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Abstract 

Young’s relation is based on the equilibrium of the horizontal components of surface tensions for 

a liquid droplet on a “rigid” substrate without addressing the substrate deformation induced by 

the net vertical component of the surface tensions. Realizing the importance of wetting in 

controlling the integrity of flexible structures and electronics, the effect of a capillary bridge or a 

liquid droplet on the crack opening of a penny crack under the action of a far-field tensile stress 

is analyzed. Closed-form solutions are derived for both the crack opening and the stress intensity 

factor, which are functions of the size of the capillary bridge or droplet, surface tension, and 

contact angle. Both the capillary bridge and the droplet can introduce the crack closure. The 

minimum far-field tensile stresses needed for complete crack opening, i.e. no crack closure, are 

obtained analytically. The net vertical component of the surface tensions introduces the 

formation of a surface ridge on the crack face at the edge of the droplet for an open crack. The 

amplitude of the surface ridge increases with the increase of the net vertical component of the 

surface tensions and the decrease of the breadth width. 
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1. Introduction 

 The progress in the fabrication of flexible structures and electronics has been based on the 

use of soft matter, such as polymers. The use of soft matter has imposed a challenge in 

controlling structural integrity, even though soft matter can provide good biocompatibility and 

nontoxicity in the applications of biofluidics 
1, 2

 and bio-microelectromechanical structures 
3, 4

. 

Generally, soft matter has a Young’s modulus of a few MPa or lower, which makes soft matter 

easily deform even with the presence of a tiny, liquid droplet on the surface.  

 It is known that Young’s relationship is derived under the equilibrium condition of the 

horizontal components of surface tensions for a liquid droplet on a “rigid” substrate, on which 

there are no chemical reactions. In analyzing the relationship between contact angles and surface 

tensions, Lester 
5
 pointed out that Young’s equation is only applicable to nondeformable solid 

surfaces and introduced an average mean stress acting vertically on the solid surface at the edge 

of a droplet. Following Lester’s approach 
5
, Rusanov 

6
 derived analytical expressions of the 

surface profile of an elastic half-space induced by a sessile droplet. Yu and Zhao 
7
 extended 

Rusanov’s analysis 
6
 to the deformation of an elastic layer. Based on Métois’ observation 

8
 that a 

liquid droplet on a thin graphite sheet introduces a deformed liquid/graphite interface, Kern and 

Müller 
9
 analyzed the droplet-induced deformation of an elastic thin film. However, there are 

seldom studies addressing the effect of liquid bridges or liquid droplets on the crack opening and 

stress intensity factors of cracks, which is associated with the capillary-assisted contact adhesion 

of solid surfaces. 

 Recently, there have been more studies 
10-18

 focusing on the droplet-induced deformation of 

soft matter with the aim of understanding local deformation around a contact line on soft 

polymers. Style et al. 
19

 used confocal microscopy to observe local deformation near the contact 

line for a glycerol or fluorinated-oil droplet on a silicone gel substrate and revealed the 

dependence of the deformed topology on the balance of interfacial tensions at the contact line. 

Marchand et al. 
20

 suggested that Young’s relationship becomes invalid for analyzing the 

capillary-induced surface deformation of a soft substrate and proposed an elastocapillary model 

for contact angles on a soft solid by coupling a mean-field model for the molecular interactions 

to elasticity. Park et al. 
21

 observed the bending of an asymmetric tip during ridge growth 

associated with the wetting of a water droplet on a silicone gel and a PDMS film and suggested 

that it is surface stresses that determine the balance at the tip. Karpitschka et al. 
22

 used 
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Neumann’s law to analyze the stick-slip motion of a droplet on a viscoelastic substrate. In 

analyzing the effect of surface stresses on the capillary-induced surface deformation, Style and 

Dufresne 
23

 suggested that it is the interfacial tensions instead of bulk elasticity that determine 

the shape of a solid substrate near the tip of a wetting ridge. In general, the effect of the surface 

tension/stresses on the local deformation at the contact edge is dependent on the ratio of the 

characteristic length to electrocapillary length.   

