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Fig. 1 (Color online) Swimmer’s self-propulsion mechanism: O and P

are respectively the center of mass and the center of force of a spherical

Janus particle. v0 represents the instantaneous self-propulsion velocity

vector; φ and ψ denote the angle between the OP axis and, respectively,

the x axis and v0. The average direction of~v0 is oriented parallel to OP.

changes in the orientation of the self-propulsion velocity do not

necessarily imply body’s rotations18–20. As a consequence, the

vector v0 ought to be allowed to fluctuate around its average di-

rection (the body’s axis of coordinate φ) with non-zero relaxation

time and variance. On the other hand, the self-propulsion speed,

v0, results from the “effective” force21 exerted by the suspension

fluid on the active surface of the particle at low Reynolds numbers

(overdamped regime). Contrary to the case of an externally ap-

plied driving force, the center of such a force does not necessarily

coincide with the particle’s center of mass. In general, the two

centers are separated by a finite distance, which depends on the

swimmer’s composition, geometry and surface functionalization.

For simplicity, in Fig. 1 we assume that both centers rest on the

axis of coordinate φ .

In this paper we combine analytical arguments and numerical

simulations to prove that upon relaxing assumption (1) alone, the

angular reorientation of the swimmer occurs on a shorter time

scale. Since the active diffusion constant, D−D0, is proportional

to such a characteristic time, the ensuing diffusion process gets

suppressed. Eccentric swimmers, where, in violation of assump-

tion (2), the center of force and center of mass are a distance

apart, exhibit an even more intriguing dependence on the sys-

tem parameters. On increasing v0 their active diffusion constant

grows from quadratic to linear in v0, the transition being often

signaled by a plateau. Moreover, eccentricity leads to an overall

suppression of the swimmer’s active diffusion.

To appreciate the practical consequence of these conclusions,

we remind that the quantities v0, D0 and D are experimentally

accessible, so that the rotational rate Dφ in Eq. (1) is estimated

through the identity Ds = v2
0/2Dφ . This means that the experi-

mental data available for Dφ are based on indirect measurements.

However, we show here that such estimates are sensitive to swim-

mer’s propulsion parameters, like the eccentricity and the fluctua-

tions of the propulsion velocity in the body frame, which are usu-

ally neglected. All this supports the suggestion18,19 that modeling

swimmer propulsion mechanisms may prove a more complicated

task than anticipated. On the other hand, a more refined analysis

of active diffusion is expected to find concrete implementation in

such technological tasks, like the design and operation of micro-

robots and other micro-devices powered by active swimmers, or

the control of artificial micro-swimmer transport for biomedical

applications8.

The contents of this paper is organized as follows. In Sec. 2 we

present a simple model that accounts for the angular fluctuation

of the self-propulsion velocity in the body frame of an eccentric

microswimmer. By such a model we introduce two additional

parameters besides the swimmer’s eccentricity, namely the relax-

ation rate and variance of the angle ψ between the instantaneous

self-propulsion velocity vector and its time average. In Sec 3 we

first discuss the diffusion dynamics of non-eccentric swimmers for

different values of the parameters that characterize the stochastic

dynamics of ψ(t). In Sec. 4 we consider the more general case

of swimmers with increasing eccentricity and investigate the con-

ditions under which their active diffusion constant undergoes a

transition from a quadratic to a linear function of v0. In Sec. 5 we

model the chiral behavior of an eccentric swimmer by imposing a

persistent misalignment between its self-propulsion velocity and

the axis through its two centers. Finally, in Sec. 6 we discuss the

phenomenological consequences of our results.

