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gold nanoparticles can be organized onto a macroscopic surface in a one-pot process, leading to well 
recyclable catalyst  
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One-Pot to Porous Monolith-Supported Gold 
Nanoparticles as a Well Recyclable Catalyst 

Yonglian Ye,a Ming Jina and Decheng Wan*a  

Gold nanoparticles (AuNPs) are excellent catalysts but the recycle remains a central concern. 
Support of AuNPs on a porous monolith is one popular strategy but usually suffers from 
multistep and inefficient preparation. Here we show a one-pot strategy to well recyclable 
AuNPs supported on a porous monolith. It is known that polymerization of the oil phase of a 
high internal phase emulsion (HIPE) stabilized by surfactants can lead to a macroscopic and 
porous monolith (polyHIPE). If the surfactant is replaced with a dendritic amphiphile (DA) of 
PEI@PS (hyperbranched polyethylenimine (PEI) functionalized with polystyrene (PS) and 
dodecyls), and the water phase is charged with chloroauric acid, one-pot fabrication of AuNP-
decorated polyHIPE (Au-DA-polyHIPE) is feasible. Alternatively, if Au-DA (AuNP stabilized 
with PEI@PS) is used in the place of the surfactants, Au-DA-polyHIPE can be similarly 
obtained. The Au-DA-polyHIPE samples are of open-cell and porous structure, and can well 
catalyze the reduction of 4-nitrophenol. The catalytic materials are well recyclable with no 
decreased activity at least within 6 cycles, where the multivalent and multi-ligand PEI should 
be responsible for the stability. 

Introduction 

The recycle of noble metal catalyst remains a central concern 
for several reasons: (1) most metal catalysts are expensive; (2) 
it favors cost-effective production, environment protection and 
sustainable development; (3) it favors quality products, 
especially where pharmaceuticals involve. Noble metal 
nanoparticles represent a family of exciting catalysts arising 
from their size-dependent property1-4 but are usually poorly 
recyclable. For a high activity of conventional nanoscale 
AuNPs, the surface should be of large area and be active; while 
for good stability and well recyclable AuNPs, the surface 
should be sufficiently passivized. In recent decades, with the 
advent of the large-scale, cost-effective production of 
hyperbranched polymers (dendritic polymers), preparation of 
nanoscale, quality, stable and well dispersible metal catalysts 
has become possible. Unlike a small surfactant and linear 
polymer, dendritic polymers can act as multi-ligand stabilizers, 
size-controlling templates and in some cases simultaneously as 
a steric stabilizer, which are favorable to produce a stable while 
active gold nanocomposite.5-11 However, gold nanocomposites 
are usually of very small sizes and poorly recyclable. Ying et 
al.3 claimed in a review that “The challenge in the future of 
nanocatalyst research lies in the rational design and 
development of multifunctional, robust, and recyclable 
nanocomposite catalysts…..”. Support of metal catalysts on 

magnetic materials12-17 or inorganic frameworks17, 18 is 
favorable to recycle. Recently, macroscopic and porous 
polymeric matrixes are becoming popular supports of metal 
nanoparticles.19-29 For example, Backov et al.24 successfully 
immobilized catalytic palladium nanoparticles onto a porous 
polymeric material via a 5-step procedure, and the resulting 
catalyst appears well recyclable. Zhang et al.29 successfully 
prepared very large porous beads (diameters at millimeter 
scale), with AuNPs embedded on the surface as recyclable 
catalyst. However, a straightforward way to supported metal 
nanoparticles is still rarely reported. 
Polymerization of a high internal phase emulsion (HIPE) is a 
well-known and convenient way to prepare a highly porous 
material usually with interconnected pores throughout the 
structure (termed polyHIPE).30, 31 In a conventional process of 
polyHIPE, small surfactants are used as stabilizers, which 
undergo self-assembly along the water-in-oil (W/O) interface to 
stabilize the HIPE systems until polyHIPEs are formed. But in 
such a case, the surfactants only loosely adhere to the interface 
and are labile to running off, thus can poorly act as functional 
sites. One strategy is washing away the surfactants and 
chemically introducing new covalent functional groups onto the 
matrix, but such a strategy is less popular for the usually low 
efficiency of a heterogeneous reaction. Recently, it was found 
that some amphiphilic block copolymers can replace the 
surfactants, where the latter tends to irreversibly adhere to the 
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interface and directly act as a functional surface.32 Some 
inorganic particles,33-35 polymers or polymeric gels36-38 can also 
mediate the synthesis of a polyHIPE for their usually quasi-
irreversible adhesion39 to the interface. The ready availability of 
porous polyHIPE renders it one important candidate support of 
metal nanoparticles. Regardless of this fact, most routes to 
supported metal nanoparticles suffer from several drawbacks: 
(1) multi-step and less efficient immobilization of metal 
nanoparticles on a porous solid due to the heterogeneous 
reactions, and the solid-supported catalysts are usually less well 
controlled during synthesis and the resulting materials are less 
efficiently characterized; (2) metal leakage and contamination 
of the product due to poor stabilizing ability of the support; (3) 
aggregation or ripening of the metal nanoparticles, which leads 
to deterioration of the catalytic property. Many dendritic 
amphiphiles can act as multi-ligand stabilizer of AuNPs5-10 
while rarely inhibit their catalytic property, and are rather 
conveniently available. In view that dendritic amphiphiles are 
versatile building blocks of a variety of interesting 
nanostructures for their amphiphilic property and the unique 
topology,40, 41 they should be possible to replace the small 
surfactants in a HIPE system. In fact, it is very recently 
reported by us that dendritic amphiphiles alone could directly 
leads to a functional polyHIPE.42 If a AuNP-bearing dendritic 
amphiphile can be used as a stabilizer of a HIPE system, then 
3D AuNPs-decorated polyHIPE will be one-pot available. Here 
we show the first example that AuNPs-bearing dendritic 
amphiphile can be used as a stabilizer of a HIPE system for 
one-pot preparation of Au-DA-polyHIPE. Alternatively, Au-
DA-polyHIPE can also be prepared by just charging 
chloroauric acid in a dendritic amphiphiles-mediated HIPE 
process. The resulting Au-DA-polyHIPE can be used as a well 
recyclable catalyst. 

