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Pluripotency maintenance of amniotic fluid-derived 
stem cells cultured on biomaterials with different 
elasticities and grafted with ECM-derived 
oligopeptides 
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Hong-Ren Lin,a Hsin-Fen Li,a S. Suresh Kumar,h Yung Chang,i Abdullah A 
Alarfaj,d Murugan A Munusamy,d Da-Chung Chen,j Shih-Tien Hsu,k Han-Chow 
Wang,l Hung-Yi Hsiaom and Gwo-Jang Wun 

The stem cell fates of pluripotency and differentiation are regulated by not only soluble 
biological cues but also insoluble biochecmial cues (i.e., extracellular matrix (ECM)) and the 
physical cues of cell culture biomaterials (i.e., elasticity). We investigated the maintenance of 
pluripotency and the differentiation lineages of human amniotic fluid-derived stem cells 
(hAFSCs) cultured on poly(vinyl alcohol-co-itaconic acid) (PVA) hydrogels grafted with 
several types of ECM and corresponding oligopeptides in expansion medium. hAFSCs cultured 
on soft PVA hydrogels (12.2 kPa) that were grafted with oligopeptides derived from 
fibronectin and vitronectin showed high pluripotency, which was evaluated by Oct4, Sox2 and 
Nanog expression. The hAFSCs grown on soft PVA hydrogels (12.2 kPa) grafted with each 
oligopeptide showed higher pluripotency, as assessed by Oct4 and Nanog expression, than 
hAFSCs grown on stiff PVA hydrogels (25.3 kPa) grafted with the same oligopeptides and a 
much higher pluripotency than those grown on rigid tissue-culture polystyrene dishes. Soft 
biomaterials appeared to be adequate to maintain the pluripotency of hAFSCs. Surprisingly, 
hAFSCs that showed higher pluripotency on PVA hydrogels grafted with oligopeptides derived 
from fibronectin and vitronectin also expressed higher levels of early differentiation markers 
for three germ layers in expansion medium. This result suggests that hAFSCs are 
heterogeneous and that this population contains highly pluripotent stem cells and stem cells 
that can be easily differentiated. 
 

1. Introduction 

Human adult stem cells, such as adipose-derived stem cells 
(hADSCs), bone marrow-derived stem cells (hBMSCs) and amniotic 
fluid-derived stem cells (hAFSCs), are an attractive source of cells 
for tissue engineering and cell therapy.1-7 The use of human adult 
stem cells avoids the ethical concerns raised by human embryonic 
stem cells (hESCs). Furthermore, no tumor generation has been 
reported to result from the transplantation of human adult stem cells 
into animals, whereas hESCs and human induced pluripotent stem 
cells (hiPSCs) generate tumors in transplanted animals due to their 
high differentiation ability.8 Although human adult stem cells have a 
more limited differentiation ability than hESCs and hiPSCs, human 
adult stem cells are able to differentiate into typical mesoderm 
lineages such as osteoblasts, chondrocytes, adipocytes, and 
cardiomyocytes. Additionally, some researchers have reported that 
human adult stem cells can differentiate into neural cells (ectoderm) 
and endoderm cells (beta cells and hepatocytes).9-16 It is less 
expensive to maintain human adult stem cells than to maintain hESC 

and hiPSC cultures; hESCs and hiPSCs also need to be cultured on a 
specific culture surface (e.g., mouse embryonic fibroblasts, Matrigel, 
or biomaterials immobilized with extracellular matrix (ECM) 
proteins or ECM-derived oligopeptides) in culture medium 
containing an expensive cocktail of several growth factors.17,18 
However, one of the drawbacks of human adult stem cells is their 
limited expansion period and the decrease in pluripotency of the 
stem cells with increasing time in culture.19 In typical culture 
conditions, human adult stem cells can survive for no more than 8-12 
passages. It is therefore necessary to develop culture conditions able 
to maintain the pluripotency of human adult stem cells.19 