2 The model

The self-propulsion model we propose is illustrated by the sketch

of Fig. 1. We assume that the center of force, P, and the center of

mass, O, rest on a swimmer’s symmetry axis. The instantaneous

self-propulsion velocity is oriented at an angle ψ with respect to

the axis OP and fluctuates around it, with constant modulus, v0,

and finite relaxation rate, κψ , and variance, 〈ψ2〉. For conve-

nience, ψ(t) is thus described by a stationary Ornstein-Uhlenbeck

process17. Due to the propulsion force applied in P, the over-

damped swimmer tends to rotate around its center of mass, sub-

ject to a torque with ψ-dependent angular frequency, −αv0 sinψ,

and moment of inertia Iα = Iα (α) with Iα (0) = 1. The latest equal-

ity amounts to scaling all lengths by an appropriate characteristic

length l, that is, x → x/l, y → y/l, so that α represents the dimen-

sionless OP distance. The dependence of the rescaled moment of

inertia, Iα , on the swimmer’s eccentricity is left unspecified. We

only argue that it ought to be a growing, even function of α. The

resulting swimmer’s dynamics is thus modeled through the set of

four LEs,

ẋ = v0 cos(φ +ψ)+
√

D0 ξx(t),

ẏ = v0 sin(φ +ψ)+
√

D0 ξy(t),

φ̇ = −v0(α/Iα )sinψ +
√

Dφ/Iα ξφ (t),

ψ̇ = −κψ ψ +
√

Dψ ξψ (t), (2)
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Fig. 2 (Color online) Diffusion constant of a non-eccentric swimmer with

α = 0: (a) D vs. κψ for Dψ = 1 and different values of Dφ (legend), and

(b) D vs. Dψ for Dφ = 0.003 and different values of κψ (legend). In both

panels v0 = 1, D0 = 0.01. The dashed curves in (a) and (b) are the

analytical predictions of Eq. (7).

where x and y are the coordinates of O and all noises are statisti-

cally uncorrelated and defined as in Eq. (1). We recall17 that the

process ψ(t) is Gaussian with zero mean, autocorrelation function

〈ψ(t)ψ(0)〉= 〈ψ2〉e−κψ t , (3)

and variance 〈ψ2〉= Dψ/κψ . For Dψ/κψ ≪ 1, the velocity fluctu-

ations in the body frame are suppressed and the standard model

of Eq. (1) is recovered. Since the LE for ψ is invariant un-

der the transformation ψ →−ψ, it follows immediately that the

LE for φ is invariant under the simultaneous transformations

(α,ψ)→ (−α,−ψ) and, therefore, the swimmer’s diffusion is in-

sensitive to the sign of α. For this reason, the eccentricity param-

eter can be restricted to nonnegative values, α ≥ 0, without loss

of generality.

We remark that the swimmer’s eccentricity was implemented

here for the possibly oversimplified case of a spherically symmet-

ric and perfectly isotropic particle. Realistic eccentric swimmers

are more likely anisotropic, too, typical examples being the active

colloidal particles of arbitrary geometries (L-shaped, ellipsoidal,

rod-like, etc) widely investigated in the current literature. Ex-

tending our model to account for non-spherical swimmers would

require implementing the tedious formalism of anisotropic mobil-

ity and diffusion tensors, as discussed for instance in Refs.22,23.

Of course, such an approach would be more exhaustive, but has

the drawback of obscuring the role of eccentricity by adding un-

necessary details to the model.

The stochastic differential Eqs. (2) were numerically inte-

grated by means of a standard Euler-Maruyama scheme24. The

stochastic averages were taken over an ensemble of trajectories

with random initial swimmer orientation, i.e., a uniform dis-

tribution with φ(0) ∈ [0,2π] for φ , and a Gaussian distribution

with variance Dψ/κψ for ψ. The additional relaxation rates, κψ

and Dψ , do not alter the well-established normal diffusion law,

limt→∞〈r
2(t)〉 = 4Dt, mentioned in Sec. 1, but rather allow the

spatial diffusion constant, D, to be tuned.

In the remaining sections we will thus compare the output of

our numerical simulations with analytical predictions for the dif-

fusivity, D, either exact or approximate, depending on the choice

of the model parameters. To this purpose we had recourse to

Kubo’s formula16,17,25,26

D =
∫ ∞

0
〈ẋ(t)ẋ(0)〉dt = D0 +

∫ ∞

0
C(t)dt, (4)

with C(t) = v2
0〈cos[φ(t) + ψ(t)]cos[φ(0) + ψ(0)]〉. Note that our

model is isotropic so that D can equivalently be computed along

either orthogonal axis in the plane. We also notice that the dif-

fusion contribution from the translational (thermal) fluctuations

of the coordinates x and y boils down to the additive term D0 in

the second identity of Eq. (4). Therefore, we will focus below our

attention on the active term of the diffusion constant, D−D0, and

how much it deviates from the predicted value, Ds = v2
0/2Dφ , of

the standard model of Eq. (1).

