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Structure and cohesive energy of dipolar helices

Igor Stanković,∗a Miljan Dašić,a and René Messinab

This paper deals with the investigation of cohesive energy in dipolar helices made up of hard
spheres. Such tubular helical structures are ubiquitous objects in biological systems. We observe
a complex dependence of cohesive energy on surface packing fraction and dipole moment dis-
tribution. As far as single helices are concerned, the lowest cohesive energy is achieved at the
highest surface packing fraction. Besides, a striking non-monotonic behavior is reported for the
cohesive energy as a function of the surface packing fraction. For multiple helices, we discover
a new phase, exhibiting a pronounced deep cohesive energy. This phase is referred to as ZZ
tube consisting of stacked crown rings (reminiscent of a pile of zig-zag rings), resulting in a local
triangular arrangement with densely packed filaments parallel to the tube axis.

1 Introduction
Particles with permanent dipole moments, such as magnetic par-
ticles, are well known for their outstanding self-assembly proper-
ties 1–3. In biology, tubular and helical structures are relevant
self-assembled objects for instance found in bacterial flagella4

and microtubules5,6. Other instances of such tubular/helical
structures can be found in various materials with specific build-
ing units that can be: carbon atoms7, coiled carbon nanotubes8,
DNA9, nanoparticles10, or amphophilic molecules11–13. Self or-
ganizing of cubic magnetic nanoparticles 14 and asymmetric col-
loidal magnetic dumbbells 15 into helical architectures were re-
cently reported without need of preexisting template.

On a more theoretical side, hard spherical particles con-
fined into narrow cylinders spontaneously assemble into helical
structures16,17 and also seen experimentally18. Hard-spheres
with permanent moment can be employed as a paradigm for
more complex helical molecular superstructures 19, or micro-
tubules20,21. The pioneering theoretical work of Jacobs and
Beans22 and later that of de Gennes and Pincus23 shed some light
on the microstructure of self-assembled unconstrained (spheri-
cal) dipoles. More recently, the paper24 advocated the ground
states of self-assembled magnetic structures. The authors proved
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that for a sufficiently high number of particles the ground state
is obtained via ring stacking into tubes24. On the other hand,
Vella et al.25 showed an illustrative example in which a macro-
scopic straight portion of the chain spontaneously wraps itself
building a tube. At larger scales, Janus chain model was able to
well reproduce formation of superstructures and double helical
conformations of amphophilic molecules26,27. The competition
between toroidal and rod-like conformations, as possible ground
states for DNA condensation, was studied using a polymer chain
model function of stiffness and short range interactions28,29. Also
introduced recently, polymorphic dynamics model30,31 was able
to reproduce behavior of the microtubule lattice based on rough
understanding of underlying atomic level processes. The general
scientific problem of understanding the processes by which build-
ing blocks (dipoles) self assemble and obtain their functionality is
highly challenging32–36.

The goal of this paper is to address the intimate link between
microstructure and cohesive energy. Tubular helical structures
can be obtained either (i) through ring stacking or (ii) by rolling
of one or multiple helices on a confining cylindrical surface (in
Sec. 2). The dipolar interaction model is introduced and a link be-
tween dipole distribution the microstructure established in Sec. 3.
In Sec. 4, starting from the most simple case corresponding to a
single helix, we discuss the relation between surface packing and
the resulting macroscopic properties such as the cohesive energy
or the overall polarization. Then, the more complex situation of
multiple helices with densely packed constitutive particles is ad-
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Fig. 1 Illustration of a single helix with relevant geometrical parameters
(R,Γ,∆z) labelled. The bold line connecting spherical particle centers
represents backbone of the helix. In upper part of the figure, the
azimuthal dipole moment orientation α is defined in a local coordinate
system with its origin corresponding to the particle center. The z′-axis is
parallel to the cylinder axis.

dressed. There, the alignment degree (especially in the ground
state) between dipole moment orientation and helix axis is ana-
lyzed.

2 Geometry of helices
2.1 Geometry of the single helix
In the framework of this paper, helices are composed of hard
spherical particles and confined on a cylinder’s surface, i.e., the
helices are created by rolling threads on the cylindrical surface of
radius Rcyl . Geometrical parameters that define a single helix are:
azimuthal angular shift Γ between the centers of two successive
particles and radius of the helix R = Rcyl + d/2, where d stands
for the hard sphere diameter, see Fig. 1. The radius R, represents
physically the distance of the closest approach between cylinder
axis and center of the spherical particle.