 Liquid bridges and liquid droplets play an important role in determining the performance of 

microfluidics and flexible electronics and the contact adhesion of solid surfaces. Recognizing 

that adhesive contact between solid surfaces is related to mode I crack, Maugis et al. 
24

 showed 

the connection between the JKR theory and the Griffith theory. In general, the capillary-related 

contact adhesion of solid surfaces involves the capillary-induced deformation and crack-like 

stress state. Young’s equation 
25

 does not lead to the equilibrium of surface tensions, and the 

unbalanced surface tensions can result in local deformation of materials. One needs to consider 

the deformation of mechanical structures induced by a capillary bridge or a droplet in order to 

understand the structural integrity associated with contact adhesion.  

 This work aims to investigate the effect of a liquid bridge or a liquid droplet on the crack 

opening and stress intensity factor of a penny crack. Following Lester’s approach 
5
, uniform 

stress in an annular zone of a breadth width in the triple-phase line is used, in addition to the 

normal stress induced by the liquid bridge/droplet on each individual crack face. The total force 

due to the uniform stress in the annular zone is equivalent to the net vertical component of the 

surface tensions.  

2. Problem formulation 

 Consider a penny crack of radius c in an infinite space, as shown in Fig. 1. A capillary bridge 

of radius a joins the top surface of the crack with the bottom surface. The penny crack is 

subjected to a far-field tensile loading. Here cylindrical polar coordinates ( ,  ,  )r zφ  are used such 

that the axisz −  coincides with the axis of the loading direction, the r -axis is perpendicular to 

the axisz − , and θ  is the angular distance between a reference line and the r -axis. The nonzero 

displacements corresponding to the coordinates ( , , )r zφ  are ru  and zu , which satisfy the 

following equations 
26, 27

: 

  
2

2

1
0

1 2

r
r

u
u

r r

∂Ξ
∇ + − =

− ν ∂
 (1) 
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2 1

0
1 2

zu
z

∂Ξ
∇ + =

− ν ∂
 (2) 

  
2 0∇ Ξ =  (3) 

  r r zu u u

r r z

∂ ∂
Ξ = + +

∂ ∂
 (4) 

where the displacement vector / | | / | |r zu u r r u z z= +
r r r r r

 and Ξ  is the dilation. The components of 

the stress tensor, 
ijσ , in terms of the components of the displacement vector are 

  2 r
rr

u

r

∂
σ = λΞ + µ

∂
 (5) 

  2 ru

r
θθσ = λΞ+ µ  (6) 

  2 z
zz

u

z

∂
σ = λΞ + µ

∂
 (7) 

  r z
rz

u u

z r

∂ ∂ σ = µ + ∂ ∂ 
 (8) 

where ν  is the Poisson ratio, and λ  and µ  are the Lame constants. 

 For the penny-shaped crack being subjected to a far-field tensile stress, the boundary 

conditions are 

  0zzσ =σ   for | |z →∞   (9) 

  ( ,0) 0rz rσ =   (10) 

Equation (10) assumes that there is no friction between two crack surfaces and no tangential 

stress applied to the crack surfaces. Due to the symmetry, the displacement at the plane z = 0 

satisfies 

  0zu =   for r>c (11) 

 According to the theory of linear elasticity, the reference state of the structure is the stress-

free (un-deformed) state. At the contact line between the liquid bridge and the crack surface at 

the reference state, Young’s equation 
25

 gives the contact angle, θ, at the contact line as 

  cos sv sl

lv

γ − γ
θ =

γ
   (12) 
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where lvγ , svγ , and slγ , and are the interface tensions of the liquid/vapor, solid/vapor and 

solid/liquid interfaces, respectively. Equation (12) represents the force balance only along the 

tangential direction on the liquid/vapor and solid/liquid interfaces, which validates Eq. (10) if 

there is no friction between two crack surfaces. The net normal component of the surface 

tensions, acting on the contact line, must be balanced by the mechanical deformation inside solid.  