3 Diffusion of non-eccentric swimmers

We start our analysis with the exactly integrable case of a non-

eccentric swimmer. At α = 0 the LEs for φ and ψ decou-

ple, so that φ(t), too, is Gaussian. As a consequence, the

angular autocorrelation function C(t) factorizes, namely C(t) =

v2
0〈cosφ(t)cosφ(0)〉[〈cosψ(t)cosψ(0)〉+ 〈sinψ(t)sinψ(0)〉]. Due to

the Gaussian statistics of φ(t) and ψ(t), we easily derive the useful

identities

〈cosφ(t)cosφ(0)〉 = (1/2)e−〈∆φ 2(t)〉/2,

〈cosψ(t)cosψ(0)〉 = e−〈ψ2〉 cosh〈ψ(t)ψ(0)〉,

〈sinψ(t)sinψ(0)〉 = e−〈ψ2〉 sinh〈ψ(t)ψ(0)〉, (5)

where 〈∆φ 2(t)〉= 2Dφ t and 〈ψ(t)ψ(0)〉 is given in Eq. (3).

On inserting these equalities in the factorized expression for

C(t) we arrive at

C(t) = (v2
0/2)e

−
Dψ
κψ exp

[

−Dφ t +
Dψ

κψ
e−κψ t

]

, (6)

Kubo’s integral can be calculated explicitly in powers of Dψ/κψ ,

1–8 | 3
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namely27

D−D0 = Dse
−Dψ/κψ

∞

∑
m=0

1

m!

(Dψ/κψ )
m+1

m(Dψ/Dφ )+(Dψ/κψ )

= DsΓ

(

1+
Dφ

κψ

)

∞

∑
m=0

(−Dψ/κψ )
m

Γ(m+1+Dφ/κψ )
, (7)

where Γ(x) denotes a gamma function. This expression closely re-

produces the simulation data plotted in Fig. 2 for different values

of the model parameters.

A few limiting regimes of Eq. (7) can be evaluated explicitly.

When the relaxation rate of the propulsion angular fluctuations

in the body frame is much smaller than the body’s rotational dif-

fusion constant, that is for Dφ/κψ ≫ 1, making use of the approx-

imation27

lim
x→∞

Γ(x+a)

Γ(x)
= ea lnx

in the second identity of Eq. (7), yields

D−D0 = Ds

Dφ

Dφ +Dψ
. (8)

The emergence of this decay law of the active diffusions constant

is apparent in Fig. 2(b) for small κψ . In the opposite and more

realistic case of fast relaxing and small amplitude angular fluctu-

ations of the self-propulsion velocity, that is for Dφ/κψ ≪ 1 and

Dψ/κψ ≪ 1, from the first identity in Eq. (7) follows immediately

that

D−D0 = Ds e−Dψ/κψ . (9)

In any case, the active diffusion constant, D − D0, gets sup-

pressed by raising the relaxation time of the self-propulsion fluc-

tuations in the body frame. The physical interpretation of this

effect is straightforward: weakening the restoring constant κψ fa-

vors the spatial reorientation of the swimmer’s kinematic velocity

and, correspondingly, the suppression of its spatial diffusivity28.

4 Diffusion of eccentric swimmers

The diffusion of eccentric swimmers exhibits a much richer phe-

nomenology. Its most intriguing properties are illustrated in Fig.

3, where we plotted the active diffusion constant, D−D0, versus

the self-propulsion speed for different values of the dynamical pa-

rameters. Prominent features of the curves D(v0) are:

(i) The transition from a quadratic to a linear dependence on

v0. The linear regime for high values of v0 is peculiar of eccentric

swimmers and disappears at α = 0, panel (a);

(ii) The two regimes are separated by a plateau for intermedi-

ate v0 values, which grows wider on increasing the eccentricity,

panel (a);

(iii) On a closer inspection, two distinct quadratic regimes are

distinguishable, respectively, for Dψ/κψ ≪ 1 and Dψ/κψ ≫ 1,

panels (b) and (c), transitions between them occurring on rais-

ing v0 for appropriate choices of the model parameters, panel (c);

(iv) Decreasing the rotational diffusion constant, Dφ , tends

to suppress the quadratic regime, panel (d), by widening the

plateau.

