxicity 

hazard could be driven by chemical property space, general promiscuity to secondary 

pharmacology targets or specific interactions with off-target molecules, all molecular features 

which are amenable to computational predictive models. As the selected candidate molecules 

progress through discovery and into preclinical development they will be subjected to more 

exhaustive safety characterization regimen of in vitro and in vivo assessments and therefore 

computational toxicology applications of this type have most utility with a high positive 

predictive power but the user may tolerate some false negatives (as false negative compounds 

will hopefully be caught by “wet-lab” testing).  

The situation is different when prioritization the testing of chemicals with occupational or 

environmental exposure for potential toxicity.  Comprehensive toxicity testing is both time 

consuming and expensive and as a result only a small fraction of synthetic compounds with the 

potential to cause toxicity have been evaluated. For example, in the USA the Environmental 

Protection Agency (EPA) maintains a database of the health effects of environmental 

contaminants; the Integrated Risk Information System (IRIS, see http://www.epa.gov/iris/).  The 

EPA has also a stated commitment to reduce the backlog of untested compounds in the Toxic 
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Substances Control Act (TSCA) inventory (for more details see: 

http://www.epa.gov/oppt/existingchemicals/pubs/tscainventory/)  and for this application, and 

others, is investing in computational toxicology to provide more efficient ways to assess 

chemicals for human health effects [2]. Where the goal is to quickly prioritize compounds for 

more exhaustive toxicological assessment, computational toxicology could be used to help 

prioritize compounds which should be tested first. In this situation the ideal application will have 

a low false negative rate. However, current safety testing protocols are very slow, and the 

effective backlog is decades long. Under these circumstances if one develops a computational 

prioritization approach developed today with a low false positive rate, would focus on those 

chemicals of highest priority allowing time for a new a potentially more sensitive prioritization 

approach to be developed.   

There are also distinct considerations when computational toxicology is being introduced into a 

regulatory framework. A notable example in this regard is effort made by the multinational 

International Conference on Harmonisation of Technical Requirements for Registration of 

Pharmaceuticals for Human Use (ICH), recognizing that in silico methods can essentially rule 

out mutagenic potential of pharmaceutical impurities. ICH has developed a particular guideline, 

M7, to harmonize the application of Quantitative Structure Activity Relationship modeling to 

predict the outcome of a bacterial mutagenicity assay to support hazard assessment; 

(http://www.ich.org/products/guidelines/multidisciplinary/article/multidisciplinary-

guidelines.html).  In certain cases the implemented M7 guideline can avoid having to test 

impurities or degradants for their ability to cause bacterial mutation. Analysis of data across 

multiple pharmaceutical companies has confirmed that structural assessment, supported by 

expert knowledge databases is sufficient to conclude that an impurity is non-mutagenic, with a 
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Negative Predictive Value of approaching 99% when the output of such expert systems is vetted 

by a human expert [3]. The ICH M7 takes a balanced approach to the application of 

computational toxicology in this space, favoring a low false negative rate through the application 

of two complementary methods (structure based and statistical) and the vetting of the predictions 

by a subject matter expert. 

In this review we have attempt to summarize the current state of computational toxicology, 

including 

• representative sources of public domain and commercial toxicology data, examples of the 

application of computational methods in hazard identification (genotoxicity, 

carcinogenicity, reproductive and developmental toxicity, skin and respiratory 

sensitization, hepatotoxicity, mitochondrial dysfunction), 

• a consideration of computational modeling in predicting compound absorption, 

distribution and clearance 

• a recognition of the limitations of computational toxicology 

• some examples of consortia activity for data sharing and methodology development in 

the field of computational toxicology. 

Data Sources for In Silico Modeling 

A fundamental requirement for developing any computational approach is access to data on 

which to build the model.  Ideally, this data set should contain an adequate number of 

compounds that represent the universe of possible scenarios to be modeled.  Predictive models 

tend to work best when the effect being predicted is elicited through a single, common 
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mechanism.  For toxicology endpoints, this typically means that the biological response or 

toxicity is caused by a discrete molecular interaction, for example, inhibition of a protein or 

enzyme such as the voltage-gated sodium channel, Nav1.5, and the relative strength of the 

molecular effect of each chemical in the data set is known.  In practice, this is often unobtainable 

as depending on the measurement, the molecular interactions of even closely related chemical 

structures maybe different.  Similarly, the observed phenotypes in toxicity studies may well 

result from multiple, different mechanisms and so grouping chemicals by their molecular 

mechanisms of action is often challenging.   

Public Sources for Toxicology Data 

Under these circumstances, it is often necessary to have large numbers of chemicals in the hope 

that this will allow the modeling algorithm to “learn” the important features needed to elicit a 

response from having sufficient examples of similar structures.  Unfortunately, there is no single 

source for toxicology data.  However, a number of public data sources exist that can be used to 

retrieve and build data sets for modeling purposes.  These include ToxNet 

(http://toxnet.nlm.nih.gov/index.html) maintained by the US National Library of Medicine and as 

the name suggests, this is a number of data sources assembled under a single user interface.  It is 

searchable by chemical structure using the ChemIDPlus function which facilitates the searching 

of all sources using either exact, substructure or structural similarity.  Other useful resources for 

accessing toxicology data include the US Environmental Protection Agency’s National Center 

for Computational Toxicology ToxCast Initiative (http://epa.gov/ncct/index.html) which includes 

links to multiple sources for chemical structures, in vitro assay profiles and in vivo toxicology 

studies as well as the ACToR database.   The US Centers for Disease Control and NIOSH 

maintain a potentially useful resource in the Registry of Toxic Effects of Chemical Substances 
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(RTECS) (http://www.cdc.gov/niosh/rtecs/default.html) however access to this data source 

requires the user to have a license for the database although it can be searched via the TOXNET 

interface. 

More focused data sets can be found in the public domain and one good example of this is the 

Open TG-GATEs database (http://toxico.nibio.go.jp/english/index.html) [4] that contains both 

preclinical and transcriptional profile data on a data set of chemicals, primarily drugs, that have 

been linked to causing liver and/or kidney injury in humans.  On a similar vein, the US Food and 

Drug Administration are now making the Summary Basis of Approval documents freely 

available via their website (http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm).  