The Cartesian coordinates of particle i in a single helix are cal-
culated as: xi = Rcos(iΓ), yi = Rsin(iΓ), and zi = i∆z, where i ∈ Z
and assuming that one particle is at (x,y,z) = (R,0,0). Distance
between the centers of each two successive particles along the
helix axis is labelled as ∆z, see Fig. 1. When constructing a helix,
its radius R and azimuthal angular distance Γ have to be chosen
in a way which ensures non-overlapping of hard spheres. Non-
overlapping constraint is expressed for any two particles i, j as

|−→rij | ≥ d. Since the helix thread is everywhere connected, any two
successive particles are touching. We can obtain ∆z as a func-
tion of other two variables: ∆z =

√
d2 +2(cosΓ−1)R2. Thereby,

variables ∆z, R and Γ are not independent. Clearly, with decreas-
ing ∆z (i.e., increasing Γ) helices become more compact. Because
of connectivity, every particle in a helix has at least two neigh-
bors, i.e., the coordination number, nc, is always greater or equal
than two (nc ≥ 2). The highest packing density of the particles
for prescribed confinement radius R will be achieved when suc-
cessive helix turns touch. In this situation of touching turns, the
coordination number nc can be either four or six. Therefore, in
general, nc ∈ {2,4,6}, where the case nc = 2 corresponds to non-
touching turns. Based on the coordination number nc, we can
classify helices as follows (see Fig. 2a-c). Examples of helices
with two neighbors nc = 2 and four neighbors nc = 4 at prescribed
cylindrical confinement, e.g., R/d = 1.78, are sketched in Fig. 2a
and b, respectively. For a number of well-defined radii, as dis-
cussed later in this paper, densely packed helices with six neigh-
bors (nc = 6) can be formed, see Fig.2c. In the following sections,
we will also investigate stacked rings forming so called tubes also
depicted in Fig. 2d-f.

2.2 Order parameters for single helices

The surface packing fraction, η = S/Savail, is defined as the ratio of
the area S = πd2/4 covered by one particle and the area available
for one particle Savail, in an unrolled configuration.

Following the definition of the surface packing density we ob-
tain †:

η =
d2

8∆zR
. (1)

For comparison we are going also to derive packing fraction for
the tubes ‡:

• Surface packing fraction of AA tubes is given by ηAA =

Nringd/8RAA for AA tube with Nring particles per ring and
confinement radius RAA/d = 1/[2sin(π/Nring)], see Fig. 2d
for a microstructure with RAA/d = 1.93.

• Similarly, for AB tubes, the packing fraction is ηAB =

Nringd2/8RAB∆zAB, with RAB = RAA. Here, the elevation

†The available area per particle is Savail = 2πR∆z, where distance between successive
particles along tube axis is ∆z. We take for surface covered by particle S = πd2/4,
i.e., neglecting curvature. This results in a small overestimation of packing fraction
(less then 2% for large curvatures, e.g., R/d =

√
3/2).

‡The tubes are obtained via ring stacking. It is convenient to calculate surface pack-
ing fraction as the ratio of the area covered by the particles in a unit ring and the
available area per ring. The surface covered is S = Nringπd2/4. The available area
per ring is Savail = 2πR∆z where ∆z is distance between successive rings. The distance
between successive rings is ∆z = d for AA and ZZ tubes.
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Fig. 2 Illustration of different classes of helices, based on coordination number nc = 2,4,6. (a) Helix with non-touching turns (nc = 2). (b) Helix with
touching turns (nc = 4). (c) Densely packed helix (nc = 6). The other panels illustrate, so called, (d) AA, (e) AB, and (f) ZZ tubes. The tubes can be
created by strict axial stacking of unit rings. For AA and AB tubes unit rings are flat, whereas, for ZZ tubes the unit ring has a crown shape
(reminiscent of pile of ’zig-zag’ rings). The radii of AA and AB tubes are the same R/d = 1.93.

∆zAB between two consecutive rings is:

∆zAB = (d/2)
√

2+2cos(π/N)− cos2 (π/N). (2)

• For ZZ tubes, the packing fraction is ηZZ = Nringd/8RZZ, with
confinement radius RZZ/d =

√
3/[4sin(π/Nring)].

To further characterize the helical microstructures, we intro-
duce an additional geometrical order parameter ξ which is valid
for nc = 4 and 6. This order parameter connects an individual ref-
erence particle 0 located at~r0 in the helix with its two neighbors:
its immediate successive particle 1 in the turn (~r01 =~r1−~r0) and
a neighboring particle 2 from the next turn (~r02 =~r2−~r0), see Fig.
3(a).

The angular coordination order parameter is conveniently de-
fined as:

ξ = 2
|−→r01 ·−→r02|

d2 . (3)

In the two limiting cases, the angular coordination order pa-
rameter has values: ξmin = 0, for a locally square lattice on a
cylinder (e.g., AA tubes, check Fig. 2d) and ξmax = 1, for a locally
triangular lattice (e.g. AB tubes, check Fig. 2e). In all other cases,
the value of angular coordination order parameter ξ is between
those two extremal values, i.e., 0≤ ξ ≤ 1.

