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Control of Plasmonic Fluorescence Enhancement on 
Self-Assembled 2-D Colloidal Crystals 

Wei Hong,‡ Yu Zhang,‡ Lin Gan, Xudong Chen* and Mingqiu Zhang* 

Ordered arrays of Ag-capped colloidal crystals were fabricated and modified with 
conjugated polymers for evaluating excitation and emission fluorescence enhancement due 
to localized surface plasmon resonance (LSPR). The maximum enhancement accrued on the 
maximum overlap between the excitation wavelength and LSPRs  of the substrates. The 
observed fluorescence enhancement and life time measurement showed that the large 
enhancement came from a combination of greatly enhanced excitation and an increased 
radiative decay rate leading to an associated enhancement of the quantum efficiency. Such 
Ag nanostructured arrays fabricated by colloidal lithograph thus show great potential for 
biosensing and photovoltaic applications, and the excitation wavelength-LSPR based 
fluorescence enhancement would prove useful for understanding and optimizing metal-
enhanced fluorescence. 
 

Introduction 

Metal induced fluorescence enhancement (MIFE) has 
attracted widespread research interests because of its promising 
applications, such as biosensing,[1] optics devices[2] and 
fluorescence-based imaging.[3] 

Previous investigations demonstrated that MIFE originated 
from interactions of excited fluorophores with surface plasmon 
resonances (SPR) on metal structures.[4] Such interactions can 
lead to desirable effects including increased quantum yields, 
fluorescence decay rate, photostability and energy transfer rate. 
On the other hand, the fluorescence quenching effect competes 
with all these positive effects. It was indicated that fluorophore 
quenched within 5 nm from the surface of metal nanoparticles 
and the fluorescence reached maximum at about 10 nm from 
the metal surface.[5] For larger metal-fluorophore separation 
over 10 nm, the enhancement effect progressively declines. 
Thus, MIFE can be tuned by controlling the metallic particle 
composition, shape, interparticle distance and fluorophore-
metal distance.[6] 

Plamonic structures with precise geometry are mostly 
fabricated using nanoimprint lithography,[7] focused ion beam 
lithography and electon beam,[8] which have the disadvantages 
of high cost, complicated process and limited sample area. 
Other notable methods used for fluorescence enhancement on 
planar substrates include physical adsorption of Ag/Au 
colloids[9] and chemical deposition of Ag/Au films[10] on glass. 
However, the LSPR and the resulting plasmonic enhancements 
from these noble metal substrates could not be systematically 
turned.  

Recently, nanosphere lithography (NSL) has been used to 
fabricate large area plasmonic nanostructure.[11] Their optical 
properties are usually explained by the coupling of localized 
surface plasmon resonances (LSPRs) with surface plasmon 
polaritons (SPPs) along the periodical metal-dielectric interface, 

called as Bragg plamons.[12] Great success has been achieved in 
fluorescence enhancement[13] and surface-enhanced Raman 
scattering (SERS)[14] based on electromagnetic enhancement 
from the NSL structure. 

However, most of fluorescence enhancements based on 
Ag/Au colloids, Ag/Au films and NSL array have been directed 
at fluorophores of small molecules whose excitation 
wavelength and emission wavelength were very close to each 
other, leading to simultaneous overlaps of LSPR with both 
excitation and emission wavelength.[8-10, 13] Thus, it was not 
clear whether the major contribution of LSPR was to increase 
the excitation or the emission. Such question would become 
more important if more complex plasmonic substrates are 
fabricated, where several physical mechanisms contribute to the 
observed fluorescence enhancements.  

In addition, most of the reported fluorescence enhancements 
based on NSL structures focused on internal diameters within a 
short range around the wavelength of visible light.[13] Thus 
challenges remain to have a more comprehensive comparison 
between NSL structures from subwavelength to micrometer 
level, as well as disordered NSL structures. 

In this work, we report a systematic study about the 
fluorescence enhancement influenced by the Ag-capped 
colloidal crystal whose sphere diameter ranges from 200 to 
1000 nm. Conjugated polymers, whose excitation maxima and 
emission maxima are over 100 nm from each other, are taken as 
fluorophores, hence simultaneous overlaps between excitation 
/emission wavelength and LSPR could be prevented. Excitation 
enhancement and emission enhancement are semi-
quantitatively separated by analyzing the fluorescence lifetime. 
Experimental and theoretical results show that the fluorescence 
enhancement observed is attributed to increased excitation rate 
from the overlap of excitation wavelength with LSPR of the 
Ag-capped colloidal crystal array and higher quantum yield 
from the increased intrinsic decay rate of the fluorophores. 