 There are various studies 
7
 addressing the mechanical deformation of solid induced by the net 

normal component of the surface tensions for a liquid droplet being placed on the surface of 

deformation materials. Lester 
5
 and Rusanov 

6
 suggested that there was a breadth of δ at the 

liquid–vapor interface and the liquid/vapor interface tension uniformly distributed over a narrow 

annulus in studying the deformation of an elastic half-space induced by a sessile liquid droplet. 

Following the approach used by Lester 
5
 and Rusanov 

6
, the normal stress on the crack surface 

can be expressed as 

   ( ,0) ( )

0

zz

p

r f r

−


σ ≡ = χ



  for

          r a

a r a

a r c

<

< < + δ

+ δ < <

 (13) 

For a capillary bridge of thickness 2h and contact radius a between the capillary bridge and the 

crack face, which is confined between two crack surfaces, the pressure p is calculated as 

  
1 cos

lvp
a h

θ = γ − 
 

   (14)   

and the stress over the narrow annulus is 

  
sinlvγ θ

χ =
δ

    (15) 

For cos 0θ >  and cosR hθ < , the crack surface experiences compressive stress; otherwise, the 

crack surface experiences tensile stress. For cos 0θ < , the crack surface experiences compressive 

stress.  

 It is worth pointing out that surface stresses 
23, 28-31

  generally need to be incorporated in the 

boundary condition of (13) for the deformation due to the wetting of a liquid droplet of small 

size 
23

. Here, no surface stresses are incorporated in the boundary condition of (13), since the use 

of surface stresses introduces a new parameter, whose value is needed to be determined. Note 

that Young's equation may have to be modified for sufficiently large elastocapillary number. 

3. Crack opening and stress intensity factor 
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 With the above equations, it is possible to analyze the stress distribution and the stress 

intensity factor. Before solving these equations, the following dimensionless parameters are 

introduced: 

  ( , ) ( , ) /r z r z c=% % , ( , ) ( , ) /r z r zu u u u c=% % , /a cλ = , and / cδ = δ%  (16) 

Using the axisymmetry of the crack problem and the properties of the Bessel functions, one can 

find the crack opening as 

  
2

1 1
0

2 2 20

8(1 ) [ ( )]
( ,0 ) ( ,0 )

1
z z

r

c tdt f txc xdx
u r u r

E t r x

+ − − ν σ −
∆ = − =

π − −
∫ ∫%

% %

%

   for r% <1 (17) 

and normal component of the stress field in front of the crack tip as 

  
1 1

0
0

20 0 0

[ ( )]2
( ,0) ( ) sin( )

1
zz

x f txc
r J r d t t dt dx

x

∞ σ −
σ = − ς ς ς ς

π −
∫ ∫ ∫% %   for r% >1 (18) 

with tx r= % . Eq. (18) can be further simplified to 

  
2

1

2 20

2 1 ( )
( ,0)zz

d t q t
r dt

r dr r t
σ = −

π −
∫%

% % %

 for r% >1 (19) 

where 

  
1

0

20

[ ( )]
( )

1

f txc x
q t dx

x

σ −
=

−
∫    (20) 

For detailed derivation, see the supplementary material. 

 To derive both the stress intensity factor and the crack opening with the function f(r) of Eq. 

(13), we first consider the auxiliary problem that a penny crack of dimensionless radius 1 in an 

infinite elastic space is only subjected to uniform pressure of 0p  on the crack surface over a 

circular area of dimensionless radius b (b<1), i.e.  

  0zzσ =   for | |z →∞   (21) 

   
0

( ,0) ( )
0   

zz

p
r f r

−
σ = = 


% %   for 

   

1

r b

b r

<

< <

%

%
 (22) 

Define  

  
2

0
0

8(1 )cp

E

− ν
∆ =

π
   (23) 

Substituting Eq. (22) in Eqs. (17), one obtains the crack opening of the auxiliary problem as 

  
2 2

2 2 1

2 2

0

1 (1 1 ) ( [ ] [sin , ])
a

r r
r b b b

b b

−∆
= −

∆
− − − + E

% %
% E  for r b<%  (24) 
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  2

0

21 (1 1 )
a

r b
∆

−
∆

− −= %   for 1b r< <%  (25) 