2.3 Multiple helices at high surface packing fraction

The densely packed helices (nc = 6) can be created, in analogy to
carbon nanotubes, by rolling a ribbon of a triangular lattice on a
cylinder surface37. We deal with cylindrical geometry, infinite in
one direction. We can generate these helical structures by peri-
odical reproduction of a curved patch (unit cell) along the helical
line with spanning vectors (~a1,~a2). This curved unit cell has n1

particles along ~a1 direction and n2 particles in ~a2 direction. §

Since we deal with hard spheres and we aim to build very dense
structures, the parameter space (R,∆z,n1,n2) is significantly re-
stricted. We are going to find out that only two of these parame-
ters are independent. There exists relation linking elevation angle
Θ = arcsin(∆z/d) and confinement radius R, see Ref.37. Bearing
in mind that for any pair (n1,n2) or equivalently (n2,n1), we have
a unique corresponding structure with nc = 6, one arrives at the
two following independent equations:

Θ(n1,n2) = arctan

( √
3n2

2n1 +n2

)
(4)

and

180˚ = n1 arcsin

( d
4R

)
2n1 +n2√

n2
1 +n2

2 +n1n2

+

n2 arcsin

( d
4R

)
2n2 +n1√

n2
1 +n2

2 +n1n2

 . (5)

We have solved those two equations and obtained the sets
(Θ,R/d) shown in Fig. 4. For each value of R there are two differ-
ent values of Θ, symmetric around Θ = 30˚, which correspond
to lattice constant pairs (n1,n2) and (n2,n1), respectively. The
(n1,n2) pairs are actually identical structures with opposite chi-
rality38. The six-fold rotational symmetry of the lattice restricts
Θ ∈ [0˚,60˚].

We look now into properties of (n1,n2) pairs in order to char-

§ The values n1 and n2 can be seen as the two possible widths of the ribbon generating
the same helical structure.
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Fig. 3 (a) Illustration of a helix made of hard spheres, helix backbone
(solid line), and the vectors connecting a reference particle 0 located at
(x,y,z) = (R,0,0) with its neighbors: an immediate successive particle 1
in the turn located at (~r01) and a neighboring particle 2 from the next
thread turn at (~r02). (b) Overview of the principal geometrical parameters
of nc = 4,6 helices: elevation angle Θ and azimuthal angular shifts Γ1
and Γ2 (see Eq. 7). In our notation, densely packed directions along
helical superstructure are called threads. The corresponding elevation
distances of successive particles along helix axes ∆z1,2 (see Eq. 9) are
also given for two possible rollings of the same helix configuration.

acterize multi thread structure of six neighbor helices (nc = 6).
First, we identify the link between nc = 6-tubes and the (n1,n2)

pair values. The pairs (0,n2) and (n1,0) leading to Θ = 60˚ and 0˚,
respectively, represent AB tubes, cf. Fig. 4. The pairs with n1 = n2

corresponding to Θ = 30˚ lead to ZZ tubes that are characterized
as constitutive straight filaments parallel to the ZZ tube axis, see
Fig. 2f. The curve with n1 = 1 (with n2 ≥ 3) corresponds to a sin-
gle helix, n1 = 2 (with n2 ≥ 3) to a double helix, n1 = 3 (for any
n2 ≥ 4) to a triple helix, and more generally a n1-helix structure is
obtained when n2 ≥ n1 +1 ¶.

We employ Cartesian coordinates to express positions of par-
ticles in a n−helix similarly to the single helix case, using two

¶ In our notation, multiple helices are named after the smallest unit patch dimension,
i.e., the smallest number of generating threads.

Fig. 4 Phase diagram in the (Θ,R/d)-plane showing possible unit cells
characterized by (n1,n2) pairs. Solid lines represent unit cells with n2
fixed, and the dashed ones represent unit cells with n1 fixed. The three
horizontal lines (dot-dashed) correspond to tubes.

Fig. 5 Dependence of azimuthal angular shift parameters Γ1,Γ2
stemming from corresponding spanning vectors ~a1,~a2, respectively, on
reduced helix radius R/d, for single (n2 = 1), double (n2 = 2), and
quadruple (n2 = 4) helices.

indices, i ∈ Z and j = {1,n}:

xi+ jn = Rsin(iΓ1 + jΓ2)

yi+ jn = Rcos(iΓ1 + jΓ2)

zi+ jn = i∆z1 + j∆z2. (6)
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In Eq. 6, Γ1 represents azimuthal angular shift between each two
consecutive particles along a given thread and Γ2 is angular shift
between threads, i.e., densely packed directions in superstruc-
ture, see Fig. 3(b). The azimuthal angle Γ1 is merely provided
by :

Γ1 = arccos

[
1−
(

d√
2R

cosΘ

)2
]
. (7)

The angular shift Γ2 between threads is more delicate to derive.
Knowing that starting from reference particle the same particle
position is possible to reach following two paths along threads
(in~a1- or~a2-direction), one can arrive at a relation linking Γ1 and
Γ2: 360˚ = (n1 +n2)Γ1−n2Γ2.

The dependence of angle parameters Γ1,Γ2 on reduced helix
radius R/d is displayed in Fig. 5, for Θ < 30˚ in single helix (n2 =

1,n1 ≥ 4), double helix (n2 = 2,n1 ≥ n2) and quadruple helix (n2 =

4,n1 ≥ n2).

As helix radius R/d increases, value of Γ1 monotonically de-
creases, since additional particles are added to a turn. The angu-
lar parameter Γ2 monotonically decreases only for n2 = 1. The
scenario becomes qualitatively different at n2 ≥ 2 where non-
monotonic behavior is found, see Fig. 5. This feature can be ra-
tionalized as follows. The smallest compatible radii R with n2 ≥ 2
and Θ < 30˚, are obtained when n1 = n2 (cf. Fig. 4) corresponding
to Z tubes where Γ2 = 0. Besides that, Γ2 tends to zero for van-
ishing cylinder curvature (R/d→ ∞). These are the reasons why
the profile of Γ2(R/d) is non-monotonic when n2 ≥ 2.