These documents contain summaries of the clinical and preclinical data supplied by the company 

sponsor at the time of filing the New Drug Application (NDA), but require extensive data 

extraction and reformatting in order to be amenable to modeling techniques.   Similarly, the FDA 

makes their Adverse Event Reporting System database (FAERS) ,that contains adverse event and 

medication error reports submitted to FDA, freely available to the public via their website but 

this requires the user to be familiar with the creation of relational databases in order to search the 

data effectively, 

(http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Surveillance/AdverseDr

ugEffects/).  However, care should be taken as there is no certainty that the adverse event was 

actually due to the product it is being associated with and similarly not all adverse events are 

reported to the FDA.  Factors such as publicity about an event and the length of time a product is 

on the market can influence whether an adverse event is reported.  It should not be used to 

calculate the frequency of a particular event.  
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Sources such as PubChem (https://pubchem.ncbi.nlm.nih.gov/) and ChemBL 

(https://www.ebi.ac.uk/chembl/) [5] can be useful for compiling data sets against discrete 

molecular targets such as the hERG channel linked with causing QTc prolongation or the 

serotonin receptor type 2b (5HT2b) where agonism of this receptor has been linked to causing 

cardiac valvulopathy [6]. 

Commercial Toxicology Data Sources 

Besides the public domain sources, there are commercial databases available that can be used for 

model building. These commercial sources offer the attraction of having some added degree of 

curation on the data contained in the database. Data quality is an important consideration for any 

model development as the introduction of noise through the incorrect annotation of activity can 

lead to a decrease in model performance.  Some examples of commercial sources include the 

Vitic database from Lhasa Limited [7] that originated from a consortia effort managed by the 

Health and Environmental Sciences Institute (HESI), part of the International Life Science 

Institute (ILSI).   Vitic is searchable by chemical structure as well as by toxicological effects that 

include genotoxicity, carcinogenicity, hepatotoxicity, HERG, and sensitization. It has also been 

used as the main repository for several cross-industry collaborations that share data on the 

toxicity of various chemicals most prominent of which is the Innovative Medicines Initiative 

(IMI) eTox project. 

Other example commercial data sources include but are not limited to ToxWiz from Cambridge 

Cell Networks (http://camcellnet.com/products/toxwiz/) that contains a database of relationships 

between chemicals, proteins, gene and pathologies. In addition to the database, ToxWiz also 

incorporates predictive models as part of the package.  PharmaPendium from Elsevier is another 

example that offers access to both preclinical and clinical safety data by incorporating Food and 
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Drug Administration (FDA) and European Medicines Agency (EMA) approval summary 

documents on new drug applications as well as the FAERS database 

(https://www.pharmapendium.com). 

It should be noted that, irrespective of the origin of a particular data source, both in vivo and in 

vitro data are subject to numerous sources of errors and noise.  These imperfections in the data 

used to train and evaluate models are often one of the reasons for the lack of predictive power 

observed with computational approaches. 

 

Approaches for Predicting Toxicity 

Hazard Identification 

Most in silico methods for toxicity prediction have focused on hazard identification, for example 

does a compound have features or properties that have been associated with liver injury.  

However the majority of these computational approaches do not tell you the dose at which these 

effects are likely to happen.   Models exist for a variety of human health endpoints but depending 

on the endpoint being predicted the accuracy of these can vary dramatically. Here we discuss 

briefly the models and approaches available for predicting genotoxicity, carcinogenicity, skin 

sensitization, reproductive and developmental toxicity and hepatotoxicity. 

Genotoxicity  

The in silico prediction of genotoxicity has been a major research focus since the 

publication of structural alerts for DNA reactivity from Ashby and Tennant [8] over 3 decades 

ago.  Access to large public domain data sets [9-12] have helped to stimulate progress and have 
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resulted in a fair degree of success in the prediction of  genotoxicity and in particular, the 

prediction of the Ames salmonella assay for mutagenicity [13, 14]. 

There are many commercial systems available and all have their strengths and 

weaknesses.  Commercially available software packages such as Derek for Windows (DfW) [15] 

now called Derek Nexus, MC4PC [16], and Leadscope Model Applier (LSMA) [17] are now 

commonly used within the pharmaceutical industry for the prediction of genotoxicity and other 

toxicological endpoints.  Other freely available systems like Toxtree [18] are also being 

evaluated for its usefulness.  Their comparative performances have been extensively reviewed 

and published [19, 20] but it is clear that no single system performs significantly better than any 

of the others.   

The comparison of systems is heavily dependent on the source of the data being used to 

evaluate a system’s performance, for example, a public domain data or a set of proprietary 

pharmaceutical-like compounds.  The overall concordance of these tools range between 70% and 

85% and it is worth noting that these values are close to the inter- and intra-laboratory 

reproducibility of the Ames assay, reported as 87% [21].  However, a system’s sensitivity i.e. its 

ability to accurately predict an Ames positive compound, can vary much more dramatically from 

up to 85% for public domain sets to just 17% for some proprietary data sets [19].   

This variability in performance most likely results from the fact that most software 

applications are trained using only the public data sets which tend to be industrial and 

environmental chemicals.  Most pharmaceutical-like compounds, i.e. the active pharmaceutical 

ingredients in drug products, tend not to contain the classical DNA-reactive functional groups 

that are a common cause of genotoxicity.  It is possible that these pharmaceutical compounds 
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undergo rare or unusual metabolic activation and hence are not obviously reactive in of 

themselves, or they elicit a positive response in the Ames assay through non-reactive 

mechanisms such as intercalation [22].  It should also be noted that the ratio of positive to 

negative compounds are significantly lower with the pharmaceutical-like data sets where 

typically only 6-10% are shown to be mutagenic in the Ames assay compared to 40-60% in the 

case of some public domain sets and so maintaining an appropriate balance between correct 

positives and false positives becomes a key challenge for any computational tool. 

It is worth noting that although models exist for the prediction of chromosomal 

aberrations such as clastogenicity and anugenicity, these systems are generally less accurate and 

are not commonly used in industry settings. 

As mentioned in the introduction, computational prediction of mutagenicity has now 

matured to the  extent that it is been incorporated within a formal regulatory guidance document 

for the first time in the ICH M7 guidance on the “Assessment and control of DNA reactive 

(mutagenic) impurities in pharmaceuticals to limit potential carcinogenic risk” 

(http://www.ich.org/products/guidelines/multidisciplinary/article/multidisciplinary-

guidelines.html). 

Carcinogenicity 

Various methods for the structure-based prediction of carcinogenicity, as with 

genotoxicity, have been in developed over the last several decades including some commercial 

applications such as Derek, Case Ultra, Leadscope Model Applier, ToxTree and OncoLogic.  

