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Journal Name

Heterogeneous Vesicles: An Analytical Approach to
Equilibrium Shapes

Sangwoo Kima and Sascha Hilgenfeldta

We develop an analytical model to predict equilibrium shapes of two-component heterogeneous
vesicles or capsules. Using a free energy functional including the bending energies of the two
components and line tension contributions, the model describes shape transitions between spher-
ical and polyhedral (faceted) states, complementing and extending results of previous numerical
simulations. In the parameter space of relative area fraction, bending modulus ratio, and line
tension, a region of polyhedral shapes occurs for weak line tension and large bending modu-
lus ratio and is very robust towards changes in the modeling assumptions. At large enough line
tension, the spherical shape fragments into two components. Within the polyhedral region, we
compare the energies of all regular and semiregular polyhedra, as well as those of arbitrary pris-
matic shapes. We find that the largest bending modulus ratios together with larger line tension
favor polyhedra with small face number as optimal shapes. In this region, we also demonstrate
the counter-intuitive result that the most symmetric polyhedra are not energetically optimal, with
specific Archimedean solids and specific prismatic shapes beating more isotropic (e.g. Platonic)
polyhedra. Furthermore, all polyhedra of lowest energy are found to be three-fold coordinated.The
shape transition boundary for polyhedra can be computed analytically. The model can be utilized
to predict heterogeneous vesicle shapes and to estimate physical properties of the components
constituting observed vesicles.

1 Introduction
The formation of interfaces to divide otherwise homogeneous me-
dia into compartments is one of the most fundamental building
principles at the root of complex structures in nature and technol-
ogy. Layered or fiber composites, foams, superlattice structures,
confluent biological tissues, individual cells, or cell organelles are
only a few examples of materials characterized by the presence
of domains and boundaries between these domains. In many of
these examples, the domain size is on the micro- or nano-scale,
ensuring that interfacial effects are strong or dominant owing to
the superior scaling of surface forces over body forces on the small
scale. Therefore, we generally see greater uniformity of domain
organization and domain shapes on the very small scale, which
has enabled researchers to develop elegant descriptions of the
shapes and dynamics of objects like vesicles and capsules, formu-
lated largely or entirely in terms of interfacial properties.

Such structures (which we will henceforth refer to as "vesicles",
with the understanding that they include other material classes
like capsids) are widely employed in nature to accomplish vari-
ous functions as containers for material transport, as agents of cell

a Mechanical Science and Engineering, University of Illinois, Urbana-Champaign; E-
mail: sascha@illinois.edu

metabolism, or as material compartments. Reflecting this multi-
ple functionality, a rich morphology is reported in previous stud-
ies. Despite this complexity, the quantitative theories alluded to
above can explain a multitude of equilibrium shapes modeling a
vesicle as an elastic thin shell. Recognizing that bending is a dom-
inant deformation mode for a thin shell, Helfrich proposed a free
energy functional as the sum of the integral of square mean curva-
ture and Gaussian curvature.1. According to the Helfrich energy
functional, a smooth vesicle shape is favored, avoiding localized
curvature, which is energetically costly. However, a number of
virus capsids2, polymersomes3 and some cationic vesicles4 show
distinctly polyhedral shapes, often of icosahedral symmetry.

The existence of polyhedral structures can be partly understood
through geometric frustration of a curved surface, which can lead
to a vesicle of icosahedral symmetry as the energetically most fa-
vorable outcome5. As shells are made from individual (and often
identical) units of very small size, they form a lattice covering the
surface. For a planar sheet, a regular triangular lattice (of hexag-
onal coordination) is the energetic ground state for many simple
interactions between the lattice units6–9). However, constructing
a regular lattice on a curved surface (to make a closed vesicular
structure) necessitates defects by Euler’s theorem10. In particular,
the total number of lattice neighbors has to be reduced by twelve
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Fig. 1 (a) Experimentally observed polyhedral carboxysomes (left) and
assemblies of oppositely charged amphiphiles (right), representing
naturally occurring vesicles of heterogeneous composition with
non-icosahedral equilibrium shapes; reproduced with permission
from 13,15. (b) Representative result of the numerical simulations of SVO,
demonstrating that such shapes can be obtained from minimization of
an energy functional with two shell components. Reproduced with kind
permission from the authors 21. (c) Example of a semi-regular
polyhedral shape (a truncated tetrahedron) for which the present work
evaluates the energy functional values analytically. In both (b) and (c),
the hard material (of higher bending modulus) is colored red and the soft
material is blue.

for any regular lattice on a shell of the topology of a sphere. Un-
der generic assumptions about defect core energy, this is realized
with least energy expenditure through twelve five-fold defects.
While these defects cause stretch energy contributions propor-
tional to R2, where R is the vesicle radius, this stretch energy can
be released by buckling of the surface, which costs bending en-
ergy scaling as log(R). Hence, the shape transition of the equilib-
rium state from a sphere to an icosahedron occurs above a critical
vesicle size5 or, equivalently, a critical Föppl-von-Kármán (FvK)
number, YAR2