Surface packing fraction of densely packed multiple helices is
simply obtained by multiplying the surface packing fraction of
a single helix with the number of threads n2 (ηmulti = n2η , see
Eq.1):

ηmulti = n2
d2

8∆z1R
, (8)

where elevation distance ∆z1 (shown in Fig. 3b) is given by:

∆z1 =

√
d2−4R2 sin2

(
Γ1

2

)
. (9)

The calculated surface packing fraction of a single (n2 = 1),
double (n2 = 2), and quadruple (n2 = 4) helices is shown in Fig. 6.
At given confinement curvature (fixed R/d) adding threads results
in higher surface packing fraction, see Fig. 6.

Fig. 6 Surface packing fraction η , see Eq. 8 as a function of reduced
helix radius R/d for single (n2 = 1), double (n2 = 2), and quadruple
(n2 = 4) helix.

3 Dipole moments
3.1 Dipolar interaction model

We now want to address the situation where the constitutive par-
ticles are dipolar. Each particle carries identical dipole moment
in magnitude, m = |~mi|, where ~mi = (mx

i ,m
y
i ,m

z
i ) defines the dipole

moment of particle i, see also Fig. 1. The potential energy of in-
teraction U(~ri j) between two point-like dipoles whose centers are
located at~ri and~r j can be written as:

U(~ri j) =C
1

r3
i j

[
~mi ·~m j−3

(~mi ·~ri j)(~m j ·~ri j)

r2
i j

]
(10)

for ri j ≥ d or ∞ otherwise, where C represents a constant that de-
pends on the intervening medium, and ri j = |~ri j| = |~r j −~ri|. It is
convenient to introduce the energy scale defined by U↑↑ ≡Cm2/d3

that physically represents the repulsive potential value for two
parallel dipoles at contact standing side by side as clearly sug-
gested by the notation. Thereby, the total potential energy of
interaction in a given structure Utot is given by

Utot = ∑
i, j
i> j

U(~ri j). (11)

One can then define reduced potential energy of interaction u (per
particle) of N magnetic spheres. It reads u =Utot /(U↑↑N), which
will be referred to as the cohesive energy.

Since we are dealing with infinitely long structures (in one di-
rection), we shall consider only periodic structures in that direc-
tion that greatly facilitates the calculation of the cohesive energy.
The method of choice is provided by the Lekner sum for systems
with periodicity in one direction39. The central feature in the
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Lekner method is the choice of the periodic cell. For nc = 2,4 we
can always find helix parameters with a finite number of particles
in the unit cell. The periodicity is achieved by imposing a condi-
tion on angular shift Γ that a helix has to make complete number
of turns within the unit cell.

Fig. 7 The representative structures including dipole moment
distributions are displayed. For AB tube with patch parameters
(n1,n2) = (8,0) dipole distributions which correspond to spanning unit
cell vectors (a) ~a1 (oblique to cylinder’s axis), (b) ~a2 (closer to cylinder’s
axes), as well as, (c) ground state dipole distribution. For single helix
(n1,n2) = (9,1) dipole distributions which correspond to (d) ~a1 and (e) ~a2
(closer to helix axes) spanning vectors, as well as, (f) ground state
dipole distribution. For double helix (n1,n2) = (8,2) dipole distributions
which correspond to (g) ~a1, (h) ~a2 (closer to helix axes) spanning
vectors, and (i) ground state dipole distribution. In case of ZZ tube (j) ~a1
and (k) ~a2 dipole distributions are shown. Ground state of ZZ tube
follows ~a2 dipole distribution (parallel to cylinder’s axis).

3.2 Dipole moment orientation prescribed by helix threads

Because of the symmetry reason, it is intuitive to envision dipole
moments following helix threads. In order to have dipole mo-
ments tangential to the helical backbone, we introduce two com-
ponents of dipole moments. The parallel component with re-
spect to helix axis is given by mz = m∆z/d and the orthogonal
one is given by |~mxy| = m

√
1− (∆z/d)2. Hence, dipole moment

of particle i in the single thread helix reads: mx
i = −mxysin(iΓ),

my
i = mxycos(iΓ), and mz

i = mz.

In the multi-thread case, the Cartesian dipole moment compo-

nents are given by:

mx
i, j =− mxy sin(iΓ1 + jΓ2)

my
i, j = mxy cos(iΓ1 + jΓ2)

mz
i, j = m∆z/d, (12)

where i∈ Z is internal particle label within a thread and j = {1,n2}
stands for the thread’s label. In dense helices (nc = 4,6) dipole
moments can follow two directions ~a1 and ~a2. In Fig. 7, represen-
tative dipole moment distributions are shown.

3.3 Energy minimization
In general, the dipole moments do not have to follow thread
structure. To find the dipole moment distribution that yields min-
imal energy, we first perform minimization of the cohesive energy
using a constrained minimization algorithm24,40. A randomly ori-
ented dipole moment is assigned to every particle of the helical
structure in the following way: Dipole moment is defined in the
spherical coordinate system. Two important features stemming
from these energy minimization calculations are:

(i) Dipole moments are tangential to the cylinder’s surface.