However, the degree of success of these methods have been more limited in the prediction of 

carcinogens mainly due to the fact that less data is available in the public domain and the 
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complexity of the endpoint itself.  Carcinogenicity can occur through both genotoxic and non-

genotoxic mechanisms.  Most structure-based approaches are able to more accurately predict the 

former rather than the latter due to the successes of being able to predict DNA-reactive 

compounds.  However, some systems such Derek contain structural alerts specifically targeting 

certain classes of non-genotoxic carcinogens. Other predictive packages such as Case Ultra 

however, do not always differentiate these two classes in their predictions. 

There have been some comparisons of the performance of computational models for 

carcinogenicity most notable of which were the two prospective exercises conducted by the 

National Toxicology Program (NTP) in the mid to late 1990’s.  In these exercises the NTP 

invited interested parties and developers of models to predict and publish them on a set of 

chemicals that were scheduled to be tested by them in the gold standard two year rodent 

bioassay.  Once the tests had been completed the in vivo results were compared to the 

predictions.  The first set of 65 chemicals were reasonably well predicted with computational 

models achieving between 50-65% accuracy.  However, the second set consisting of only 30 

chemicals were not predicted so well by the in silico systems and tended to over predict non-

carcinogens as carcinogenic [23].   

The evaluation of computational models depends heavily on both the size and 

composition of the data sets being used for the comparison.  Unfortunately, the cost and time 

required to conduct carcinogenicity tests inevitably means that the size of any evaluation set is 

small and so these exercises can be somewhat misleading.  Despite this limitation, efforts to 

predict carcinogenicity through structure-based approaches continue to be developed with some 

recent examples from Fjodorova et al. [24]and Kar et al. [25]. 
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Reproductive and Developmental Toxicity 

Developmental and reproductive toxicity (DART) occurs through many different 

mechanisms and involves a number of different target sites, making it very difficult to predict 

this end point [26]. In silico prediction of reproductive and developmental toxicity have been 

limited by the quantity and quality of data available in the public domain for model development.  

Most of the published QSAR development has been done through collaborative projects with the 

computational toxicology group within the US Food and Drug Administration using data 

collected from preclinical and clinical data submitted by pharmaceutical companies. 

Matthews et al. [27] claim to be able to predict male and female reproductive toxicity, 

fetal dysmorphogenesis, functional toxicity, mortality, growth, and newborn behavioral toxicity 

with high specificity (i.e. the number of correctly predicted negatives) and positive predictive 

value (i.e. the number of correct positive predictions when compared to the total number of 

positive predictions) of greater than 80%. However the sensitivity (i.e. the number of correctly 

identified positive compounds) was often less than 50%.  These results were obtained through a 

10-fold cross-validation exercise where 10% of the data set is withheld for testing and a model 

built on the remaining 90%.  Unlike the NTP carcinogenicity exercises, to date there has been no 

published prospective tests of performance of these models and so the accuracy against a set of 

novel compounds cannot be ascertained.  These published models are available in commercial 

packages such as Case Ultra and Leadscope Model Applier.  In addition, Derek Nexus also 

contains some structural alerts for DART effects although these alerts and their respective 

performance have not been formally published [28]. 

Wu et al. [26] recently published an empirically-based decision tree for determining 

whether or not a chemical has receptor-binding properties and structural features that are 
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consistent with chemical structures known to have toxicity for DART end points.  As with the 

above models and structural alerts, the performance of this decision tree has not been 

independently assessed and so its performance for truly novel chemical series that have not been 

previously tested may well be limited.  

Skin Sensitization 

As with other key toxicity endpoints, structural alerts for skin sensitization have been 

developed in response to changes in the regulatory environment, most notably through changes 

in legislation in Europe banning the testing of cosmetic ingredients in animal models. Skin 

sensitization is primarily driven through modification of proteins usually through covalent 

binding forming haptens that then trigger the immune system and generate an inflammatory 

response [29].  This requirement for chemical reactivity makes the prediction of skin sensitizers 

more feasible and, as with mutagenicity, there has been substantial progress in this area.  

Structural alerts for skin sensitization have been implemented in commercial systems such as 

Derek Nexus and are also implemented in ToxTree.  Similarly, numerous QSAR methods have 

been published looking at the prediction of allergic contact dermatitis (ACD) based on specific 

chemical classes or on non-congeneric data sets.  The relative performances of these approaches 

have not been reviewed so it is difficult to make comparisons on the relative merits of one 

approach over another.   

The manifestation of ACD is moderated by the ability of the chemical to penetrate viable 

epidermis and so while a chemical may possess the intrinsic capability to cause skin sensitization 

the inability of the chemical to penetrate the skin may result in the apparent lack of toxicity.   
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Respiratory Sensitization  

There are currently no validated or widely accepted models for identifying and 

characterizing the potential of a chemical to induce respiratory sensitization yet this may lead to 

severely incapacitated human health [30].  There is a great deal of uncertainty about the 

immunological mechanisms through which respiratory sensitization may be acquired. Despite 

the lack of a universally accepted test method, REACH regulations and others still require the 

assessment of respiratory sensitization as part of a risk assessment.  The REACH guidance 

describes an integrated evaluation strategy that includes a consideration of well-established 

structural alerts and existing data (whether it be derived from read-across, (Quantitative) 

Structure Activity Relationships ((Q)SAR), in vivo studies etc.). 

Efforts to model respiratory sensitization in silico have been variable and to some extent 

mirror those for skin sensitization itself. Structural alerts have been developed notably by Aguis 

et al. [31, 32] and more recently by Enoch et al. [33].  Typical alerting groups have been encoded 

into the Derek Nexus knowledge based expert system developed by LHASA Ltd.  Other efforts 

have been focused on trying to establish statistical QSAR models; examples include those first 

derived by the developers of MCASE [34], Jarvis et al. [35] and more recently by Warne et al. 

[36] who investigated the use of pattern recognition methods to discriminate between skin and 

respiratory sensitizers. 

 As with other toxicological endpoints, there has been no published comparison of these 

methods for prediction and so it is difficult to draw conclusions on the relative merits and 

accuracy of the models. 
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Hepatotoxicity  

Drug-induced liver injury (DILI) is a major issue of concern in the pharmaceutical 

industry and has led to the withdrawal of a significant number of marketed drugs [37, 38]. 

Adverse effects can range from hepatic enzyme elevations to liver failure [39, 40] and are often 

difficult to predict in the preclinical stages. For the pharmaceutical industry hepatotoxicity 

discovered late in development or after the launch of the drug, leading to its withdrawal, has 

huge financial implications [41].  As a result of this interest, numerous in silico approaches for 

predicting hepatotoxicity have been developed.  These range from structural alerts associated 

with causing DILI [42, 43] to QSAR methods [44].  Most of these methods claim to have a 

sensitivity and specificity between 65-70% depending on the method and test set.  However, no 

independent evaluation has been published so true head to head performances are difficult to 

ascertain.   