Page 1 of 8 Journal of Materials Chemistry C

Jo
ur

na
lo

fM
at

er
ia

ls
C

he
m

is
tr

y
C

A
cc

ep
te

d
M

an
us

cr
ip

t



ARTICLE  Journal Name 

2 | J.  Name., 2012, 00, 1‐3  This journal is © The Royal Society of Chemistry 2012 

Experimental 

Reagents 

Poly[5-methoxy-2-(3-sulfopropoxy)-1,4-phenylenevinylene] 
potassium salt solution (MPS-PPV, 0.25 wt. % in H2O), poly(3-
hexylthiophene-2,5-diyl) (P3HT, Mn=1.5-4.5105), 3,6-
dibromo-9-octylcarbazole, 2,5-bis-(4-bromo-phenyl)-[1,3,4]-
oxadiazole, 2,7-diethyne-9,9’-dioctyluorene and Pd(PPh3)2Cl2 
were purchased from Sigma-Aldrich. Other solvents and 
chemicals were purchased from local suppliers. All reagents 
were used without further purification unless specified 
otherwise. 

Preparation of two-dimensional polystyrene (PS) colloidal 
crystals 

Monodispersed colloidal particles of PS (200–1000 nm 
diameter, approximately 3% standard deviation) were 
synthesized by precipitation-emulsion polymerization using 
2,2-azobisisobutyronitrile (AIBN) as initiator and 
polyvinylpyrrolidone (PVP) as stabilizer,[15] or purchased 
commercially (Alfa Aesar Corporation/Invitrogen). Briefly, 25 
ml styrene, 3 g PVP and 1 g AIBN were dispersed in 75 mL 
methanol, stirred intensively with a magnetic beater at 298 K. 
The reaction mixture was kept under UV-irradiation at room-
temperature with continuous stirring. After 24 h, the colloidal 
particles were obtained by centrifugation and rinsed 3 times 
with anhydrous ethanol and 2 times with pure water to remove 
PVP. The size of the PS spheres could be controlled by the 
quantity of styrene. The obtained monodispersed PS particles 
were dispersed in anhydrous ethanol to give a weight 
concentration of 2.5 wt%. 

A drop (ca. 15 L) of the PS suspension was pipetted onto 
the whole of a quartz slide (with a diameter of 2.5 cm, cleaned 
by a plasma cleaning system). PS colloidal monolayer was 
achieved by a floating operation after the suspension was 
completely dried,[16] and the monolayer was picked up with a 
quartz slide to form a two-dimensional polystyrene colloidal 
crystals. 

Synthesis of N-octylcarbazole-co-9,9’-dioctyluorene-co-1,3,4-
oxadiazole copolymer (PCFOz) 

Synthesis of light-emitting conjugated polymer PCFOz was 
carried out by an improved method based on previous literatures.[17]  

Briefly, Sonogashira reaction of 3,6-dibromo-9-octylcarbazole, 
2,5-bis-(4-bromo-phenyl)-[1,3,4]-oxadiazole and 2,7-diethyne-9,9’-
dioctyluorene (molar ratio= 0.56 mmol : 0.97 mmol : 1.45 mmol) via 
Pd(PPh3)2Cl2 and CuI catalyzing was carried out under refluxing 
condition, followed by trimethylamine treatment. The copolymer 
was purified by chromatography using silica support. 1H NMR (300 
MHz, CDCl3), δ ppm (mult., integr.): 8.22–8.09 (t, 3H), 8.06–7.96 (d, 
6H), 7.81–7.61 (t, 8H), 7.61–7.42 (m, 7H), 3.55 (s, 11H), 2.01 (s, 
10H), 1.41–0.48 (m, 50H). GPC: Mn=1.5105 g mol-1, PDI=1.36. 

Substrate fabrication 

The quartz slides with 2-D polystyrene colloidal crystals were 
mounted into the chamber of a Quorum Q150TES automatic high 
vacuum coating system for Ag sputtering deposition with thickness 
of 2.5-40 nm. 