(ii) The component of dipole moment in the z-axis direction mz

for a given structure is identical for all particles. ‖

Therefore we need just one angular parameter to characterize
the dipole moment orientation. We choose the dipole moment
angular parameter, α ∈ [−180˚,180˚] relative to z-axis, see Fig. 1.
Doing so we arrive at:

mx
i, j = −msin(α)sin(iΓ1 + jΓ2)

my
i, j = msin(α)cos(iΓ1 + jΓ2)

mz
i, j = mcos(α) , (13)

where the indices i and j have the same meaning as in Eq. 12.
Consequently, the angular parameter α is most of the time unique
variable, at prescribed helical structures, entering into the energy
minimization routine.

4 Cohesion energy and microstructure
4.1 Compression of a single helix
A simple way to deform a helix is to compress (or extend) it along
its axis, i.e., z-direction, while ensuring the dipole moments fol-

‖We have found that under some circumstances the dipole moment orientations al-
ternate, i.e., antiferromagnetic like coupling, between the neighboring threads. This
actually occurs with any AA tube. Similar behavior is reported for some moderately
dense nc = 4-helical structures.
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Fig. 8 Compression of single helix on a
cylindrical confinement with fixed radius
(R/d ' 1.7). Dependence of cohesive
energy (upper left panel) and overall
polarization order parameter, i.e., axial
component of the dipole moment (in
lower left panel), on packing fraction is
shown for two characteristic dipole
moment orientations: one that follows
the helix, i.e., spanning vector ~a1, and
ground state dipole moment orientation
obtained by energy minimization.
Comparative microstructures at different
η values (A-F) are depicted on the right
panel. Configurations (A,B,C,E)
correspond to a dipole moment
distribution following the helix whereas
configurations D and F correspond to
ground state distributions.

low the thread (for details of implementation see Sec. 3.2). Com-
pression of a helix results in a continuous increase of its sur-
face packing fraction η . Figure 8 shows the evolution of co-
hesive energy uR with surface packing fraction η for a single
helix with reduced radius (R/d ' 1.7, chosen in the vicinity of
nc = 6 point). Recalling geometrical considerations in Sec. 2.1
increase of azimuthal angular shift Γ at prescribed curvature re-
sults in a continuous decrease of ∆z and compression of the helix.
The compression process begins with a fully extended helix (i.e.,
η → d/8R≈ 0.073) where the chain stands up with ∆z/d = 1, and
cohesive energy of infinite chain u'−2.40424. The compression
ends when two successive turns of the helix touch, i.e., coordi-
nation number of particles in the helix changes from nc = 2 to
nc = 4.

We also address the minimal energy of the helix with respect
to the dipole moment distribution (i.e., not necessarily prescribed
by tangentially following the helix). From Figure 8, we observe
that uR = uR (η) is non-monotonic. We can identify two regimes:

• At small packing fractions up to η . 0.4 (with no touching
turns), the compression of the helix requires energy input
and therefore cohesive energy increases. The reason for this
is that two distant consecutive turns of the helix experience
weaker attraction upon increasing η .

• In the regime of high η & 0.4 where successive turns are
allowed to be close or even touching, the cohesive energy
starts to decrease as η increases, i.e., the helix would com-
press on its own without input of energy. This a consequence
of an enhanced attraction due to the discreteness of the con-
stitutive dipolar beads, see Ref.41.

The overall polarization order parameter 〈mz〉 is also analysed
in Fig. 8. During most of the course of the helix compression,

see Fig. 8, a dipole moment orientation following the helix cor-
responds to the ground state structure up to η ≈ 0.8, cf. points
C and D in Fig. 8 (for details of ground state calculations see
Sec. 3.3). Only for very high packing fractions, i.e., η > 0.8, the
ground state dipole orientation starts to rapidly deviate from the
helix direction accompanied by a significant reduction in cohesive
energy (see points E and F in Fig. 8). The highest difference in
〈mz〉 occurs for η ≈ 0.887, where nc = 4 helix with touching turns
is formed, and energy difference uE

R−uF
R ' 0.06.

4.2 From square to triangular arrangement for a single helix

Having successfully parameterized helices and introduced dipole
moments, it is natural to ask how cohesive energy depends on
structural changes and especially on curvature. With increasing
curvature the structure will change from triangular to square ar-
rangement and vice versa through a continuous series of rhombic
configurations. We study first in detail systems with dipole mo-
ments following the spanning vector that are most oblique to helix
axes, see Fig. 7d. For the sake of comparison with tubes (AA/AB
tubes), we also chose dipole moments that are building vortices
along the rings for them, cf. Fig 7a. Motivation for that choice
stems from a previous study24, where we have shown that finite
AB tubular systems are energetically favorable, see Fig. 7a (dipole
moment orientation is perpendicular to tube’s axis).