Clearance and metabolism of xenobiotics (foreign compounds, including drugs) into 

hydrophilic metabolites to facilitate their excretion is one of the liver’s main physiological roles.  

As such, a postulated mechanism of DILI involves the generation of reactive metabolites that 

covalently bind to proteins and subsequently cause cellular damage or stimulate the immune 

system.  This mechanism may account for some of the success of structure-based methods for 

predicting DILI.  However, as with DART and carcinogenicity, the mechanisms involved in 

DILI are diverse and often complex making the accurate prediction of this using QSAR 

approaches challenging.  Similarly, factors and properties that influence exposure at the site of 

injury will undoubtedly have a significant impact in the manifestation of DILI even if the 

chemical possess the intrinsic capability to cause the injury. 
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Mitochondrial Dysfunction 

Cells derive their energy from adenosine triphosphate (ATP), a ubiquitous chemical that 

can be synthesized in the cytoplasm through glycolysis but is predominantly generated in the 

mitochondria through oxidative phosphorylation. Oxidative phosphorylation is a process by 

which the bond energy in nicotinamide adenine dinucleotide is extracted to create a proton-based 

electrochemical gradient that drives the phosphorylation of adenosine diphosphate (ADP) by 

ATP synthase.  The disruption of this critical mitochondrial function is proposed to have severe 

implications for organ health, but such a causal hypothesis is challenging to demonstrate, notably 

because organ toxicity is a complex and multifactorial process [45].  Mitochondrial uncoupling 

mechanisms are common toxic pathways and a correlation of outcome with pKa and clogP for 

phenolic mitochondrial uncouplers has been demonstrated.  In addition, for the benzoic acid 

class of NSAID, a correlation of the HOMO LUMO gap with cytotoxicity was also noted, 

probably reflective of the ease of oxidation of the diphenylamine template of many compounds 

in this class. There is no doubt that there is a link between the physicochemical properties of a 

compound and the risk of in vivo toxicological outcomes.  

Off-target pharmacology 

Pharmacological interactions with specific proteins been linked to causing a variety of 

adverse effects in humans.  For example, the human ether-a-go-go-Related Gene (hERG) 

channel is involved in the repolarizing IKr current in the cardiac action potential and so inhibition 

of this important ion channel can result in a prolonged QT interval which has been linked to 

causing potentially fatal cardiac arrhythmias.  The structural properties associated with hERG 

inhibition have been extensively studies and often include a basic center and one or more 

lipophilic chains. 
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However, there are numerous other examples of pharmacological interactions that have 

been associated to adverse events where the structural requirements are not clearly understood.  

These include but are not limited to the agonism of 5HT2b associated with cardiac valvulopathy 

[46],   inhibition of VEGF signaling pathways has been associated with causing hypertension etc.  

For a more extensive review of pharmacology and the associated effects of a variety of proteins 

please refer to http://www.iuphar-db.org/index.jsp. 

In addition to discrete interactions, it has been shown that promiscuity across multiple 

pharmacological targets at a concentration of 10µM can lead to an increased likelihood of 

observing toxicity in vivo at low exposures [47, 48]. In addition, interactions with multiple ion 

channels and other CNS protein targets can lead to an increased risk of seizures in preclinical 

studies.  Increased target promiscuity has been associated with higher lipophilicity (LogP) and 

low polar surface area as well as pKa [47].  Acidic molecules tend to interact with different 

classes of receptors such as cyclooxygenases and the nuclear hormone receptors such the PPARs 

whereas basic molecules tend to interact with the aminergic G-protein coupled receptors. 

Endoplasmic Recticulum (ER) Stress 

The endoplasmic reticulum (ER) is a cytoplasmic organelle involved in protein folding, 

maturation and secretion, cholesterol and lipid biosynthesis, as well as gluconeogenesis, and it is 

the main calcium storage compartment in the cell.  Disturbances in redox regulation, calcium 

regulation, glucose deprivation, and viral infection or the over-expression of proteins can lead to 

endoplasmic reticulum stress (ER stress), a state in which the folding of proteins slows, leading 

to an increase in unfolded proteins. This stress is emerging as a potential cause of damage in 

hypoxia/ischemia, insulin resistance, and other disorders has been implicated in many diverse 

diseases and has also been linked to pharmacologically-induced toxicity [49].  
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Key structural properties that have been shown to influence the induction of ER stress are 

the high receptor promiscuity, high lipophilicity, low polar surface area and low passive 

permeability which can be estimated computationally (see sections herein).   

Reactive metabolites 

Many idiosyncratic adverse effects of drugs have been associated with the formation of 

reactive metabolites.  The precise mechanisms of these adverse effects remain unclear; however, 

it is believed that the majority of these reactions are caused by immunogenic conjugates formed 

from the reaction of an electrophilic reactive metabolite of a chemical with cellular proteins 

resulting in direct cellular dysfunction or an immune response via the formation of a hapten.  

Structural alerts relating to the potential for generating reactive metabolites have been published 

[50] and could be used in the identification of potential hazards associated with a chemical. 

Phospholipidosis 

Phospholipidosis is a condition primarily characterized by excessive accumulation of 

phospholipids in different cell types, giving the affected cells a finely foamy appearance.  This 

phospholipid storage disorder is characterized by the excessive accumulation of phospholipids 

and the inducing drug in the lysosomes of the affected tissues.  The hallmark feature of 

phospholipidosis is the formation of the characteristic lamellar bodies in cells, which can be 

detected by electron microscopy. In case of alveolar phospholipidosis, foamy macrophages 

accumulate within the alveolar spaces of the lung.  Whether this effect is considered a toxic 

response or an adaptive response remains an unanswered question but in silico approaches to 

predict the likelihood of observing this biological response have been developed and extensively 

published [51]. Most models use a measure of a chemicals amphiphilicity, pKa and lipophilicity 
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(LogP) where amphiphilic, cationic (basic) molecules are more likely to induce 

phospholipidosis.  

Nuclear hormone receptor activity and steroidogenesis 

Chemicals that disrupt the endocrine system have been linked to a wide variety of human 

health effects depending on the pathway that is disrupted.  It has been hypothesized that exposure 

to xenoestrogens and xenoandrogens can lead to an increased prevalence of breast cancer, 

prostate cancer and testicular cancer. In addition to cancer, infertility and loss of sperm count are 

likely associated with the exposure to chemicals the disrupt the endocrine system.  Most of the 

effects of xenoestrogens and xenoandrogens are mediated via estrogen receptors (ER) and 

androgen receptors (AR). Numerous compounds, including environmental chemicals such as 

DDT and phthalates, have been classified as ER and/or AR modulators, acting either as direct 

agonists or antagonists or altering receptor expression. 