Kubo’s formula provides a simple quantitative interpretation of
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Fig. 4 (Color online) Active diffusion constant versus eccentricity,

D−D0 vs. α for: (a) v0 = 0.1, κψ = 0.1 and different Dφ ; (b) v0 = 3.0,

Dφ = 0.003 and different κψ . In both panels D0 = 0.01 and Dψ = 0.1. The

dashed curves represent our analytical predictions: (a) the plateau of

Eq. (13); (b) the plateau of Eq. (13) for the largest κψ , and the linear

regime of Eq. (15) with κψ = Dψ = 0.1 (which also coincides with the

non-Gaussian estimate reported in the text).

these results. Computing the angular autocorrelation function,

C(t), is no easy task, as for α > 0 the variables φ and ψ are cou-

pled. However, in the physically relevant regime of small ψ fluc-

tuations, Dψ/κψ ≪ 1, the approximation sinψ ∼ ψ allows us to

treat φ(t) in Eq. (2) as a Gaussian process. Accordingly, the cal-

culation of D follows immediately the procedure of Sec. 3 with

the only difference that here

〈∆φ 2(t)〉= 2[Dφ/Iα ]t + (10)

(αv0/Iα )
2e−〈ψ2〉

∫ t

0

∫ t

0
sinh〈ψ(s)ψ(s′)〉dsds′,

with the restriction Dψ/κψ ≪ 1. [The second term on the r.h.s.

of Eq. (10) has been obtained with the help of the third identity

of Eq. (5).] When trying to integrate C(t) in Kubo’s formula,

one singles out a few parameter domains where the task can be

carried out analytically:

(1) Plateau regime. For large enough κψ and v0, such that both

inequalities Dψ/κψ ≪ 1 and

1

Iα

Dφ

Dψ
+

(

v0

κψ

)2( α

Iα

)2

≪
κψ

Dψ
, (11)

4 | 1–8
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Fig. 3 (Color online) Diffusion constant versus propulsion speed for an eccentric swimmer with D0 = 0.01 and α > 0: D vs. v0 for (a) for κψ = 0.1,

Dψ = 0.1, Dφ = 0.003 and different α; (b) κψ = 0.1, α = 1.0, Dφ = 0.003 and different Dψ ; (c) Dφ = 0.003, Dψ = 0.1, α = 1.0, and different κψ ; (d)

κψ = 0.1, Dψ = 0.1, α = 1.0, and different Dφ (see legends). All quantities plotted here have the dimensions of [t−1], and are expressed in units of the

model Eqs. (2). The dashed curves in (a) and (b) are our analytical predictions from Sec. 4: (a) plateaus, Eq. (13) for α = 10 (top) and 0.9 (bottom);

(b)-(c) quadratic, Eq. (18), and linear regime, Eq. (15), respectively for Dψ = 0.01 and κψ = 2.0 (top data sets); quadratic, Eq. (19), and non-Gaussian

linear regime (see text), respectively for Dψ = 3.0 and κψ = 0.005 (bottom data sets); (d) plateau, Eq. (13).

hold, C(t) in Kubo’s integral can be approximated by

C(t) ≃
v2

0

2
e
−

Dψ
κψ (12)

× exp

[

−
Dφ

Iα
t − e

−
Dψ
κψ

(

v0

κψ

)2( α

Iα

)2

Dψ t

]

,

hence

D−D0 =
DsIα

eDψ/κψ +(Dψ/Dφ )(v0/κψ )2(α2/Iα )

≃
κ2

ψ

2Dψ

(

Iα

α

)2

, (13)

the second equality holding only for (v0/κψ )
2 ≫ Dφ/Dψ . This

analytical expression closely reproduces the plateaus of the curves

D(v0) in Fig. 3 for the largest α and v0, and the smallest Dφ values

plotted there.

(2) Linear regime. On increasing v0 beyond the plateau range,

the inequality (11) eventually fails. In such a limit, and more

precisely for v0/κψ ≫ Iα/α, the Kubo’s integral is dominated by

the short-time decay of 〈∆φ 2(t)〉, Eq. (10), so that

C(t)≃
v2

0

2
exp

[

−

(

Dψ

κψ

)(

v0

κψ

)2( α

Iα

)2 (κψ t)2

2

]

, (14)

which, after integration, yields

D−D0 =
v0

2

√

π

2

Iα

α

√

κψ

Dψ
. (15)

In the case of large ψ fluctuations, Dψ/κψ ≫ 1, the Gaussian ap-

proximation of Eq. (10) is no longer tenable. Nevertheless, one

can prove (not shown here) that Eq. (15) still applies upon re-

placing the factor
√

κψ/Dψ with 1.