The surface packing fraction η (Eq. 1), angular coordination
order parameter ξ (see Eq. 3), and cohesive energy per particle
uR (Eq. 11), are plotted versus reduced helix radius R/d in Fig. 9.
Actually, the energy and structural properties are changing in an
oscillatory quasi-periodic manner and they are enveloped from
both sides with the properties of AA and AB tubes, see Fig. 9.
In Fig. 10 behavior of these observables is depicted within one
period (R/d ∈ [2.09,2.26], arbitrary chosen). In one period, the
number of particles (n) in a constitutive ring of (AA/AB) tubes
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Fig. 9 Dependence of (a) angular coordination order parameter ξ , (b)
packing density η and (c) cohesive energy uR on helix radius R/d, for ~a1
dipole orientation. AA and AB tube points are clearly indicated, they
bracket the parameter values of helices, like a kind of envelopes (solid
and dashed lines connecting the tube points are power law fits).

is increased for one, i.e., from n-ring to n+ 1-ring. Within this
period, order parameter is changing from ξ = 0, i.e., square ar-
rangement, to ξ = 1, i.e., triangular arrangement, via continuous
rhombic transformation, see Fig. 10a. The radii of densely packed
helices are roughly in the middle between two corresponding
(AB/AA) tube radii, see Fig. 10a. This is a result of the radial
constraint and excluded volume. Though in a single thread he-
lical structure we cannot close rings in the perpendicular plane
to the cylinder axis, one can nevertheless realize a full 360˚ helix
turn with roughly n+1/2 particles. We observe discontinuity and
strong asymmetry of angular coordination order parameter ξ at
mid period (R(13,1)/d≈ 2.17), see Fig. 10a. This is due to a change
of the number of lateral threads n2, see for illustration Fig. 7e, at
mid period going from n2 = 9 to n2 = 10, see Fig. 10a.

Fig. 10 Dependence of (a) angular coordination order parameter ξ , (b)
packing density η and (c) cohesive energy uR on helix radius R/d, for a
segment in vicinity of R(13,1)/d = 2.17 of Fig. 9. Tubes AA and AB are
represented with discrete points since they can be formed only with a
fixed number of particles in a ring, the fitted (power law) curves serve
only as a guide to the eye. The point which represents the dense helix
with (n1,n2) = (13,1) and R(13,1)/d = 2.17, is marked with a rectangle.

With decreasing curvature, surface packing fraction is globally
increasing, see Fig. 9b. We observe oscillatory behavior as sys-
tem continuously evolves from square to triangular arrangement
and vice versa. The AA and AB tubes still roughly bound the val-
ues taken by surface packing fraction. At helix radius R/d > 3.4,
see Fig. 9b, we are already within 3% of the asymptotic expected
values in the planar case. In contrast to angular coordination pa-
rameter ξ , surface packing density η is everywhere continuous,
compare Figs. 10a and b. Moreover, at mid-period the η value is
slightly (and systematically, see Fig. 9b,) above the interpolated
stemming from AB tubes (see Fig. 10b). In Fig. 9b and c, it can
be clearly seen that the profiles of energy oscillations uR and sur-
face packing fraction η are anti-correlated. The mid-period val-
ues uR coincide with interpolated stemming from AB tube radii
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Fig. 11 Dependence of (a) cohesive energy uR, and (b) overall
polarization order parameter 〈mz〉 on helix radius R/d (in the ground
state), for a chosen segment of Fig. 9. Tubes AA and AB are
represented with discrete points since they can be formed only with a
fixed number of particles in a ring, the fitted (power law) curves serve
only as a guide to the eye. The point which represents the dense helix
with (n1,n2) = (13,1) and R(13,1)/d = 2.17, is marked with a rectangle.

(confirmed by Figs. 9c and 10c).

4.3 Looking for the ground state
At this point, we would like to discuss mechanisms which govern
the minimal energy dipole moment orientation near mid-period
transition point (more detail about implementation is provided in
Sec. 3.3). There are three privileged directions in a helix: two
which follow helix spanning vectors (determined by ~a1,~a2 ) and
the third one which is the direction of the helix axis. These privi-
leged directions come into play in two competing mechanisms:

• The first mechanism is typically dictated by first neighbor in-
teractions which favors dipole moments following the thread
directions.

• The distant-neighbor interactions favor distribution of dipole
moments parallel to the helix axis.

We can justify these two mechanisms as follows. It is well known
for small finite system that rings are formed with dipole moments
building vortices, cf. Ref.24. When a helix turn is projected along
z-axis, the resulting figure is highly reminiscent of the vortex dis-
cussed above. The head to tail configuration is favored at long
distances, explaining the second advocated mechanism.

The abrupt change of polarization (or magnetization) in di-
rection of axis 〈mz〉, seen in Fig 11b, is correlated with the dis-
continuous change in angular coordination order parameter ξ in
the vicinity of transition, see Fig. 10a. At the mid-period point
R(13,1)/d = 2.17 magnetization in direction of axis 〈mz〉 is close to
one, but not exactly one, see Fig. 11.

For the sake of comparison with tubes (AA/AB tubes), we
choose dipole moments that are parallel with the helix axis, see
Fig 7c. Fact that the system is able to relax its dipole moment
orientation to the ground state results in a more dependence of
energy on confinement curvature around mid point. The degree
of asymmetry of the uR is stronger around transition point, see
Fig. 11b, than in the excited state in Fig. 10c. The ground state
calculations, confirm the high stability of AB tubes (see Fig. 10c).