Stem cell characteristics, such as maintenance of pluripotency, are 
regulated not only by the stem cells themselves but also by the 
microenvironment.1 Therefore, mimicking stem cell 
microenvironments (niches) using biopolymers should be important 
to keep pluripotency of stem cells. Several factors in the 
microenvironment of stem cells influence their fate: (1) biological 
cues, such as growth factors and bioactive molecules; (2) cell-cell 
interactions; (3) biochemical cues of stem cell-biomacromolecule (or 
biomaterial) interactions; and (4) physical cues of cell culture 

Page 1 of 12 Journal of Materials Chemistry B

Jo
ur

na
lo

fM
at

er
ia

ls
C

he
m

is
tr

y
B

A
cc

ep
te

d
M

an
us

cr
ip

t



ART

2 | J

biom
cell-
ECM
deriv
the c

H
solu
to th
to b
biom
diffe
desc
adul
effec
plur

H
cells
oligo
expa
stiffn

C
(mE
with
By 
plur
been
soft 
facil
there
main
poly
of th
hES
imm
plur
be m
with
biom
hAF

In
sour
stem
hAD
prob
stud
oligo
main
elast
 
 
2. E

2.1  

Poly
17) 
(Sak
(GT
(KG
were
cultu
were
N-(3
(ED
gluta

TICLE 

J.  Name., 2012, 

materials, such a
-biomacromolec
Ms (collagen typ
ved oligopeptide
culture of human

Human adult stem
uble growth facto
he growth condit
biological cues 
materials have b
erentiation.8,20 
cribing the effec
lt stem cell diffe
ct of the physic

ripotency.19,21-23  
Higuchi et al. inv
s (HSCs) on 
opeptides posse
and and mainta
fnesses ranging f

Chowdhury et al
ESCs) could be 
h collagen I (0.6
contrast, mESC

ripotency on hyd
n suggested that 

cell-culture bi
litating the prod
e is a contradict
ntenance of hES
ydimethylsiloxan
he PDMS micro

SCs were cultiva
mobilized with 
ripotency on stif
mechano-sensitiv
h increased matr
materials to main
FSCs remains un
n this study, we
rce of human ad

m cells and are 
DSCs and hBM
blem similar to 
dy was to invest
opeptides graft
ntaining the pl
ticity of the biom

Experimenta

 Materials 

y(vinyl alcohol-c
was obtained a

kai, Osaka, 
TPGPQGIAGQR
GGAVTGRGDSP
e obtained from
ure polystyrene 
e purchased from
3-dimethylamino

DC; 03450), N
araldehyde (25%

00, 1‐3 

as the elasticity 
ule interactions

pe 1, fibronectin,
es, which were 
n adult stem cell
m cells maintain
or FGF-2 in the 
tions of hESCs a
such as growth

been recognized
Although there

ct of the physica
erentiation, there
cal cues of biom

vestigated the e
biomaterials g

essing varying 
ain pluripotency
from 12.2 kPa to
. reported that t
maintained by c

6 kPa) matching 
Cs were not abl
drogels with mu
the pluripotency

iomaterials via 
duction of low c
tory study that r
SC pluripotency
ne (PDMS) micr
oposts regulated 
ated on oxygen 

vitronectin a
ff substrates. Fur
ve and increase
rix stiffness.22 C
ntain the pluripo

nknown. 
e selected secon
dult stem cells. 

expected to p
MSCs. However

that of hADSCs
tigate (a) which
ted onto the 
luripotency of 
materials to main

al 

co-vinyl acetate
as a gift from 

Japan). T
RGVV), COLB 

PASS) and olig
m MDBio, Inc. 

(TCPS) dishes
m Becton Dickin
opropyl)-N’-ethy
N-hydroxysucci

% in water; G58

of the biomateri
s, we selected 
, and vitronectin
grafted onto the

ls. 
n pluripotency w
culture medium

and hiPSCs. Rec
h factors, physic
d to affect the 
e are several 
al cues of bioma
e are few reports
materials on the

expansion of he
rafted with fib
degrees of stiff

y on surfaces w
o 30.4 kPa.24 
the pluripotency
culture on soft 
the intrinsic stif
le to maintain 
uch more rigid 
y of mESCs can 

the biophysica
cell-matrix tract
rigid (stiff) biom
.22 Sun et al. cre
ropost arrays in 
substrate stiffne
plasma-treated 

and were foun
rthermore, hESC
d their cytoskel
urrently, the opt

otency of adult s

nd-trimester hA
hAFSCs are k

ossess higher p
r, hAFSCs also
s and hBMSCs.