Various in silico approaches can be used to predict the endocrine effects of chemicals 

from (Q)SAR methods to pharmacophore and docking [52].  These methods have been used to 

prioritize chemicals for further experimental testing and confirmation. 

Moving towards Risk Assessment 

When assessing safety risk it is necessary to not only identify the potential hazards presented by 

a chemical but also to combine them with the level of exposure where these occur.  Exposure to 

a chemical is usually described in terms of an amount or mass of chemical per unit of body 

weight per day. In pharmaceutical development, the exposure of an individual to chemical is 

often known but in the case of environmental contamination the exposure is often difficult to 

assess.  However, to fully understand and therefore model the relationship between the molecular 
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properties of a chemical and its ability to cause toxicity it is necessary to know the exposure of 

the chemical at the circulating plasma, organ, tissue or cellular level. Recent efforts in the field 

of computational toxicology have begun to focus on this aspect of toxicity prediction.  Here we 

describe some of the molecular properties that can influence the exposure at which toxicity is 

observed and efforts to use these to predict toxicity. 

Absorption 

Toxicology is founded on the basic principle of the dose determines the poison.  Everything 

is potentially toxic and it is the administered dose that defines whether something will elicit 

observable toxic effect.  Therefore the expression of human and mammalian toxicity for the most 

part is predicated on the absorption of the substance into the circulating bloodstream of the 

organism.  Oral bioavailability (F) is a product of fraction absorbed (Fa), fraction escaping gut-

wall elimination (Fg), and fraction escaping hepatic elimination (Fh).  In 1997, Lipinski 

proposed the ‘rule of 5’ as set of guiding principles for designing oral drugs that had good 

absorption from those that were more likely to be poorly absorbed [53].  This rule of 5 comprised 

of 4 rules of MW<500; cLogP<5 number of hydrogen bond donor atoms HBD <5; and the 

number of hydrogen bond acceptor atoms HBA <10.  Chemicals are less likely to have good oral 

absorption if they violate 2 or more of these rules.  However, there are numerous examples of 

drugs that adhere to these criteria yet have bioavailability of <30% of the administered dose, for 

example, acyclovir has a fraction absorbed below 30%.  Similarly, there are examples of drugs 

that do not fulfill these criteria yet are readily absorbed, for example, cyclosporine has a 

bioavailability of up to 60% and thus has reasonable absorption.  Since Lipinski’s rules are based 

on the distribution of these properties across several thousand drugs outliers are expected.  Most 
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drugs rely on passive transport across membrane barriers but active transport mechanisms, both 

uptake and efflux, also exist and these might explain some of these  surprises in bioavailability.  

Trend analysis clearly indicated molecular weight (MW), ionization state, lipophilicity, polar 

descriptors, and free rotatable bonds (RB) influence bioavailability [54]. These trends were due 

to a combination of effects of the properties on Fa and first-pass elimination (Fg and Fh). Higher 

MW significantly impacted Fa, while Fg and Fh decreased with increasing lipophilicity. 

Parabolic trends were observed for bioavailability with polar descriptors. Interestingly, RB has a 

negative effect on all three parameters, leading to its pronounced effect on bioavailability. In 

conclusion, physicochemical properties influence bioavailability with typically opposing effects 

on Fa and first-pass elimination. This analysis may provide a rational judgment on the 

physicochemical space to optimize oral bioavailability. 

Dermal absorption 

Dermal or topical absorption predictive models have been in existence since the early 1990’s 

when Potts & Guy [55] published a simple model that showed a relationship between the 

molecular volume or molecular weight and the lipophilicity of a chemical and its ability to 

permeate the skin.  Although many other models have been proposed and published most rely on 

these key properties to determine the skin permeation rate. 

Ocular and Respiratory exposure 

There are few published reports on the physicochemical properties of compounds that 

influence the likelihood of either ocular or respiratory exposure.  However, it can be speculated 

that the following may play a role in the accidental exposure to chemicals via the ocular or 

respiratory routes:   
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1) Highly volatile chemicals or those with low melting and boiling points will have an 

increased risk of exposure to fumes. 

2) Liquids or solutions of a chemical may result in exposure through splashing. 

3) Chemicals that can exist as fine particles or dust that can be inhaled or get into the eye. 

Once the chemical has come in contact with the surface of the eye or the lungs then the 

properties that influence oral or dermal absorption will most likely have a similar influence on 

the absorption through these alternative routes. 

Distribution 

One important measure of compound distribution that has been demonstrated to have a link 

to toxicity in mammals is the concept of Volume of Distribution, Vd.  This is defined as the 

theoretical volume that the total amount of administered drug would have to occupy (if it were 

uniformly distributed), to provide the same concentration as it currently is in blood plasma.  

Higher values of Vd shows that the drug is more diluted than it should be in the bloodstream 

implying that more of the chemical is distributed into the tissues.  Drugs with high lipophilicity 

(non-polar), not ionized at physiological pH or have low plasma protein binding have higher 

volumes of distribution than drugs which are more polar, more highly ionized or exhibit high 

plasma protein binding.  Vd directly influences the half-life of a compound whereby large Vd 

leads to a longer half-life, i.e. prolongs the duration of exposure.   

Several publications exist that look at the structure-based prediction of volume of distribution 

which could be used in the assessment of hazard and risk given the above relationship of Vd in 

determining the observed LOAEL in a rodent study.  Lombardo et al. [56] looked at human Vdss 

values and determined that the physicochemical properties of LogD and pKa along with a 
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measurement of the plasma protein binding in human plasma would be enough to make a 

reasonable prediction of the human Vdss.  Gombar et al. [57] have also published on using 

QSAR models to predict the VDss and clearance values (CL) using only structural descriptors.  

Other computational models of clearance such as the work by Hsiao et al. [58] have similarly 

shown a strong correlation between clearance and lipophilicity or LogP and polar surface area 

descriptors.  