  
2 2 2 2 2

1 1

2 2 2 2 2
[ ] [sin , ] 1 [sin , ] [ ]
b b b b b

r r r
r r r r r

− −   
+ − + − −   

   
E K% % %

% % % % %
E F  

Here Φ(•,•) and Ε(•,•) are the first and second elliptical integrals, respectively, and E(•) and K(•) 

are the first and the second complete elliptical integrals, respectively. Note that the /r b%  and 

/b r%  in the elliptical integrals in the work of Parihar and Krishna Rao 
32

 need to be replaced by 

2 2/r b%  and 
2 2/b r% , respectively. For 1b � , there is 

  
2 2 2

1 10

2

4(1 ) 4(1 )
cos cosa cp b c P

r r
E r E r

− −− ν − ν
∆ = =

π π
% %

% %
 for 1b r <%�  (26) 

with P being the applied load. Figure 2 shows the crack opening for various b. Under the action 

of the same pressure, the largest crack opening occurs for b=1 and can be simply described by 

21 r− % , as expected. In contrast to the case for b=1, the crack opening begins concave down, 

becomes concave up at the edge of the loading zone, and finally becomes concave down near the 

crack tip. This result reveals the dependence of the crack opening near the crack tip on the 

loading condition. For  1r→% , there is 

  
1

2 2

0

1li ( )m 1 1
a

r
r b

→

∆
∆

−= − −
%

%   (27) 

which reduces to the result for b=1. 

 The normal component of the stress field in front of the crack tip of the auxiliary problem is 

  
2 2 2

1 2 1

2 2 2
0

1 1 1 2
cot ( 1) tan

4 21 2 1

( 2

1

,0)
a

zz b b r
r

p b

r

r r

− −σ
==

 − − π − −
+ − − + 

 − − −π  

%
%

% %

%
   (28) 

for 1r >% , which gives the same stress distribution as that by Parihar and Krishna Rao 
32

. For 

1b � , there is 

  
2

1

2 2 2 2 2
0

2 2 2

1 1
tan

2

,0)

1

( 2a

zz b b b b

r r r b r b r b

r

p

−
  

− + −   − − − −
=

 

σ
π  %

%

% % % %

 (29) 

Equation (28) gives the stress intensity factor, 
a

IK , as 

  2

0
1

lim 2 ( 1) ( ,0) 2 (1 1 )a

I zz
r

c
K c r r p b

→
= π − σ = − −

π%

% %   (30) 

Here, the superscript a represents the auxiliary problem.  
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 Using the principle of superposition, the crack problem with the boundary conditions of (9)-

(13) can be solved from the following three sub-problems. 

Sub-problem I: 

 The normal stress on the crack face is 

   
0( ,0)I

zz rσ = −σ%   for 0 1r< <%   (31) 

which represents uniform pressure applied on the crack face. 

Sub-problem II: 

 The normal stress on the crack face is 

   
( )

( ,0)
0          

II

zz

p
r

− +χ
σ = 


%    for 

   

1

r

r

< λ

λ < <

%

%
 (32) 

Sub-problem III: 

 The normal stress on the crack face is 

   ( ,0)
0

II

zz r
χ

σ = 


%    for 
     

1

r

r

< λ + δ

λ + δ < <

%%

% %
 (33) 

The combination of the sub-problem II and III represents the pressure applied on the crack face 

due to the capillary bridge. 

 Define  

  
2

08(1 )c

E
σ

− ν σ
∆ =

π
   (34) 

Using the results of the auxiliary problem, the crack opening is obtained as 

  
2 2 2

0 0

1 1 (1 1 ) [1 1 ( ) ]
a p

r
σ

 + χ χ
− + − −λ − − − λ + δ 

σ σ 

∆


=

∆
%%      for r < λ%  (35) 

  
2 2 2 2

1 1

2 2 2 2

0 0

( [ ] [sin , ]) ( ) ( [ ] [sin ( ), ])
( ) ( )

p r r r r− −+ χ χ
+λ − λ − λ + δ − λ + δ

σ λ λ σ λ + δ λ + δ
E E

% % % %
% %

% %
E E  

  
2 2 2

0 0

1 1 (1 1 ) [1 1 ( ) ]
a p

r
σ

 + χ χ
− + − −λ − − − λ + δ 

σ σ 

∆


=

∆
%%     for rλ < < λ+δ%%  (36) 