(3) Quadratic regimes. In Fig. 3 the quadratic branches of the

D(v0) curves are always detectable as long as we move to small

enough v0. Indeed, as v0 → 0, the integrand C(t) in Kubo’s formula

can be approximated to

C(t)≃ (v2
0/2)e−Dψ/κψ e−Dφ t/Iα , (16)

for κψ ≫ Dφ/Iα , and

C(t)≃ (v2
0/2)e−[Dφ /Iα+Dψ ]t , (17)

for κψ ≪ Dφ/Iα . Accordingly, the active diffusion constant tends,

respectively, to

D−D0 = DsIα e−Dψ/κψ , (18)

and

D−D0 =
DsIα

Iα Dψ/Dφ +1
, (19)

where we remind that Ds = v2
0/2Dφ . Since I(0) = 1, the limits
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Fig. 5 (Color online) Active diffusion constant of a chiral eccentric

swimmer, D−D0 vs. ψ0 for: (a) v0 = 1.0, and different Dψ ; (b) Dψ = 0.1

and different v0. In both panels D0 = 0.01, Dφ = 0.01, κψ = 1.0 and

α = 0.5. The dashed curves in (a) and (b) are the analytical predictions

of Eq. (23) with D̄ given in Eq. (18); the arrows in (b) indicate the

predicted minima accumulation point of Eq. (25), bottom right, and the

linear regime estimate of Eq. (15) for ψ0 = 0, top left.

α → 0 of Eqs. (18) and (19) coincide with the corresponding dif-

fusion constants of Eqs. (9) and (8) for a non-eccentric swim-

mer. Both quadratic behaviors of the D(v0) curves are clearly

distinguishable in Fig. 3(c). One curve in particular exhibits a

crossover between the quadratic laws of Eqs. (18) and (19) for

κψ/Dψ ∼ (α/Iα )(v0/κψ ), see inequality (11) for Dφ ≪ Dψ . In-

deed, such a crossover may set in before the transition to the

linear regime takes place.

Transitions between the diffusive regimes detailed above were

obtained in Fig. 4 by varying the swimmer’s eccentricity, α, at

constant self-propulsion speed, v0. We used here α as a free pa-

rameter with 0 ≤ α < ∞ to numerically test the analytical results

of the section. For mere geometric reasons, realistic values of α

ought to be quite small, that is, 0 ≤ α ≪ 1. In our simulations we

set Iα = 1+α2, so that the ratio Iα/α has a minimum equal to 2

for α = 1. We plotted the active diffusion constant, D−D0, versus

α both at low, panel (a), and large v0, panel (b).

In Fig. 4(a) the condition v0/κψ ≪ Iα/α holds for any α, so that

the only detectable transition is from the quadratic to the plateau

regime. In the limit of vanishingly small α both quadratic regimes

of Eqs. (18) and (19) were recovered, respectively for the lowest

and the largest Dφ values, in good agreement with the analytical

predictions. For appropriately large α values the inequality (11)

holds irrespective of the remaining model parameters. In view of

the discussion above, this implies that the plateau regime eventu-

ally sets in, but no more regime changes are expected on further

increasing α. In both panels of Fig. 4 the plateau regime cor-

responds to the quadratic branches of the D(α) curves, see Eq.

(13).

In Fig. 4(b) v0 was chosen large enough to satisfy the condition

(11) with v0/κψ ≫ Iα/α, required to detect the linear diffusive

regime of Eq. (15). Of course that was only possible for a cer-

tain neighborhood of α = 1, where Iα/α and, therefore the D(α)

curves hit a minimum. On increasing α, Iα/α grows larger un-

til the linear regime condition fails and a change in the diffusive

regime must occur. At large κψ , Dψ/κψ ≪ 1, the expected tran-

sition toward the plateau regime, proportional to α2, is clearly

detectable. At low κψ , Dψ/κψ ≫ 1, the active diffusion curves

first approach the quadratic regime of Eq. (19), which is almost

insensitive to α, and then turn upward quadratically for exceed-

ingly large values of α, thus signaling a final transition to the

plateau regime.