h ECM proteins 
biomaterials a
hAFSCs and 

ntain hAFSC plu

-co-itaconic acid
Japan VAM & 
The oligopep

((RADA)4GGD
goVN (KGGPQV

(Piscataway, N
s (diameter = 3
nson (Franklin L
ylcarbodiimide 
inimide (NHS
882) were obtain

ials.1 As for stem
several kinds o

n) and their ECM
e biomaterials fo

with the aid of th
m, which is simila
cently, in additio
cal cues such a
stem cell fate o

distinct studie
aterials on huma
s investigating th
e maintenance o

matopoietic stem
bronectin-derive
fness. HSCs ca
with intermediat

y of mouse ESC
hydrogels coate
ffness of mESC
self-renewal an
moduli.8,21 It ha
be maintained o

al mechanism o
tion.8,21 Howeve

materials favor th
eated elastomeri
which the heigh

ess (elasticity).8,

micropost array
nd to maintai
Cs were found t
leton contractilit
timal elasticity o
stem cells such a

FSCs as the ce
nown to be feta

pluripotency tha
o have an agin

The goal of th
or ECM-derive

are effective a
(b) the optima

uripotency. 

d) (PVA-IA; AF
Poval Co., Ltd

ptides COLA
DGEA), oligoFN
VTRGDVFTMP

NJ, USA). Tissu
5 mm; 35-3001

Lakes, NJ, USA
hydrochlorid

; 13062), an
ned from Sigma

m 
of 

M-
or 

he 
ar 
on 
as 
of 
es 
an 
he 
of 

m 
ed 
an 
te 

Cs 
ed 
s. 

nd 
as 
on 
of 
er, 
he 
ic 
ht 
22 
ys 
in 
to 
ty 
of 
as 

ell 
al 
an 
ng 
is 

ed 
at 
al 

F-
d. 
A 
N 
P) 
ue 
1) 

A). 
de 
nd 
a-

Aldrich (St
collagen ty
(San Jose, 
purchased 
bovine seru
Biological 
modified E
medium we
FGF-2 (CY
(Ness-Zion
Invitrogen 
RNA isolat
Pittsburgh, 
(11904-018
from Life T
(Hs018950
(Hs023874
(Hs007517
(glyceralde
obtained fr
human SS
(Cambridge
was purcha
Mouse anti
human alp
obtained fr
CELLstart,
488-anti-m
(A21203) 
purchased 
33342 was 
 

Fig. 1  Pre
ECM-deriv
grafting wi
Elasticity 
crosslinking
 
The other 
without fu
Aldrich (St
Q system (M

This jou

t. Louis, MO, US
ype I (Col; 3542

CA, USA). Re
from Pepro Tec

rum (FBS; 04-0
Industries Ltd., 
Eagle’s medium
ere purchased fr
YT-218) was ob
na, Israel). Tryp

Corporation (25
ation kit was ob

PA,	 USA).	 Sup
8) and TaqMAN
Technologies (C

061_u1), S
400_g1), N

52_s1), Runx
ehyde-3-phospha
rom Life Techno
SEA4 antibody 
e, MA, USA). R
ased from Millip
i-human β-III tub
lpha-fetoprotein 
from Thermo F
, Alexa Fluor 48

mouse IgG (A11
and Alexa Flu
from Life Tech
obtained from L

eparation of PV
ved oligopeptide
ith ECM protei
of PVA hydro
g. 

chemicals emp
urther purificati
t. Louis, MO, US
Millipore Corpo

rnal is © The Roy

SA). Human fibr
231) were obtain
ecombinant hum
ch (140-09; Roc
001-1, lot 5510
Kibbutz Beit Ha
m (DMEM; D
rom Sigma-Aldri
btained from P

psin-EDTA solu
5200-056; Carls

btained from GE
perScript III Fir

N Real-Time Mas
Carlsbad, CA, US
Sox2 (Hs00
Nestin (Hs0
x2 (Hs002316
ate dehydrogena
ologies (Carlsbad