κ
, where YA is the two dimensional Young‘s modulus

of the shell and κ is the bending modulus.
However, the variety of shapes encountered in nature is far

greater than just spheres and icosadeltahedra: it has long been
known that smooth equilibrium vesicle shapes can have a range
of morphologies11, but more recently it has become clear that
there is a range of non-icosahedral polyhedra as well, e.g. in
an assemblies of oppositely charged amphiphiles12,13 and in car-
boxysomes14,15, see Fig. 1a. The key to understanding this latter
diversity of shapes is heterogeneity of the vesicle shell compo-
nents. Typically, the (at least) two constituents of the shell will
separate into domains, and a line tension energy arises at the
boundary. The line tension between different materials can in-
duce budding in smooth vesicles16–18. More recent simulation
work on polyhedral vesicle shapes has confirmed that polyhe-
dral, distinctly non-icosahedral shapes are energetically favorable
for certain ranges of material properties19–21, cf. Fig. 1b. These
simulations confirm that in such parameter regimes, the buckling
mechanism around twelve defects is unimportant and the relative
material properties of the two components become decisive.

While the numerical simulation sheds light on the relation be-
tween the vesicle morphology and physical properties, it is desir-
able to attempt an analytical approach to discuss the overall prop-
erties of the material parameter space. This is helpful not only
for the understanding of naturally occurring shapes, but for the
potential manufacture of capsules of pre-designed shape, as a de-
sired shape can only be realized with materials of certain selected
properties. Such an analysis is also capable of quickly and gen-
erally comparing the outcomes of different types of models (dif-

ferent energy functionals) to determine whether other physical
effects will become important. In this article, we develop such an
analysis of heterogeneous (two-component) vesicles using a vari-
ety of shape families to find the parameter ranges over which each
shape is the energetically most favorable. This approach includes
non-icosahedral polyhedral shapes (Fig. 1c) and draws general
conclusions on when they are expected to occur over icosahe-
dral (or other regular) polyhedra, or spherical shapes. We will
explicitly compare the analytical results with the simulations of
Sknepnek, Vernizzi, and Olvera de la Cruz (21, referred to as SVO
in the following). In section 2, the energy functionals and shape
approximations used by the model are explained, with general re-
sults on the phase diagrams of equilibrium shapes. A comparative
discussion on breaking the symmetry of polyhedra is presented in
section 3, while an analytical description of the boundaries in
parameter space is developed in section 4. Conclusions are pre-
sented in section 5.

2 Spherical, Fragmented, and Polyhedral
vesicles

In general, the contributions to the total energy of the vesicle can
be decomposed as Utot = Ubend +Ustretch +Uvol +Uline, with sep-
arate bending, area stretch, volume elasticity, and line tension
contributions (the latter is present because of the heterogeneous
composition of the shell and the existence of domain boundaries),
see the discussion in SVO. Such a functional can contain a large
number of variable parameters, but in the simulations of SVO
the area stretch and volume elasticity moduli were chosen large
enough so that deviations from the area and volume of a spherical
shell were small. This reduced the problem to the desired class
of compact, near-isotropic vesicle shapes as opposed to strongly
non-compact shapes (e.g. discoid or dog-bone shapes22). We
shall simplify this approach for our analytical purposes by either
fixing the overall area of the vesicle shell or the overall volume,
representing the respective limit of infinite moduli for these two
contributions. We will show that the results are not only very
similar to the large-modulus simulations, but that they are quite
insensitive to whether area or volume is fixed.

We are primarily interested in the distinction between quali-
tative classes of shape: not only will we probe the parametric
boundaries between spherical vesicles and polyhedra, but we will
also allow for the fragmentation of the two-component sphere
into two separate objects. Figure 2 shows prototypical repre-
sentations of the spherical, fragmentation, and polyhedral shape
families, with the two materials indicated in red ("hard", higher
bending modulus) and blue ("soft", lower bending modulus).

2.1 Energy functional
As in previous numerical studies, the main focus in explaining the
phase diagram of shapes is on the competition between a Helfrich
bending energy and line tension energy, i.e.,

Utot =
1
2

κb

∫∫
A
(2H)2dA+κg

∫∫
A

KgdA+
∫

∂A
Γdl , (1)
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Fig. 2 Representative examples of two-component vesicle shapes. (a)
Spherical, (b) Fragmented, (c) Polyhedral (here, a cubic n=6 shape).
The hard material is colored red and the soft material is blue.

describing the vesicle shape in terms of mean curvature H and
Gaussian curvature Kg. The following assumptions and simplifi-
cations are employed: (i) The surface area of the vesicle is fixed as
that of a sphere of radius R, A0 = 4πR2. It is widely accepted that
significant stretching of thin membranes is not likely to happen
because it costs far more energy compare to the bending deforma-
tion1. Below, we will also discuss the alternative assumption of
constant volume. (ii) The area fraction of soft material is defined
as f , where f = As

A0
. (iii) We follow the common assumption that

the bending modulus and the Gaussian bending modulus have the
same magnitude but opposite sign for the homogeneous material,
κb =−κg = κ. The bending moduli of the soft and hard material
are denoted as κs and κh, respectively. (iv) The line energy at the
boundary between soft and hard domains is a constant energy per
length Γ. (v) The surface of a vesicle is smooth, i.e., the principal
radii of curvature are non-zero everywhere. (vi) the FvK number
is small, so that the generation of elementary defects (not present
in our continuum model) is an energetically negligible contribu-
tion.