4.4 Cohesion energy for multiple helices at high surface
packing fraction

In this part, we consider the high surface packing fraction regime
with nc = 6. Some representative structures including dipole mo-
ment streamlines are displayed in Fig. 7. The streamlines follow-
ing spanning unit cell vectors ~a1 (oblique to helix axis) and ~a2

(more aligned to helix axis) are also shown ∗∗. Dipole moment
distributions in the ground states are also indicated for compar-
ison in Fig. 7. In analogy to the study of single helix case (see
Sec. 4.2), we start analysis with a dipole moment distribution
prescribed by tangentiality with thread backbone. In Fig. 12,
cohesive energy for ~a1-generated dipole moment distribution is
shown for different helical structures.

The cohesive energy in a planar triangular lattice, u∞ '−2.759,
represents the energy value which will be reached asymptotically
(R/d→ ∞) for all considered structures. As already found for AB
tubes in Ref.24, cohesive energy exhibits scaling law of the form
uR−u∞ ∼ R−2, see Fig. 12. The cohesive energies of all three he-
lices and AB tube are weakly dependent on number of threads for
~a1-generated dipole moment distribution. This is in accordance

∗∗ It is possible to polarize the helix by an homogeneous external field parallel to its
axis. For symmetry reasons, a reversal of the magnetic field should result in reversal
of the dipole orientation. In case of magnetic dipoles, it should also be possible to
polarize system to follow~a1 and~a2 spanning vectors by combination of curling mag-
netic field of electric current flowing trough the confining cylinder and homogeneous
external magnetic field parallel to its axis.
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Fig. 12 Dependence of cohesive energy uR on helix radius R/d, for
single, double, and quadruple helices at high surface packing fraction,
and AB tubes, with ~a1 dipole orientation.

Fig. 13 Dependence of cohesive energy uR on helix radius R/d, for
families of single, double, and quadruple helices at high surface packing
fraction, i.e., n2 = {1,2,4}, respectively, and AB tubes, with ~a2 and
optimized dipole moment orientation.

to surface packing fraction behavior reported in Fig. 6. A com-
parison with azimuthal angular shift parameter Γ1, see Fig. 5,
and corresponding cohesive energy (for ~a1-generated dipole mo-
ment distribution) clearly reveals a correlation between these two
quantities.

In Fig. 13, cohesive energy for ~a2-generated dipole moment
distribution is compared with ground state energy for different
number of threads. There exists an analogous correlation (as dis-
cussed for ~a1-dipole distribution) between azimuthal shift Γ2 and
resulting cohesive energy, compare Figs. 5 and 13.

The smallest compatible radius R for multi thread helices (n2 =

2,4) is obtained for ZZ tubes (n1 = n2). In Fig. 13, the correspond-
ing radii read R(2,2)/d = 0.61 and R(4,4)/d = 1.13. In this case the
~a2 and ground state dipole moment orientations are the same,
see Fig. 7k. Strikingly, ZZ tube ground states converge very fast
to the expected planar value u∞ at the smallest accessible radii,
i.e., largest curvature, within less than 1% of the planar case, see
Fig. 13 for R(2,2)/d = 0.61. A structural similarity of ZZ tubes,
with typical experimental images of microtubules is striking, see
Fig. 7k. Structurally, ZZ tubes can be created by closing of rect-
angular strip on a cylinder and decomposed into chains which
are analogous to biological filaments which the microtubules are
made of.

5 Conclusions

We have presented a study about cohesive energy of helical struc-
tures composed of hard spheres with permanent dipole moments.
Helices were created by replication of a particle or patch (of parti-
cles) on a confining cylindrical surface. Even for the most simple
situation, namely the single thread helix, a non-trivial behavior is
found when monitoring the cohesive energy as a function of sur-
face packing (i.e., axial compression). In particular, we observe
a non-monotonic dependence of the cohesive energy on packing
fraction (or equivalently amount of compression) as a result of a
delicate interplay of dipole-dipole interactions and excluded vol-
ume effects. Lowest cohesive energy is achieved at the highest
packing fraction with touching turns. In parallel, the magneti-
zation (or polarization) order parameter, i.e., the mean dipole
moment per particle in the 〈mz〉, also exhibits a striking non-
monotonic behavior as a function of compression amount. In the
regime of very high surface packing fraction with local triangular
arrangement compatible with certain cylinder radius (R) vs par-
ticle diameter (d) ratio (R/d), a pronounced cohesive energy is
found. Concomitantly, the magnetization order parameter indi-
cates a sharp change in the dipole moment orientation, tending
to be parallel with the helix axis.

Finally, we compare cohesive energies of dense multiple (i.e.,
double or quadruple) helices, as well as, AB and ZZ-tubes made
up of stacking rings that can also be seen as special multiple he-
lices. A remarkable finding is the enhanced cohesive energy for
the ZZ-tube structure. The latter already emerges at strong sub-
strate curvature with cohesive energies very close to that obtained
at vanishing curvatures. In these ZZ-tube structures, an alignment
of the helix threads with its axis is a microstructural signature for
this low cohesive energy. As a final note, we would like to empha-
size that our model mimics nicely the geometry and microstruc-
ture of microtubules. It could also provide a possible clue about
the self-assembly mechanisms and cohesion within microtubular
structures.