  
2 2 2 2 2

1 1

2 2 2 2 2

0

[ ] [sin , ] 1 [sin , ] [ ]
p

r r r
r r r r r

− −   + χ λ λ λ λ λ
+ − + − −   σ    

E K% % %
% % % % %

E F  

  
2 2

1

2 2

0

( ) ( [ ] [sin ( ), ])
( ) ( )

r r−χ
− λ + δ − λ + δ

σ λ + δ λ + δ
E

% %
% %

% %
E  
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2 2 2

0 0

1 1 (1 1 ) [1 1 ( ) ]
a p

r
σ

 + χ χ
− + − −λ − − − λ + δ 

σ σ 

∆


=

∆
%%     for 1rλ+δ < <% %  (37) 

  
2 2 2 2 2

1 1

2 2 2 2 2

0

[ ] [sin , ] 1 [sin , ] [ ]
p

r r r
r r r r r

− −   + χ λ λ λ λ λ
+ − + − −   σ    

E K% % %
% % % % %

E F  

  
2 2 2 2 2

1 1

2 2 2 2 2

0

( ) ( ) ( ) ( ) ( )
[ ] [sin , ] 1 [sin , ] [ ]r r r

r r r r r

− −   χ λ + δ λ + δ λ + δ λ + δ λ + δ
− − + − −    σ    

E K
% % % % %

% % %
% % % % %

FE  

and the stress intensity factor IK  as 

 

2 2 2

0

0 0

sin1 cos
2 (1 11 ) ( 1 1 )lv lv

I

c a a a

c
K

c ca h

      σ + +     σ σ      

γ γ θθ + δ  = − − − − − − π δ   
 (38) 

It is evident that the stress intensity factor is dependent on the surface tension of the liquid, the 

contact angle, the radius of the capillary bridge, and the thickness of the capillary bridge. 

4. Numerical results and discussion 

 To illustrate the effect of the capillary bridge on the crack opening and the stress intensity 

factor, numerical calculation is carried out. Consider a water film confined in a penny crack of 

radius 1 µm in a soft material of PDMS (Polydimethylsiloxane). The Young’s modulus of PDMS 

is ~1 MPa, and the contact angle is 120° 7. The surface tension of water is 72 mN/m. There is no 

accurate value of the breadth width of a capillary layer currently available, and Yu and Zhao 
7
 

had used the values of 1, 10, and 40 nm for δ in their analysis. Here, the values of 1, 10, and 40 

nm for δ are used in the following calculation. 

 Figure 3 shows the crack opening under concurrent action of a capillary bridge and various 

far-field tensile stresses. The following parameters are used in the calculation: a= c/100, h=10 

nm, and δ=1 nm. It is evident that the normal stress induced by the net vertical component of the 

surface tensions leads to the formation of local ridge similar to the local deformation induced by 

a sessile droplet. Without the action of a far-field tensile stress or with the action of a small far-

field tensile stress, there exists overlap between two crack faces as shown in Fig. 3 for the 

numerical results with 0 10σ = Pa. This result suggests that the stress condition of (13) becomes 

invalid over the annular region of a r a< < + δ , which should be replaced by a displacement 

condition, i.e. the capillary bridge causes the crack closure due to the net vertical component of 

the surface tensions. The size of the crack closure is also dependent on the size of the capillary 

bridge.  
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 The smallest far-field tensile stress of c

sσ  to have the stress condition of (13) over the annular 

region of a r a< < + δ  before the rupture of the capillary bridge can be calculated from a∆ =0 

and is 

 ( )
2 2

1 1 2

2

1/2

2
( ) 1 [sin ,1] ( ) ( [ ] [sin ( ), ]) ( )1

( ) ( )

c

s p − − − λ λ
σ = −λ + χ − λ + λ + δ χ − λ + δ − λ λ + δ λ + δ 

E% %
% %

E E  (39) 

 2 2( )(1 1 ) [1 1 ( ) ]p + χ − − λ + − λ +− χ − δ%  

which is the function of the breadth width, the surface tension of the liquid, the contact angle and 

contact radius of the liquid on the  crack face.  