(ab16287) wa
Rabbit anti-huma
pore (Merck KG
bulin antibody (

(AFP) antib
Fischer Scientifi
88-anti-rabbit Ig
1001), Alexa F
uor 594-anti-rab
hnologies (Carls
Lonza (PA-3014

VA dishes grafte
es. (A) Reactio
ins and ECM-d
ogels prepared 

loyed were of 
ion, and were 
SA). Ultrapure w

oration,  Billerica

Journ

yal Society of Chem

ronectin (FN; 35
ned from BD B

man vitronectin (
cky Hill, NJ, U
035) was purch
aemek, Israel). D

D5648) and M
ich (St. Louis, M

ProSpec-Tany T
ution was purch
sbad, CA). RNA
E Healthcare (25
st-Strand synthe
ster Mixes were 
SA). PCR probe
0602736_s1), 
04187831_g1), 
92_m1) and 

ase, Hs03929097
d, CA, USA). M

as obtained from
an Sox2 antibody
aA, Darmstadt, 
MA1-118) and r
ody (PA5-210

fic (Rockford, I
gG (A11008), A
Fluor 594-anti-m
bbit IgG (A212
sbad, CA, USA
4; Allendale, NJ)

d with ECM pr
on scheme for 
derived oligopep

by different p

reagent grade, 
purchased from

water produced b
a,  MA,  USA)  w

nal Name 

mistry 2012 

56008) and 
Biosciences 
(rVN) was 

USA). Fetal 
hased from 
Dulbecco’s 
CDB 201 

MO, USA). 
Technogene 
hased from 
Aspin Mini 
5-0500-72; 
esis system 

purchased 
es for Oct4 

Nanog 
Sox17 

GAPDH 
7_g1) were 

Mouse anti-
m Abcam 
y (ab5603) 
Germany). 
rabbit anti-

004) were 
IL, USA). 

Alexa Fluor 
mouse IgG 
207) were 
). Hoechst 

). 

 

roteins and 
PVA dish 

ptides. (B) 
periods of 

were used 
m Sigma-
by a Milli-
was  used  

Page 2 of 12Journal of Materials Chemistry B

Jo
ur

na
lo

fM
at

er
ia

ls
C

he
m

is
tr

y
B

A
cc

ep
te

d
M

an
us

cr
ip

t



Journal Name  ARTICLE 

This journal is © The Royal Society of Chemistry 2012  J. Name., 2012, 00, 1‐3 | 3 

throughout the experiments. 

2.2   Preparation of crosslinked PVA hydrogel dishes 

PVA-IA with 1.3 mol% itaconic acid with a degree of hydrolysis of 
97.2% and 4 wt% viscocity = 30 mPa·sec was dissolved to 0.05 wt% 
for cell culture experiments or 0.5 wt% for rheometer measurements 
in ultrapure water, then agitated for two days and subsequently 
maintained at room temperature for one day to ensure that no air 
bubbles were present in the solution.24 A 3 mL aliquot of the PVA-
IA solution was then added to a 35-mm TCPS dish and dried for a 
week on a clean bench to produce a film. The PVA-IA (hereafter 
denoted as PVA) films were immersed in an aqueous crosslinking 
solution composed of 1 wt% glutaraldehyde, 20 wt% sodium sulfate, 
and 1 wt% sulfuric acid for 2, 4, 6, 12 and 24 h (Fig. 1). The naming 
convention ‘PVA-X’ (e.g., PVA-2) indicates PVA-IA hydrogels 
crosslinked for X hours (e.g., 2 h). After crosslinking, the PVA 
hydrogels were washed with ultrapure water and then immersed in 
ultrapure water. The ultrapure water was changed twice daily before 
ECM proteins or ECM-derived oligopeptides were grafted onto the 
dishes, which were then used for cell culture. The PVA hydrogels 
were sterilized via immersion in a 75% (v/v) ethanol solution 
overnight, subsequently washed in ultrapure water and maintained in 
ultrapure water until use for cell culture. 