Experimental Section 

Materials 

Toluene, 2, 2-azobisisobutyronitrile (AIBN) and chloroauric 
acid (HAuCl4, 99%) were purchased from SCRC (China). 
Styrene (St, 99%) and divinyl benzene (DVB, 80%) were 
acquired from Aladdin and purified by distillation under 
vacuum to eliminate the inhibitor. AIBN was recrystallized 
with ethanol. Phosphate buffered water (pH = 7.4, 0.01 M) was 
used as the disperse phase. The Teflon filter-bag with 
hydrophilic pores ( 45 m) and Teflon sewing thread were 
purchased from China Micron Filter Expert and Tianshun 
Polymeric Materials (China), respectively. Branched 
polyethylenimine (PEI, Mn = 1 × 104, Mw/Mn = 2.5, degree of 
branch = 60%) was purchased from Aldrich. 

Preparation of dendritic amphiphiles 

DA1 and DA2 (Table 1) were synthesized as previously 
reported.42, 43 DA3 was synthesized as follows: DA2 (5 g, with 
1.2 mmol residual amino protons) and glycidyloxydodecane44 
(0.58 g, 2.4 mmol) in chloroform (20 mL) was prepared and 

stirred at room temperature for 2 d. The solution was subjected 
to dialysis against fresh chloroform for 2 d (dialyzing tube: 
spectro/por, MWCO: 8000-14000) before evaporation of the 
solvent to yield a solid (5.2 g). 1H NMR (CDCl3, /ppm): 6.8-
7.4 (22.0 H), 6.2-6.8 (14.2 H), 1.1-2.4 (43.0 H), 2.4-4.5 (10.7 
H), 0.85 (3.8 H).  

Table 1. Structures of several dendritic amphiphiles (DA) 

DA Structurea Mn (cald.) 
DA1 PEI@PS21-31 81300 
DA2 PEI@PS520-16 875280 
DA3 PEI@PS520-16-(C12)-162 914484 

a Nomenclature: e.g. PEI@PS520-16-(C12)-162 means for one PEI, 16 
polystyrene (PS) chains (with a polymerization degree of 520) and 162 
dodecyl (C12) groups were attached to. 

Preparation of AuNPs stabilized by a dendritic amphiphile 

 Typically (for a molar ratio of N/Au = 16), to a solution of 
DA3 (0.1 g, 0.026 mmol N) in chloroform (5 mL), HAuCl4 in 
water (1.6  10-6 mol in 9.7 μL water) was added under stirring. 
The stirring was kept for 24 h, followed by drying over sodium 
sulfate and evaporation of the chloroform to yield a brown 
powder, denoted as Au-DA3. 

Preparation of Au-DA-polyHIPE, route a 

Typically, to an oil phase (2 mL) composed of St (0.96 mL), 
DVB (0.24 mL), toluene (0.78 mL), AIBN (11.6 mg) and DA3 
(0.2 g), buffered water (8 mL) containing HAuCl4 (6 g, 1.6  
10-6 mol) was added dropwise under vigorous stirring. The 
resulting emulsion was subjected to heating at 70 °C for 2d 
without stirring, followed by washing in sequence with 
deionized water and ethanol before drying in vacuum.  

Preparation of Au-DA-polyHIPE, route b 

Typically, to an oil phase (2 mL) composed of St (0.96 mL), 
DVB (0.24 mL), toluene (0.78 mL), AIBN (11.6 mg) and Au-
DA3 (0.2 g), buffered water (8 mL) was added dropwise under 
vigorous stirring. The following workup was similarly to route 
a. 

Catalytic reduction of 4-nitrophenol 

 Typically, to an aqueous solution (20 mL) containing 4-
nitrophenol (0.06 mM) and NaBH4 (0.5 g), Au-DA-polyHIPE 
(0.1 g, containing 8.9  10-6 mol Au atoms), cutting into pieces 
and packed in a hydrophilic Teflon filter-bag, was added. The 
reduction in the aqueous system was under gentle stirring and 
was monitored with a UV/vis spectrometer at a regular time 
interval. The bag was fished out, sucked with filter paper and 
dropped in another recycle reaction.  

Characterization  

UV/vis spectra were recorded on a Mapada UV-6300 
spectrophotometer (Shanghai Mapada Instruments Co., Ltd.). 
Transmission electronic micrograph (TEM) was recorded on an 
H-800 Omega microscopy operating at an acceleration voltage 
of 200 kV on a carbon-coated copper grid. Samples were 
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