 As shown in Fig. 3, the crack opening increases with the increase of the far-field tensile 

stress, as expected. The increase in the crack opening will eventually lead to the rupture of the 

capillary bridge and the formation of a droplet on each individual crack face. It is known that the 

total free energy of the system consists of the sum of the strain energy stored in the soft material, 

the volume energy stored in the liquid phase, the surface energy associated with the surface of 

the liquid phase, and the interface energy associated with the interface of the liquid and the soft 

material. The rupture of the liquid bridge will occur when the total free energy of the system with 

the liquid bridge is larger than that of the system with two liquid droplets of the same total 

volume as the liquid bridge. 

 After the rupture of the liquid bridge, assume that there are two identical liquid droplets of 

spherical cap formed on the crack faces, and there is only one liquid droplet on each individual 

crack face. The normal stress applied to the crack surface over the contact zone by the droplet 

becomes  

  
2sin

( ,0)zz lvr
a

θ
σ = −γ%   for r < λ%   (40) 

and the stress intensity factor becomes 

  0

0

2

0

2 2
2 sin sin

2 (1 1 ) ( 1 11 )lv lv
I

a a a

c c c

c
K

a

γ θ γ    θ + δ = − − − − −  σ + +     σ σ      π


δ 
 (41) 

Note that the liquid droplet always introduces compressive stress on the crack face over the 

contact zone in contrast to the capillary bridge. The following discussion is mainly focused on 

the effect of the droplet on the deformation of the crack face.  
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 Figure 4 shows the crack opening for three different contact angles and c=1 µm, a=c/10, δ=1 

nm, and σ0=0.15E. For r > λ + δ%% , there is no significant difference in the crack opening for all 

the three contact angles, while, for the r < λ% , the crack opening for 
o90θ =  is larger than those 

for 
o60θ =  and 

o120 , as expected from Eq. (40). Over the annular zone of rλ < < λ + δ%% , the 

crack opening for 
o90θ = is smaller than those for 

o60θ =  and 
o120  in accord with the condition 

of (15). The droplet induces the formation of a surface ridge at the edge of the droplet due to the 

net vertical component of the surface tensions. For a small far-field tensile stress, the droplet 

formed from the rupture of a capillary bridge can also lead to the crack closure near the edge of 

the droplet. The minimum far-field stress to have an opening crack without the crack closure due 

to the surface deformation around the edge of the droplet can be calculated from Eq. (39) by 

replacing p with the following equation 

  
2sin

lvp
a

θ
= γ     (42) 

 Figure 5 shows the crack opening under concurrent action of a capillary bridge and a far-field 

tensile stress for three droplet sizes. The following parameters are used in the calculation: c=1 

µm, δ=1 nm, σ0=0.15E, and θ=60°. The crack opening for the region with 2 1rλ < <%  is 

independent of the droplet size for the conditions used in the calculation. In the region occupied 

by the droplet, the larger the droplet, the larger the crack opening is at the same position, even 

though the pressure acting on the crack face, as given in Eq. (42), is smaller. Such behavior is 

due to the synergetic effect of the pressure inside the droplet, which gives a larger normal force, 

F, for a larger droplet as 

  2 2 sinlvF a p a= π = π γ θ   (43) 

However, the crack opening over the annular zone near the edge of the droplet decreases with 

increasing the droplet size. This result indicates that a larger far-field tensile stress is needed to 

prevent the occurrence of the crack closure for a larger droplet, which is in accord with the 

relationship between c

sσ  and λ in Eq. (39).  

 The effect of the breadth width on the crack opening over the annular zone near the edge of 

the droplet is depicted in Fig. 6. The following parameters are used in the calculation: c=1 µm, 

a=c/5, σ0=0.15E, and θ=60°. The crack opening decreases with increasing the breadth width. 