Plasma Protein Binding 

In general, molecules within in vivo systems are either bound to proteins and lipids in plasma 

(more commonly referred to as plasma protein  binding (PPB)), or to proteins and lipids in 

tissues, or are free (that is, unbound) and diffuse among the aqueous environment of the blood 

and tissues [59].  Among other factors, PPB strongly influences volume of distribution and half-

life of chemicals [60].  In most cases it is the unbound fraction of molecules that interact with 

protein receptors to produce a pharmacological effect on the system.  These pharmacological 

interacts can be considered to be either therapeutic or toxicological effects and are often context 

dependent.  For example, a molecule that produces a pharmacological effect that results in a drop 

of blood pressure can be deemed to have a therapeutic effect in patients suffering from 

hypertension but if administered to patients with hypotension this can be seen as a potential 

adverse effect. 

Chemicals that act via a pharmacological interaction with a protein receptor, such as the 

estrogen receptor, that are also highly bound to plasma proteins will generally require higher 

doses to achieve the required free concentrations to elicit an equivalent response to a chemical 

that has a lower PPB level provided the rate and fraction absorbed for both are equivalent.  

Physicochemical properties such as lipophilicity (LogP) and pKa can have a strong influence on 
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the degree of PPB observed for a given chemical.  In general, molecules with high lipophilicity 

will have a lower fraction unbound and acidic molecules will similarly have a greater degree of 

PPB than basic compounds [61]. 

Clearance (or Metabolism and Excretion) 

Clearance (CL) describes is a proportionality factor that relates the rate of elimination of 

chemical to its concentration in plasma. For first-order elimination, CL has a constant value and 

is measured by the plasma volume completely cleared of the chemical per unit time (e.g. 

mL/min). In nonlinear elimination, CL depends on plasma concentration.  Total clearance 

describes the elimination of a chemical from the body without identifying the mechanisms 

involved in the process but most chemicals are eliminated primarily via the liver and/or kidney.   

Clearance is one of the most important of all pharmacokinetic parameters.  It is affected 

significantly by the binding of chemicals to serum proteins and only the free (unbound) fraction 

of a compound is able to be cleared. The unbound clearance CLu is the clearance with reference 

to unbound clearance in plasma and is independent of the plasma protein binding so only 

depends on chemical structure and properties. In studies published the rate of clearance is 

heavily dependent on the lipophilicity of molecule at pH 7.4 as expressed by the term LogD7.4 

which is ultimately related to the LogP and pKa of a compound [62]. 

Physicicochemical Properties Associated with Toxicity 

Recent studies have looked at the relationship between physicochemical properties and a 

chemical’s ability to cause to in vivo toxicity at low plasma exposures.  For example, Hughes et 

al. [47] reported that compounds with an cLogP value greater than 3 and topological polar 

surface area (TPSA) of less than 75Å2 were 6 times more likely to show toxicity at a measured 
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Cmax less than 10µM than those that had cLogP<3 and TPSA>75 Å2.   Following on from this 

work, Price et al. [63] suggest in a later review that compounds with an increasingly basic center 

were more likely to exhibit off-target pharmacology which can similarly lead to an increased 

likelihood of observing toxicity at low exposures.  They also noted that compounds that were 

both cationic and amphiphilic, i.e. contained both hydrophilic and lipophilic elements, were more 

likely to cause phospholipidosis in vivo.  Manallack et al [64] have also raised the importance of 

pKa in the drug discovery process as this influences aqueous solubility and absorption as well as 

other important factors such as plasma protein binding.  For some properties, such as 

lipophilicity, the nature of the in vivo finding is difficult to predict; however, there is now a 

known quantifiable increase in the chances of a significant finding.   

They go on to highlight the association between a chemicals ability to absorb light with 

wavelength > 290 nM and its ability to cause phototoxicity.  However while it is true that 

compounds with known phototoxicity have a UV absorption and a large extinction coefficient 

but there are similarly many examples exist where chemicals can absorb UV light and do not 

exhibit toxicity in this excited state. 

In summary, changes in key physicochemical properties such as pka, lipophilicity and 

polar surface area can lead to dramatic effects on the toxicity of a chemical, either through 

influencing the ADME properties such as clearance of the compound or its ability to interact 

with a biological system in the form of pharmacological interactions or non-specific protein 

binding events or even both of these.   

Page 25 of 44 Toxicology Research

To
xi

co
lo

gy
R

es
ea

rc
h

A
cc

ep
te

d
M

an
us

cr
ip

t



Repeat Dose or NOAEL Prediction 

Repeat dose toxicology study results for a compound are often summarized as either the 

no observable effect level (NOEL); the no observable adverse effect level (NOAEL); or the 

lowest observed adverse effect level (LOAEL).  Often these levels are expressed in terms of the 

administered dose in milligrams per kilogram of bodyweight. However, more recent work 

looking this type of study data has used the plasma exposure concentrations defined by the 

maximum concentration in micromolar units (µM) of compound in the circulating plasma, Cmax. 

Other plasma concentration values such as the area under the curve (AUC) which measures 

concentrations over a 24 hour time period measured in µM times hour (µM.h) units ; or the 

average concentration observed over a 24 hour period (Cav) in µM which is simply the AUC 

value divided by 24 to define the toxic concentration of a chemical.  Simply plotting the 

administered dose against the observed plasma concentration across sets of chemicals show a 

complex relationship between these two measures with the plasma exposure of compounds 

administered at identical doses varying by over five log units meaning the that relative rates of 

absorption, distribution, metabolism and excretion of a chemical plays a significant role in 

assessing risk.  

Subsequent to the publications on the role of physicochemical properties in toxicity, 

researchers have shown that lower cytotoxic concentrations [65, 66] and and Wang and Greene 

increased off-target pharmacological activity [47, 48] can also lead to an increased likelihood of 

observing toxicity at a Cmax <10µM.   

Sutherland et al. [67] looked at the lowest observed adverse effect level (LOAEL) as 

determined by the identification of the lowest dose that causes adverse histological changes or 

death in rats and assigned the corresponding compound concentration in plasma (i.e., Cmax value) 
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associated with this dose. Small values or concentrations denote compounds with unfavorable 

toxicology outcomes. The authors examined the ability of surrogate properties to predict changes 

in the LOAEL within a given chemical series. While the quantitative agreement between 

surrogates and the observed LOAEL is modest, several surrogates provided useful qualitative 

information: large increases in Volume of Distribution (Vd) or plasma clearance in rats corrected 

for fraction of compound unbound, (CLu) from low-dose rodent PK studies tend to result in 

significantly lower LOAEL values; the converse is observed for large increases in in vitro rat 

primary hepatocyte (RPH) cytolethality or AUC from low oral dose rodent PK studies.  Among 

computed molecular properties, a large increase in molecular weight or heavy atom count tends 

to decrease LOAEL, whereas increasing hydrogen bond donors tends to increase LOAEL. 