2.3   Preparation of PVA hydrogel dishes grafted with ECM 
proteins and ECM-derived oligopeptides 

Following the preparation of PVA hydrogels with different 
elasticities, these hydrogels were activated via immersion in an 
aqueous solution containing 10 mg/ml EDC and 10 mg/ml NHS for 
6 h at 4 °C.24 Subsequently, the PVA hydrogels were washed with 
phosphate-buffered saline (PBS; pH 7.2) and immersed in a PBS 
solution containing 50 μg/mL of ECM protein (COL, FN or rVN) or 
ECM-derived oligopeptide (COLA, COLB, oligoFN or oligoVN) for 
24 h at 4 °C (Fig. 1). After the grafting of ECM and ECM-derived 
oligopeptides, the PVA hydrogels were washed with ultrapure water 
for 12 h to remove the residual ECM and ECM-derived oligopeptide. 
The PVA hydrogels grafted with ECM and ECM-derived 
oligopeptides are hereafter referred to as PVA-X-ECM and PVA-X-
oligoECM, respectively, where X indicates the crosslinking time (h) 
and oligoECM is an ECM-derived oligopeptide.  

Water content of PVA-6 and PVA-24 hydrogels was measured to 
be 53% and 36%, respectively. No change of water content was 
observed on PVA-6 and PVA-24 hydrogels grafted with or without 
ECM and ECM-derived oligopeptide. 

2.4   Characterization of surface-grafted PVA hydrogel dishes 

The chemical composition of the surface-grafted PVA hydrogel 
dishes was measured using X-ray photoelectron spectroscopy (XPS; 
K-Alpha spectrometer; Thermal Scientific, Inc., Amarillo, TX, USA) 
equipped with a monochromatic Al-K X-ray source (1,486.6 eV 
photons). The energy of the emitted electrons was measured using a 
hemispherical energy analyzer at pass energies ranging from 50 to 
150 eV. Data were collected at a photoelectron takeoff angle of 45 
degrees with respect to the sample surface. The binding energy (BE) 
scale was referenced by setting the peak maximum in the C1s 
spectrum to 284.6 eV. The obtained high-resolution C1s spectra 
were fitted using Shirley background subtraction and a series of 
Gaussian peaks. 

The storage modulus (E’) of the PVA hydrogels prepared from a 5 
wt% PVA-IA solution and crosslinked for 0.5-24 h was quantified 
using a rheometer (Physica MCR 101; Anton Pars Co. Ltd.) with a 
5% strain at 1 Hz.24 

2.5  Preparation and culture of hAFSCs 

The experiments in this study were approved by the ethics 
committees of the National Central University, the Taiwan Landseed 
Hospital (IRB-13-05), and the Cathay Medical Research Institute. 
Fresh second-trimester amniotic fluid was centrifuged at 1200 rpm 
for 5 min, and the supernatant was removed. The cell solution after 
centrifugation was dissolved in DMEM/MCDM 201 (40%/60%) 
supplemented with 20% FBS and 10 ng/ml FGF-2 and was cultured 
in a CO2 incubator at 37 °C.25 After reaching approximately 80% 
confluence, the cells (i.e., hAFSCs) were harvested with a 0.25% 
trypsin-EDTA solution, centrifuged and seeded into TCPS dishes as 
a conventional passage procedure. hAFSCs at passage 4 were 
cultured on PVA hydrogel dishes grafted with ECM or ECM-derived 
oligopeptide, TCPS coated with CELLstart or TCPS dishes in a CO2 
incubator at 37 °C for 7 days. 