Such behavior is due to the distribution of the same resultant force (the net vertical component of 
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the surface tensions) over an annular zone. The larger the annular zone, the smaller the normal 

stress is over the annular zone. Smaller normal stress will introduce smaller surface deformation 

on the crack surface. 

5. Summary 

 In summary, the effect of a capillary bridge or a liquid droplet on the crack opening of a 

penny crack under the action of a far-field tensile stress was analyzed. Considering the unbalance 

of the surface tensions in the direction perpendicular to the crack face, the approach used by 

Lester 
5
 and Rusanov 

6
 was used to describe the capillary-induced normal stress over an annular 

zone of a breadth width at the edge of the capillary bridge and the liquid droplet. The crack 

opening and the distribution of normal stress in front of the crack tip as well as the Mode I stress 

intensity factor were derived analytically. The sizes of the capillary bridge and the droplet play 

an important role in determining both the crack opening and the stress intensity factor. Without 

or with the action of a small far-field tensile stress, there likely exists the crack closure, i.e. 

surface contact, induced by the net vertical component of the surface tensions for a capillary 

bridge between crack faces or a liquid droplet on the crack face. This result reveals the 

phenomenon of the capillary-induced contact of solid surfaces. With the increase of the far-field 

tensile stress, the capillary bridge will be ruptured, leading to the formation of a droplet on each 

individual crack face. The smallest far-field tensile stresses needed for complete crack opening, 

i.e. no crack closure, were obtained analytically for the capillary bridge and the droplet, 

respectively. Without the presence of the crack closure, the net vertical component of the surface 

tensions introduces the formation of a surface ridge on the crack face at the edge of the droplet. 

The amplitude of the surface ridge increases with the increase of the net vertical component of 

the surface tensions and the decrease of the breadth width, while it increases with the increase of 

the contact angle, reaches the maximum at the contact angle of 90º, and decreases with further 

increasing the contact angle. The analysis reveals the important role of capillary bridges and 

liquid droplets in controlling the performance and reliability of the mechanical structures made 

from soft matter and the capillary-induced contact of mechanical structures of small scales.  
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Figure captions: 

1. Schematic of a penny crack with a liquid bridge in an infinite space 

2. Crack opening under the action of uniform pressure over a circular area of dimensionless 

radius b 

3. Crack opening of the penny crack under concurrent action of a capillary bridge and a far-

field tensile stress for three values of the tensile stress (c=1 µm, a=c/100, h=10 nm, δ=1 nm, 

θ=120°) 

4. Crack opening of the penny crack under concurrent action of a droplet of radius c and a far-

field tensile stress for three contact angles (c=1 µm, a=c/10, δ=1 nm, σ0=0.15E) 

5. Crack opening of the penny crack under concurrent action of a droplet and a far-field tensile 

stress for three droplet sizes (c=1 µm, δ=1 nm, σ0=0.15E, θ=60°) 

6. Crack opening of the penny crack under concurrent action of a droplet and a far-field tensile 

stress for three breadth widths (c=1 µm, a=c/5, σ0=0.15E, θ=60°) 
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Figure 1. Schematic of a penny crack with a liquid bridge in an infinite space 

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

∆
a
/∆

0

r~

b=0.1

0.25

0.5

0.75

1

 

Figure 2. Crack opening under the action of uniform pressure over a circular area of 

dimensionless radius b 
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Figure 3. Crack opening of the penny crack under concurrent action of a capillary bridge and a 

far-field tensile stress for three values of the tensile stress (c=1 µm, a=c/100, h=10 nm, δ=1 nm, 

θ=120°) 
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Figure 4. Crack opening of the penny crack under concurrent action of a droplet of radius c and a 

far-field tensile stress for three contact angles (c=1 µm, a=c/10, δ=1 nm, σ0=0.15E) 
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Figure 5. Crack opening of the penny crack under concurrent action of a droplet and a far-field 

tensile stress for three droplet sizes (c=1 µm, δ=1 nm, σ0=0.15E, θ=60°) 
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Figure 6. Crack opening of the penny crack under concurrent action of a droplet and a far-field 

tensile stress for three breadth widths (c=1 µm, a=c/5, σ0=0.15E, θ=60°) 
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