10 | 1–11Journal Name, [year], [vol.],

Page 10 of 12Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



6 Acknowledgements
The authors acknowledge financial support from the bilat-
eral Franco-Serbian PHC Pavle Savic 2014/15 program (No.
32135NJ). I.S. and M.D. acknowledge support received from
the Serbian Ministry of Education and Science (Grants No.
ON171017 and No. III45018). Numerical calculations were run
on the PARADOX supercomputing facility at the Scientific Com-
puting Laboratory of the Institute of Physics Belgrade.

References
1 W. Wen, N. Wang, D. W. Zheng, C. Chen and K. N. Tu, J. Mater.

Res., 1999, 14, 1186–1189.
2 D. J. Sellmyer, Nature, 2002, 420, 374–375.
3 G. M. Whitesides and B. Grzybowski, Science, 2002, 295,

2418–2421.
4 K. F. Jarrell and M. J. McBride, Nat. Rev. Microbiol., 2008, 6,

466–476.
5 I. M. Cheeseman and A. Desai, Nat. Rev. Mol. Cell. Biol., 2008,

9, 33–46.
6 J. Howard and A. A. Hyman, Nat. Rev. Microbiol., 2009, 10,

569–574.
7 D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda,

A. Dimiev, B. K. Price and J. M. Tour, Nature, 2009, 458, 872–
876.

8 X. Zhang, X. Zhang, D. Bernaerts, G. Van Tendeloo,
S. Amelinckx, J. Van Landuyt, V. Ivanov, J. Nagy, P. Lambin
and A. Lucas, EPL (Europhysics Letters), 1994, 27, 141.

9 S. M. Douglas, J. J. Chou and W. M. Shih, Proc. Natl. Acad.
Sci. U. S. A., 2007, 104, 6644–6648.

10 G. D. Lilly, A. Agarwal, S. Srivastava and N. A. Kotov, Small,
2011, 7, 2004–2009.

11 T. Shimizu, M. Masuda and H. Minamikawa, Chem. Rev.,
2005, 105, 1401–1444.

12 Y. Yamamoto, T. Fukushima, Y. Suna, N. Ishii, A. Saeki,
S. Seki, S. Tagawa, M. Taniguchi, T. Kawai and T. Aida, Sci-
ence, 2006, 314, 1761–1764.

13 W. Zhuang, E. Kasemi, Y. Ding, M. Kröger, A. D. Schlüter and
J. P. Rabe, Adv. Mater., 2008, 20, 3204–3210.

14 G. Singh, H. Chan, A. Baskin, E. Gelman, N. Repnin, P. Kral
and R. Klajn, Science, 2014, 345, 1149–1153.

15 D. Zerrouki, J. Baudry, D. Pine, P. Chaikin and J. Bibette, Na-
ture, 2008, 455, 380–382.

16 G. Pickett, M. Gross and H. Okuyama, Phys. Rev. Lett., 2000,
85, 3652–3655.

17 E. C. Oguz, R. Messina and H. Loewen, EPL (Europhysics Let-
ters), 2011, 94, 28005.

18 M. A. Lohr, A. M. Alsayed, B. G. Chen, Z. Zhang, R. D. Kamien

and A. G. Yodh, Phys. Rev. E, 2010, 81, 040401.
19 A. Mershin, A. A. Kolomenski, H. A. Schuessler and D. V.

Nanopoulos, BioSystems, 2004, 77, 73–85.
20 E. D. Spoerke, G. D. Bachand, J. Liu, D. Sasaki and B. C.

Bunker, Langmuir, 2008, 24, 7039–7043.
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Matter, 2014, 10, 2836–2847.
32 D. Tomanek, S. G. Kim, P. Jund, P. Borrmann, H. Stamerjo-

hanns and E. R. Hilf, Z. Phys. D: Atoms, Molecules and Clusters,
1997, 40, 539–541.

33 T. A. Prokopieva, V. A. Danilov, S. S. Kantorovich and C. Holm,
Phys. Rev. E, 2009, 80, 031404.

34 G. Pál, F. Kun, I. Varga, D. Sohler and G. Sun, Phys. Rev. E,
2011, 83, 061504.

35 V. Malik, A. V. Petukhov, L. He, Y. Yin and M. Schmidt, Lang-
muir, 2012, 28, 14777–14783.

36 N. Vandewalle and S. Dorbolo, New J. Phys., 2014, 16,
013050.

37 D. A. Wood, C. D. Santangelo and A. D. Dinsmore, Soft Matter,
2013, 9, 10016–10024.

38 W. T. B. Kelvin, The molecular tactics of a crystal, Clarendon
Press, 1894.

39 A. Grzybowski and A. Bróadka, Mol. Phys., 2003, 101, 1079–
1088.

40 L. Assoud and R. Messina, Phys. Rev. E, 2011, 83, 036113.
41 R. Messina and I. Stanković, submitted to Phys. Rev. E.
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A striking non-monotonic behavior is of the cohesive energy and ground state polarization order 

parameter as a function of the surface packing fraction.  Comparative microstructures (A-F) are depicted 

on the right panel. 
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