5 Diffusion of chiral eccentric swimmers

We extend now our analysis to discuss the diffusion of eccen-

tric circle swimmers14. We assume, for instance, that the self-

propulsion velocity in the body frame is directed in average at an

angle ψ0 with respect to the axis OP. This means that an over-

damped swimmer is subjected to an effective torque with nonzero

mean angular frequency, Ωψ = −[α/Iα ]〈sinψ〉 6= 0. Its trajectory

then consists of a random sequence of circular arcs the particle

traces counterclockwise for Ωψ > 0, or clockwise for for Ωψ < 0,

termed, respectively, positive and negative chiral trajectories. Ac-

cordingly, the forth LE of the set of model Eqs. (2) is rewritten

as

ψ̇ =−κψ (ψ −ψ0)+
√

Dψ ξψ (t), (20)

where ψ0 ∈ [−π,π]. On inspecting Eqs. (2) and (20) one con-

cludes immediately that changing the sign of ψ0 is equivalent to

transforming the spatial coordinates as (x,y,φ) → (x,−y,−φ), so

that the swimmer’s chirality does change sign, but its active diffu-

sion stays the same, or, stated otherwise, D is a function of |Ωψ |.

An intrinsic rotational torque on a floating swimmer can be ei-

ther the accidental result of a fabrication defect or a desired effect

obtained, e.g., by bending an active nanorod29,30. In the current

literature14,16,21,31 swimmer’s chirality is modeled by adding an

ad hoc bias, Ω, to the LE for φ , namely, φ̇ = Ω+
√

Dφ ξφ (t). In the

present model the torque frequency emerges as a dynamical effect

due to the misalignment of the propulsion velocity with the OP

axis of the swimmer. Since the biased process ψ(t) in Eq. (20) is

Gaussian, an explicit analytical expression for the average torque

frequency is readily derived, that is

Ωψ =−
v0α

Iα
sinψ0e−Dψ/2κψ . (21)

As already stated in the literature, chirality suppresses diffusion.

This conclusion applies to eccentric swimmers, too, as illustrated
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in Fig. 5. Note that |Ωψ | is a monotonically increasing function of

ψ0 for 0 < ψ0 < π/2, so that we expect D to have a maximum at

ψ0 = 0 and a minimum at ψ0 = π/2, with mirror symmetry around

both points, i.e., D(−ψ0) = D(ψ0) and D(−ψ0 + π/2) = D(ψ0 −

π/2). For this reason, the simulation curves for D as a function of

ψ0 in Fig. 5 are plotted in the reduced range ψ0 ∈ [0,π/2].

Calculating the spatial diffusion of a chiral swimmer from

Kubo’s formula is still an affordable task, though rather tedious.

In Gaussian approximation, Dψ/κψ ≪ 1, the difference between

the model for chiral and non-chiral swimmers boils down to re-

placing

−
α

Iα
sinψ → Ωψ −

α

Iα
cosψ0 sinψ,

in the LE (2) for the rotational coordinate φ . The corresponding

angular autocorrelation function reads16

C(t)≃
v2

0

2
cos(Ωψ t)e

−
Dψ
κψ

(1−e−κψ t )
(22)

× exp

[

−
Dφ

Iα
t − cos2 ψ0e

−
Dψ
κψ

(

v0

κψ

)2( α

Iα

)2

Dψ t

]

,

with Ωψ given in Eq. (21). Kubo’s integral is worthy to be cal-

culated analytically to explain a few interesting features of the

D(ψ0) curves of Fig. 5:

(i) Low chirality limit, ψ0 → 0. The C(t) of Eq. (22) tends to that

of Eq. (16) for low v0, and Eq. (14) for large v0. Accordingly,

in Fig. 5(b) the horizontal plateaus at low ψ0 shift upward with

v0, retracing the crossover from the quadratic to the linear regime

shown in Fig. 3 for ψ0 = 0;

(ii) Quadratic regime. For conveniently small v0 values, the term

proportional to cosψ0 in the exponential function of Eq. (22) can

be neglected, so that for Dψ/κψ ≪ 1 the two limits of Eqs. (16)

and (17) are recovered, depending on the ratio κψ/Dφ . Kubo’s

formula for the active diffusion constant yields

D−D0 =
D̄

1+(Iα Ωψ/Dφ )2
, (23)

where D̄ is the corresponding value of D−D0 at ψ0 = 0, see Eq.

(18) or (19).