2.6  Analysis of pluripotency and differentiation gene expression 
in hAFSCs 

The expression levels of the pluripotency genes Oct4, Sox2 and 
Nanog and the differentiation genes Nestin, Sox17 and Runx2 were 
analyzed by qRT-PCR using conventional methods.26 Briefly, after 
the cells were harvested, RNA was extracted using the RNAspin 
Mini RNA isolation kit according to the manufacturer’s instructions. 
The isolated RNA was treated with DNase to remove any traces of 
contaminating DNA.27 RNA (2 µg) was reverse-transcribed by 
reverse transcriptase to produce cDNA using the SuperScript III 
First-Strand synthesis system. This cDNA was then used as a 
template for polymerase chain reaction (PCR) amplification with 
probes for Oct4 (Hs01895061_u1), Sox2 (Hs00602736_s1), Nanog 
(Hs02387400_g1), Nestin (Hs04187831_g1), Sox17 
(Hs00751752_s1), Runx2 (Hs00231692_m1) and GAPDH 
(glyceraldehyde-3-phosphate dehydrogenase; Hs03929097_g1) 
using Taq DNA polymerase and a qRT-PCR instrument (StepOne 
PlusTM Real-Time PCR System; Applied Biosystems, Foster, CA, 
USA). Each sample (n = 3) was tested in duplicate (totally n = 6), 
and the expression level of the GAPDH housekeeping gene was used 
as a control to normalize the results. 

2.7  Immunostaining of proteins involved in pluripotency and 
differentiation in hAFSCs 

Poly-immunostaining of Sox2, SSEA4, β-III tubulin and AFP in the 
cells was performed following the conventional protocol.28 Cells on 
dishes were fixed with paraformaldehyde and then incubated with 
the primary antibody (e.g., anti-human Sox2 (1:100), SSEA4 (1:100), 
β-III tubulin (1:100) or AFP (1:100)). Subsequently, the cells were 
washed with PBS and incubated with the secondary antibody (Alexa 
Fluor 488-anti-rabbit IgG, Alexa Fluor 488-anti-mouse IgG, Alexa 
Fluor 594-anti-mouse IgG or Alexa Fluor 594-anti-rabbit IgG) at a 
1:50 dilution. The cells were also incubated with Hoechst 33342 
(1:50). The stained cells were analyzed using fluorescence 
microscopy with the appropriate filters (Eclipse Ti-U fluorescence 
inverted microscope; Nikon Instruments, Inc., Tokyo, Japan). 

2.8  Statistical analysis 

All of the quantitative results were obtained from three samples. The 
data are expressed as the mean ± SD. Statistical analyses were 
performed using an unpaired Student’s t-test in Excel (Microsoft 
Corporation). Probability values (p) less than 0.05 were considered 
statistically significant. 

3. Results and discussion 
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to be preferable for culturing hAFSCs to maintain pluripotency, as 
indicated by immunostaining results of Sox2 and SSEA4, which 
were consistent with the results obtained for the gene expression of 
Oct4, Sox2 and Nanog in hAFSCs shown in Fig. 7A. 

hAFSCs cultured on soft and stiff PVA hydrogel dishes with 
and without ECM proteins or ECM-derived oligoECMs showed 
relatively similar immunostaining intensity for β-III tubulin 
(Fig. 12). However, high immunoreactivity of AFP was 
observed in hAFSCs cultured on soft PVA-6-FN, PVA-6-
oligoFN, PVA-6-rVN, and PVA-6-oligoVN dishes, as well as 
PVA-6 dishes, whereas only faint staining of AFP was 
observed in hAFSCs cultured on stiff PVA-24 dishes grafted 
with and without ECM and ECM-derived oligopeptides and 
those grown on TCPS dishes (Fig. 13). Soft PVA-6-oligoVN 
dishes may be the preferable cell culture dishes for the 
spontaneous differentiation of hAFSCs into early hepatocytes 
because hAFSCs showed high immunostaining of AFP (Fig. 13) 
and because high expression of the endoderm differentiation 
gene Sox17 (Fig. 9A) was observed in cells cultured on PVA-6-
oligoVN dishes. 