Limitations of Computational Models for Toxicology 

The use of any in silico system or model is limited by both the accuracy of the predictions and 

the confidence in those predictions but this accuracy and confidence is context dependent.  For 

example, the Ames test is considered to be the most accurate surrogate assay for genotoxic 

carcinogenicity [68], yet there is little confidence that non-genotoxic carcinogens will display 

activity in this in vitro assay.  In the case of in silico models, accuracy can be generally 

considered a property of the system, and confidence, also known as trust or reliability, assigned 

to individual predictions. The accuracy of in silico toxicity predictions is typically measured 

through internal and external validation of the model using data sets of known experimental 

activity. Internal validation is used during development to show that statistically-derived models 

are robust, but provide little information about their ability to predict the activity of compounds 

outside of the training set [69, 70].  External or prospective validation is the gold standard 
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method for evaluating model performance, but results have proved to be very data set and 

therefore context dependent.  

Computational models in biology and toxicology predominantly rely on the assumption that 

similar molecules will have similar biological effects.  However, the definition of what is similar 

may be very different depending on the biological effect being measured.  When using in silico 

methods or read-across approaches to infer toxicological activity there are two main limitations 

that need careful consideration in the assessment: 

1. Measures of chemical similarity and their appropriate application to the effect being 

predicted; 

2. The reported applicability domain of a prediction and hence the reliability of the 

prediction being made. 

These aspects of computational models have been discussed in more detail in reviews by 

Patlewicz et al. [71] and Modi et al. [72] but the issues are briefly summarized in the following 

sections. 

Limitations of Chemical Similarity and Read-Across 

Chemical similarity is often used in read-across and QSAR models to identify structures 

with known activities that could be used to infer the activity of a molecule with unknown 

activity.   However, this presents the dilemma of how to define what is similar and what is not.  

This problem of defining chemical similarity has been debated for decades and no one method 

has been agreed upon as being optimal as this often use case dependent.   For example, in genetic 

toxicology when a chemical bears the same structural alert as the experimentally Ames negative 

comparison compound (and no other known structural alert) in the same position and 
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environment and possesses a similar molecular weight, then the compound is often considered to 

be negative in the Ames test.  

In a read-across assessment, a chemically-defined category of known adverse activity can 

be represented by a series of compounds with common structural features, showing similar 

trends in their physicochemical properties.  The presence of a common biological or chemical 

behavior can be generally associated with a common underlying mechanism of action (e.g. 

alkylating compounds).  

This categorical approach provides the basis of identifying trends in properties across the 

category of compounds resulting in the possibility to extend the use of measured data to similar 

untested chemicals.  These estimates of biological activity may be deemed adequate for 

regulatory purposes (e.g. classification and labeling and/or impurity hazard assessment for 

classification with respect to toxicity potential) without further testing.  A description of 

chemical category function has been given by Enoch et al., [73].   However the standardization 

of this approach for defining structural similarity to a chemically-defined class of known 

biological actives is much more difficult where the mechanisms of action are both diverse and 

complex.   

In QSAR approaches, the definition of structural similarity is crucial to the final result of 

an in silico prediction [74]. The typical starting point for any computational approach for 

assessing chemical similarity is to obtain a quantitative description of the molecular structure or 

fingerprint.  Comparisons between structures are then performed using one of a variety of indices 

that have been developed for example, Euclidean distance measures or maximum common 

substructures.   
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However, similarity is a multi-dimensional concept and the similarity between two 

compounds can be difficult to determine and even more challenging to create a set of guidelines 

for.  For instance, compounds (1) and (2) in Figure 1taken from Naven et al. [74] have the same 

molecular formulae (C6H5NO2) but will unlikely to be considered similar as they have different 

atom connectivity, different electron delocalization properties or aromatic behavior, 

physicochemical properties and most importantly, probably dissimilar biological properties.  

Conversely, glucose (3) and galactose (4) also have the same molecular formulae (C6H12O6) and 

visually appear almost structurally identical but from a pharmacological perspective, these 

compounds have very different properties. Many methods to measure the structural similarity 

between two compounds have been developed but the more relevant question to ask would be is 

structural similarity an important factor for the toxicological endpoint being studied. 

Figure 1: Selected Examples of Similar Compounds 

O

CH
2
OH

OH

OH

OH

OH

O

CH
2
OH

OH

OH

OH

OH

N
+
O

O NH
2

O

O

        1                             2                               3                                    4

nitrobenzene      4-amino-2-benzo-             glucose                       galactose
                                quinone  

For toxicological endpoints like mutagenicity or the uncoupling of oxidative 

phosphorylation that are dependent on the presence or absence of structural alerts, the less-

applicable the concept of similarity becomes. This is because minor modifications to the 

structural alert can significantly influence toxicological activity, yet major modifications to the 

periphery of the chemical structure may have little impact on activity so long as the structural 

Page 30 of 44Toxicology Research

To
xi

co
lo

gy
R

es
ea

rc
h

A
cc

ep
te

d
M

an
us

cr
ip

t



alert remains intact. When assessing the relevance of a prediction, it is not enough to ask how 

similar the query compound is to other inactive compounds, but to identify the features of 

structurally-alerting, active compounds that would attenuate the activity and to assess if these 

features can be adequately extrapolated to the compound being studied. 

Limitations of Defining Applicability Domains 

OECD guidelines (http://www.oecd.org/chemicalsafety/risk-

assessment/validationofqsarmodels.htm) currently recommend that QSAR models should define 

the domain within which the predictions of a model can be deemed reliable.  Many methods exist 

for defining the applicability domain (AD) of a QSAR model and have been extensively 

reviewed [75-77]. The AD of a model can be broadly described using two different yet non-

exclusive descriptions:  

(i) the region of chemical or response space relating to the model training set; and 

(ii) the region of chemical or response space where a model makes an acceptable 

prediction error.  

 

In the first definition (i), the underlying assumption is that those predictions that are 

based on interpolation from data in the training set are generally more reliable than those based 

on extrapolation.  The second definition (ii) is based on the assumption that by assessing where 

compounds are predicted well we can gain valuable information, whereas inevitably a subset of 

the training set will be incorrectly classified and so similarity to these compounds will have no 

guarantee that predictions are reliable. In addition, this definition does not automatically assume 
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that predictions for compounds that are considered dissimilar to the training set are unreliable 

[75]. 