(iii) Linear regime at ψ0 = π/2. In Fig. 5(b) the D(ψ0) curves for

large v0 tend to approach the same minimum value at ψ0 = π/2.

This effect can be explained by noticing that at ψ0 = π/2 the term

proportional to cosψ0 in C(t) vanishes and, moreover, in the linear

regime the condition κψ ≪ Ωψ can be achieved for any finite κψ

(with Dψ/κψ ≪ 1) by suitably raising v0. Under these conditions,

Kubo’s integral can be carried out analytically by approximating

C(t)≃ (v2
0/2)cos(Ωψ t)e−[Dφ /Iα+Dψ ]t , (24)

with Ωψ =−(v0α/Iα )e
−Dψ/2κψ . The result,

D−D0 =
1

2

(

Iα

α

)2

Dψ eDψ/κψ , (25)

closely locates the accumulation point of the minima of the D(ψ0)

curves at large v0.

Finally, we notice that for large angular fluctuation around ψ0,

Dψ/κψ ≫ 1, the average torque frequency, Ωψ of Eq. (21), tends

to zero, so that the chirality effect on swimmer’s diffusion van-

ishes. This conclusion is confirmed by the curves of Fig. 5(a),

plotted for increasing values of Dψ .

A comparison of the results presented here and in Sec. 4

suggests a simple interpretation of the transition between the

quadratic and linear regimes of the curves D(v0) plotted in Fig.

3. For ψ0 = 0, low propulsion velocities, and (or) large relax-

ation rates κψ , the effective torque due to the misalignment, ψ,

between v0 and the swimmer’s symmetry axis is too small to ap-

preciably affect the diffusion process, whose diffusion constant

thus retains its standard quadratic dependence on v0. On increas-

ing the effective torque, the swimmer eventually behaves like a

chiral particle subject to an effective torque of zero mean, mag-

nitude of the order of (v0α/Iα )
√

Dψ/κψ and, most importantly,

fluctuating sign. As a consequence, its diffusion constant does get

suppressed with respect to the standard model for a non-chiral

particle, but not as drastically as for a chiral swimmer with con-

stant torque, the latter being the case analyzed in Ref.14 and here

for ψ0 6= 0. The linear regime of the D(v0) curves illustrated in

Sec. 4 can be therefore regarded as a combined effect of the ten-

dency of the swimmer’s diffusivity to increase with the propulsion

velocity and decrease in the presence of a torque, the propulsion

velocity controlling in our model both mechanisms.

6 Conclusions

We have extended the standard model for an overdamped point-

like swimmer, self-propelling itself on a frictionless planar sub-

strate, to account for possible instability effects. Due to its func-

tional asymmetry, the center of mass and the center of the ef-

fective propulsion force acting upon the swimmer may well lie

a finite distance apart, say, along its symmetry axis, like in the

case of the Janus particle of Fig. 1. As a consequence, the an-

gular fluctuations of the self-propulsion velocity vector are asso-

ciated with an additional instantaneous torque. Although such

a random torque has zero mean, it suffices to suppress the ac-

tive diffusion of the eccentric swimmer. In particular, the active

diffusion constant exhibits a transition from a quadratic to a lin-

ear dependence on the self-propulsion speed. For more asymmet-

ric geometries, where the average self-propulsion velocity points

at an angle, 〈ψ〉 = ψ0 6= 0, with the swimmer’s axis, the ensuing

nonzero average torque drives the eccentric swimmer along spi-

raling trajectories. This generalization of the eccentric swimmer

model allowed us to study the effects of chirality on active diffu-

sion29,30.

The results presented in this paper are of practical use for a

correct analysis of the experimental data. The current estimates

of the dynamical parameters v0 and Dφ of the standard model,

Eqs. (1), are generally extracted from the direct measurement

of the active diffusion process and, in particular, from the iden-

tity Ds = v2
0/2Dφ . It is apparent from the analysis of Sec. 4 that

the combination of angular fluctuations of the propulsion velocity

in the body frame and swimmer’s eccentricity, strongly modifies

the dependence of the active diffusion constant on the swimmer’s

propulsion parameters. As a consequence, the current procedure

employed to extract the key quantities v0 and Dφ would still be
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tenable, but only at sufficiently low Ds values, where, however,

the experimental accuracy worsens. An experimental evaluation

of the eccentricity effects may thus become advisable.
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