3.6   Comparison of the present work with previously published 
work 

Discher and Engler et al. proposed a general model for the effect of 
stiffness of cell culture biomaterials on the spontaneous 
differentiation of human mesenchymal stem cells (hMSCs) into 
several specific lineages depending on the stiffness of the 
biomaterials20; when hMSCs were cultured in expansion medium 
and not in induction medium to promote differentiation, softer 
materials with elasticities similar to that of the brain (0.3 kPa) tended 
to induce hMSCs to differentiate into early lineages of neural cells, 
whereas stiffer materials (10 kPa) mimicking muscle caused hMSCs 
to spontaneously differentiate into early myoblasts in Engler’s 
work.8,20 Rigid materials similar to collagenous bone were also 
reported to guide hMSCs toward early differentiation into 
osteoblasts. In this study, we examined the effect of stiffness on the 
hAFSC fates of pluripotency and differentiation. The early neural 
cell differentiation of hAFSCs occurred more readily on soft PVA-6 
hydrogel dishes grafted with ECM or ECM-derived oligopeptides, as 
assessed by Nestin gene expression, whereas stiff PVA-24 hydrogel 
dishes grafted with ECMs or ECM-derived oligopeptides guided 
hAFSCs to differentiate into early osteoblasts, as measured by Runx2 
gene expression, similar to what was observed by Engler.8,20 
However, hAFSCs cultured on stiff TCPS dishes did not 
preferentially differentiate into osteoblasts and instead showed the 
lowest pluripotency and the lowest differentiation as measured by 
both gene expression and immunostaining results in this study. 

Tse and Engler prepared crosslinked polyacrylamide (PAAm) 
hydrogels with radial elastic modulus gradients of 1 kPa/mm in an 
elastic module from 1.0 to 14 kPa by photopolymerization using a 
gradient-patterned photomask.8,31 In expansion medium, hMSCs 
tended to migrate into the stiffer hydrogel and then to differentiate 
into a more contractile myogenic cell on the PAAm hydrogels 
immobilized with collagen. In contrast, hMSCs expressing a 
neuronal marker tended to reside on soft regions of the gradient 
PAAm hydrogels.31 It was suggested that soft cell-culture 
biomaterials drive hMSCs toward neuronal differentiation lineages 
when hMSCs are cultivated in expansion medium or induction 
(differentiation) medium.8,20,32-42 These studies are consistent with 
the results in this study that hAFSCs cultured on soft PVA-6 
hydrogels grafted with ECM or ECM-derived oligopeptides better 
support pluripotency and the high expression of Nestin compared 
with cells cultured on stiff PVA-24 hydrogels or TCPS dishes. 
However, PVA hydrogels that are too soft (less than 11 kPa of E’) 

could not support hAFSC proliferation in this study when grafted 
with and without ECM or ECM-derived oligopeptides (Fig. 4). 

Gilbert et al. investigated whether the elastic modulus of the cell 
culture biomaterials plays a critical role in the self-renewal and 
differentiation of stem cells during muscle regeneration.8,43 These 
authors created crosslinked PEG (poly(ethylene glycol)) hydrogels 
immobilized with laminin with different elastic moduli (2, 12, and 
42 kPa). It was found that the number of muscle stem cells expanded 
on soft PEG hydrogels increased twofold compared with cells that 
were cultured on stiff TCPS dishes.43 This result suggests that the 
muscle stem cells exhibit enhanced cell survival when cultured on 
soft PEG hydrogels. Furthermore, the muscle stem cells cultured on 
soft PEG hydrogels were found to express lower levels of a 
differentiation marker (myogenin) compared with cells cultured on 
rigid TCPS dishes.8,43 In Gilbert’s study, the soft cell culture 
biomaterials appeared to enhance cell numbers by increasing cell 
viability and by preventing the differentiation of muscle stem cells in 
vitro,43 whereas hAFSCs in this study exhibited high expression of 
pluripotency genes and the expression of several differentiation-
induced genes when cultured on soft PVA-6 hydrogel dishes grafted 
with ECM or ECM-derived oligopeptides (Figs. 7A and 9A). This 
conflicting phenomenon is likely due to the heterogeneous 
population of stem cells found in hAFSCs, whereas the muscle stem 
cells appear to be a homogeneous cell population. 