After the Ag deposition, the substrates were coated with a 
polyvinyl acetate (PVA) spacer layer about 10 nm thick by spin-
coating, followed by a second time spin-coating for the fluorophore 

layers using 0.1 mg ml-1 PCFOz toluene solution, 0.5 mg ml-1 MPS-
PPV 3:7 v/v ethanol/aqueous solution, 1 mg ml-1 P3HT toluene 
solution and 1 mM rhodamine B, fluorescein sodium, acriflavine 
ethanol solutions. 

Characterization 
1H NMR spectra were obtained by a Varian Mercury-Plus 300 

NMR spectrometer. Number-average molecular weight (Mn) and the 
molecular weight distribution (PDI) were determined by gel 
permeation chromatography analysis (GPC, Waters Breeze). 
Reflectance spectra and extinction spectra were collected by a 
Lambda 750 UV-vis-NIR spectrometer. The quantum yield of 
PCFOz was measured by Hamamatsu absolute PL quantum yield 
spectrometer C11347. The scanning electron microscopic (SEM) 
pictures were obtained using a Hitachi S-4800 SEM with an 
accelerating voltage of 10 kV. The samples were arc coated with a 
thin gold film in advance. The transmission electron microscopic 
(TEM) pictures and the energy dispersive spectrum analysis were 
obtained on JEOL JEM-2010H TEM with an accelerating voltage of 
200 kV. X-ray Photo-electron Spectroscopy (XPS) was measured on 
ESCALAB 250 (Thermofisher Scientific) equipped with a 
monochromatic X-ray source (Al Kα, 1486.6 eV). 

Photoluminescence spectra were measured with a FLS920-
Combined Time Resolved & Steady State Fluorescence 
Spectrometer (Edinburgh Instruments) using the 400 nm line of an 
Xe lamp as the excitation source and R1527 photomultiplier tube as 
the detector. Fluorescence decay curves were measured using the 
time-correlated single photon counting technique and a LifeSpec II 
luminescence spectrometer (Edinburgh Instruments, Ltd). The 
wavelength, pulse width, and repetition rate were 405 nm, 100 ps 
and 5 MHz, respectively. The experimental fluorescence lifetime 
accuracy was 6 ps. 

The fluorescence decay curves were fitted using a double 
exponential fitting model: 

Iሺtሻ=a1e-t/t1+a2e-t/t2                             (1) 

where t1 and t2 are two decay times; a1 and a2 are their weighting 
fractions. 

The fluorescence enhancement radio (Ef) of the Ag-capped 2-D 
colloidal crystals is defined as  

Ef=Ecc,Ag/Equartz                              (2) 

where Ecc,Ag is the fluorescence intensity of the conjugated polymer 
on Ag-capped colloidal crystals (or flat Ag films with the same 
thickness), Equartz is the fluorescence intensity of the conjugated 
polymer on a quartz surface. The data were averaged over five 
samples for each case. 

Computational modelling 

Finite difference time domain (FDTD) method was used for 
calculation of the optical and electromagnetic properties of the Ag-
capped 2-D colloidal crystals. All FDTD calculations were carried 
out on OptiFDTD 10. The input wave was defined with Gaussian 
modulated continuous wave. The observation objects was placed 
parallel to the plane of the 2-D colloidal crystals through the sphere 
centers (see Fig.S1).  

Results and discussion 

3.1 Ag-capped 2-D colloidal crystals and their plasmonic 
resonance 
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difficult to determine because the model did not consider the 
coupling efficiency of the fluorescence emission to the far field. 
 

Conclusions 

We have designed and fabricated a hybrid fluorescence 
enhancement system by vacuum coating silver films on 2-D 
colloid crystals with high robustness and reproducibility. Such 
Ag-capped 2-D colloid crystals could enhance fluorescence 
from conjugated polymers with low quantum yield (60 fold for 
P3HT) as well as dyes with high quantum yield (3.4 fold for 
rhodamine B). The work demonstrated that the maximum 
enhancement was attributed to the overlapping between LSPRs 
of the substrates and the excitation wavelength of the 
fluorophores rather than the emission wavelength. We expect 
that this approach could provide a guldeline for fluorescence 
enhancement by SPR and find applications in fluorescence 
sensing and photovoltaic device. 
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