Defining the applicability domain of any model is difficult and presents challenges to the 

end user as to whether a prediction is reliable or not.  In addition, although the scope of structural 

alerts can be used to define their AD, this provides little information to a user when alerts are not 

matched to the compound in question.  Expert systems that rely on structural alerts do not have a 

model training set per se, as the alerts are often based on disparate data sources such as toxicity 

data, information pertaining to the biological mechanism and knowledge of chemistry and 

reactivity, which are synthesized into the development of an alert in cerebro. Furthermore, not 

all data is publically-available, thus current approaches cannot reflect this expert knowledge and 

often require a complete model training set. 

Most of the methods for defining applicability domains have been trained to reduce the 

error in continuous output QSARs where the assay data provides homogeneous responses, for 

example LogP values or an experimentally derived IC50 for protein inhibition.  It should be noted 

that there is a distinct gap on the applicability of ADs to categorical models that are based on 

assays which generate a more diverse range of outputs such as carcinogenicity or reproductive 

effects. There are a few exceptions but generally it was shown that there was only value in using 

an AD to qualify confidence in a positive response, rather than a prediction for absence of 

activity. [76, 78, 79] 
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Looking Ahead; Consortia Efforts on Database Development and Toxicity 

Prediction  

It can be argued that the challenge of building predictive toxicology models that predictive 

across a broad chemical space is too large for single organizations to effectively address alone. 

Indeed, there are several active consortia efforts which seek to engage industry, academia, 

private companies and regulators in combined efforts to share data and build tools. Some of these 

initiatives come with the support of significant government funding. This is the case for the 

European eTOX project which aims to leverage historic toxicology study data held by 

participating pharmaceutical companies for new model development. At the time of publication, 

eTOX, which is sponsored by the European Innovative Medicines Initiative (IMI), involves 

active participation of 11 academic groups, 6 in silico model technology companies and 13 

pharmaceutical companies (see http://www.etoxproject.eu). The overall framework of the 

initiative centers on a software platform (eTOXsys) which contains both the underlying data 

from the participating organizations and access to computational predictive models under 

development. To date the initiative has reported success in assembling >5000 toxicology study 

reports from members (described in a common ontology of toxicology terms) and 74 individual 

in silico models for hazard identification or prediction of compound disposition in the body [80].  

In the USA perhaps the most prominent consortia effort with somewhat similar goals is the 

“Toxicity Testing in the 21st Century” initiative, commonly referred to as “Tox21”. This 

multidisciplinary project spans several government research partners (including the EPA, 

National Institutes of Health, National Center for Advancing Translational Sciences and the  

Food and Drug Administration) and is exploring alternative approaches to in vivo toxicity testing 

with a particular emphasis on understanding the critical molecular pathways in cells and tissues 
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which could be diagnostic of toxicology mechanisms. In the initial phases of this program a well 

characterized screening library of >10,000 discrete molecules was established as the substrate to 

be systematically profiled  through approximately 50 high throughput screening assays selected 

for their potential relevance to toxicity mechanisms [81]. As the project has advanced additional 

high throughput assays, including secondary assays to refine mechanistic understanding have 

been added and the partnerships extended. The effort has linked with a separate project at EPA 

called “ToxCast” (http://www.epa.gov/ncct/toxcast/) with broadly similar goals around 

combining in vitro data and in silico modeling to predict potential toxicity. In the case of the 

ToxCast initiative, the source of the library compounds has been across a diverse range of 

industrial partners (including pharmaceuticals, consumer products, food additives etc) and its 

testing paradigm includes broad assays, or panels of assays developed externally. As a 

consequence the ToxCast compound collection has been used as test set to examine areas as 

diverse as endocrine disruption [82], genotoxicity [83] and to classify toxic and therapeutic 

mechanisms [84]. 

While initiatives such as eTOX, Tox21 and ToxCast attempt to develop a very broad framework 

for toxicity prediction there have also been more targeted efforts which focus on individual 

toxicities which have been problematic in existing testing schemes. The area of drug induced 

liver injury (DILI), for example, is a longstanding problem in pharmaceutical discovery and 

development (for a recent review see Leise et al [85]).  In Europe IMI has funded an integrated 

assessment platform for DILI named Mechanism Based Integrated System for the Prediction of 

DILI or MIP-DILI   (http://www.imi.europa.eu/content/mip-dili). This 5 year project was 

launched in 2012 and involves the participation of almost 30 organizations from industry, 

technology companies and academia.  The efforts of MIP-DILI span the assembly of an 
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annotated compound training set, the testing of in vitro systems for utility, novel in vivo 

approaches (including reporter or humanized transgenic animals), and a bioinformatics hub to 

assemble the data and facilitate the building and testing of predictive models. In the USA, a 

jointly led initiative by The Hamner Institutes for Health Sciences and the University of North 

Carolina is working to develop software predictive algorithms to predict DILI and the initiative 

is partnering with over a dozen global pharmaceutical companies to partner on the production of 

an integrated software platform DILIsym (http://dilisym.com/) which is envisaged as a platform 

for both industry and regulators to evaluate potential DILI concerns of new chemical entities 

[86]. The model looks at essential cellular processes and hepatotoxicity-specific cellular 

mechanisms (such as reactive metabolites, mitochondrial dysfunction and transporter inhibition) 

and the models are developed using supporting data from well-characterized DILI-producing 

compounds from member companies and public domain sources. 

Clearly computational predictive modeling in toxicology assessment continues to advance as a 

discipline with the sharing of data and experience through efforts such as those described above. 

Inevitably the approach has significant limitations when being considered as a definitive toxicity 

assessment such as that which would be required in formal risk assessment strategies however. 

Nevertheless it appears clear that in the areas of hazard identification, hypothesis generation and 

in prioritizing compounds for more extensive toxicity evaluation that computational approaches 

have utility today with the promise of even greater impact through consortia effort and shared 

experience in the future. 

Conclusions 

The rise of computational toxicology as a scientific discipline has seen significant investment 

over recent years and has become a mainstream activity in many commercial and regulatory 
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organizations.  However, the application of these tools to both hazard and risk assessment 

applications needs to be carefully thought through.  The computational predictions are only as 

good as the data used to train the model and the inherent noise in these data sets is often 

overlooked when training or assessing performance.  Similarly, the current lack of knowledge 

about mechanisms of toxicity along with the fact that multiple molecular initiating events can 

lead to the same observed phenotype make it difficult to select the best measures of chemical 

similarity to use in any given model.  Clearly, the need for higher throughput and more cost 

effect approaches for safety assessments make computational approaches a useful tool in 

toxicology but if used inappropriately or without consideration for the limitations of the 

approaches then this may lead to poor or regrettable decisions being made.   
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