An interfacial hydrogel was created by preparing an 
interpenetrating polymer network with an oligopeptide 
containing RGD (arginine-glycine-aspartic acid) sequences on 
the surface with a stiffness ranging from 10 to 10 000 Pa by 
Saha and Healy et al.8,36 Rat neural stem cells expanded when 
cultivated on the hydrogels with elastic moduli greater than 100 
Pa. The highest expression of a neural marker (β-III tubulin) in 
rat neural stem cells was observed on the hydrogels with a 500 
Pa elastic modulus, which is close to the physiological stiffness 
of brain tissue.8,36 It was found that neuronal differentiation 
preferentially occurred on softer hydrogels in their mixed glial 
and neuronal differentiation medium. By contrast, glial 
differentiation occurred preferentially on stiffer hydrogels in 
the same medium.8,36 This study demonstrates that physical 
(elasticity of the cell culture biomaterials) and biochemical 
(ECM and ECM-derived oligopeptide) factors are important 
regulators of self-renewal and specific lineage differentiation of 
stem cells, as observed in the pluripotency and spontaneous 
differentiation of hAFSCs cultured on hydrogels with different 
elasticities grafted with ECM and ECM-derived oligopeptides 
in this study. 

We found that soft PVA-6-oligoVN dishes can maintain 
pluripotency of hAFSCs from high expression of pluripotency 
genes (Figs. 7 and 8) and proteins (Figs. 12 and 13). The amino 
acid sequence of oligoVN selected in this study was also used 
in Melkoumian’s investigation44 where they developed 
polyacrylate dishes grafted with oligoVN for culture of hESCs 
and hiPSC maintaing their pluripotency. hESCs can be cultured 
on the dishes grafted with oligoVN without differentiation of 
hESCs for over 10 passages, whereas hESCs cannot be cultured 
on the dishes grafted with oligopeptides derived from laminin 
or fibronectin because of easy differentiation of hESCs on the 
dishes. Therefore, the specific sequence of oligoVN seems to 
be an optimal sequence to keep pluripotency of stem cells 
including hAFSCs as well as hESCs and hiPSCs. Not only 
biochemical factor (amino acid sequence of oligoVN) but also 
physical factor (low elasticity) of PVA-6-oligoVN should be 
the reason why PVA-6-oligoVN dishes can keep pluripotency 
of hAFSCs compared to other dishes investigated in this study. 
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Conclusions 

hAFSCs were cultured on soft and rigid PVA hydrogels grafted 
with and without ECM or ECM-derived oligopeptides to 
evaluate the regulation of pluripotency and spontaneous 
differentiation of the cells in expansion medium. It is necessary 
for the PVA hydrogels to have a minimum storage modulus 
(E’>12 kPa) to support hAFSC proliferation and expansion on 
the PVA hydrogels grafted with and without ECM or ECM-
derived oligopeptides. The soft PVA-6-ECM and PVA-6-
oligoECM hydrogel dishes (E’=12.2 kPa) are favorable for 
culturing hAFSCs that maintain high pluripotency, as assessed 
by pluripotency gene and protein expression, compared with 
the relatively stiff PVA-24-ECM and PVA-24-oligoECM 
hydrogel dishes (E’=25.3 kPa) or TCPS and TCPS dishes 
coated with CELLstart (12 GPa of elastic modulus). Soft PVA-
6-oligoFN and PVA-6-oligoVN dishes are the most favorable 
cell culture dishes for hAFSCs to maintain high pluripotency 
and to induce spontaneous differentiation into early neural cells 
(i.e., high expression of Nestin). Relatively stiff PVA-24-COLB, 
PVA-24-oligoVN, PVA-24-FN and PVA-24-oligoFN dishes 
but not the stiffest TCPS dishes promote spontaneous 
differentiation of hAFSCs into early osteoblasts (i.e., high 
expression of Runx2). hAFSCs expressing higher levels of 
pluripotency genes (Oct4, Sox2 and Nanog) on PVA-ECM and 
PVA-oligoECM hydrogel dishes also showed higher expression 
of three early germ layer marker genes (Sox17, Runx2 and 
Nestin) in expansion medium. This result suggests that the 
hAFSCs contain a heterogeneous stem cell population and, 
therefore, contain highly pluripotent stem cells and stem cells 
that can easily differentiate. It is concluded that both insoluble 
biochemical cues (ECM-derived oligopeptides) and physical 
cues (stiffness) of cell culture biomaterials are important factors 
to maintain the pluripotency and spontaneous differentiation 
ability of stem cells. 
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Human amniotic fluid-derived stem cells can keep their pluripotency cultured on soft 

polyvinylalcohol hydrogels grafted with several oligopeptides derived from extracellular 

matrices. 
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