We shall report energies below in the non-dimensionalized
form u =U/κh; the number of mechanical parameters reduces to
two with these assumptions: the bending modulus ratio κ̄ = κs

κh
≤

1 and a non-dimensional line tension Γ̄ = Γ
√

A0
κh

, in analogy with
SVO. In the spirit of analyzing representative analytical approxi-
mations to the different modes of shape deformation23, we now
compute the energies for the shape families indicated in Fig. 2.

2.2 Spheres
One of the most common vesicle shapes is the sphere because it
minimizes bending energy for a given surface area. If the spher-
ical vesicle is composed of two different materials, it will further
minimize the total length of the boundary between two materials
due to the energy penalty from Γ̄. This leads to a full segrega-
tion of the two materials into a soft and a hard domain (Fig. 2a).
The mean curvature and Gaussian curvature are constant every-
where on the sphere, H = 1

R , Kg = 1
R2 . Denoting the dimensional

length of the boundary as lsph and its dimensionless version as
l̄sph = lsph/

√
A0, the total energy is

usph =
4πκ̄As

A0
+

4πAh

A0
+ Γ̄l̄sph , (2)

where l̄sph depends on the area fraction f as

l̄sph =
√

4π f (1− f ) . (3)

This results in an explicit expression of usph as a function of
κ̄, Γ̄, and f ,

usph = 4π [κ̄ f +(1− f )]+ Γ̄
√

4π f (1− f ) . (4)

2.3 Fragmentation
As the line tension Γ̄ becomes larger and larger, it is eventually
energetically favorable to eliminate the boundary between dif-
ferent materials although this fragmentation generates two sepa-
rate spheres (one of soft and one of hard material), resulting in a
higher bending energy. The total energy is then

u f rag = 4π (κ̄ +1) . (5)

2.4 Polyhedral Shapes: Regular Polyhedra
Qualitatively, polyhedral equilibrium states in two-component
vesicles are possible because the hard-phase material can relax
most of its (higher) bending energy contribution by forming flat
facets divided from each other by soft-material regions that form
a continuous phase connected along the edges of the polyhedron.
It is natural to assume that, in cases where the faceting into poly-
hedral shapes is energetically favorable, the resulting polyhedra
will display high symmetry (e.g. that of Platonic solids). However,
the experimental and simulational results do not always bear out
that assumption (cf. Fig. 1a,b). In heterogeneous systems, the
regularity of the shape will also depend on the area fraction f ,
and on the fact that a "polyhedron" in this system cannot have
idealized one-dimensional edges (whose bending energy would
diverge) – the soft-material regions have finite extent and thus
vertex and edge relationships are not always unambiguous. We
will probe the effect of relaxing symmetries in a later section, but
first treat the most regular and symmetric polyhedra.

In polyhedral two-component vesicles, we need to substitute
the edges and vertices of the underlying polyhedral shape by
structures representing the finite area fraction of soft material
around them. This is done by replacing each edge by a piece
of a cylinder mantle (with an angle matching the dihedral angle
between the adjacent faces) and replacing each vertex by a piece
of a sphere with a solid angle matching the vertex (angular) de-
fect; see Fig. 2c for an example. Note that the the hard-material
faces could be assembled to form a polyhedron in the conven-
tional sense, while the soft material is filling the gaps between
these faces.

2.4.1 Platonic Solids

The geometry of the five Platonic solids (the only perfectly regu-
lar, convex polyhedra) is known analytically24. It is advantageous
to express their properties in terms of the number of faces n and
the coordination number c of the vertices: c = 3 for n = 4,6,12,
while c = 4 for n = 8 and c = 5 for n = 20. The number of vertices
per face is then

η =
2c

c−2

(
1− 2

n

)
. (6)

The regular η-gons have an edge length, l, and c facets meet
at one vertex with equal planar angle, α = π(1− 2

η
). The total

number of edges and vertices are E = nη

2 and V = nη

c . The area of
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an individual η-gon, a, can be calculated in terms of η , l, and α,

a =
η

4
l2 tan

(
α

2

)
(7)

The dihedral angle θ between two facets is obtained by consider-
ing normal vectors of adjacent facets,

θ = cos−1
(

1
2

(
−1−2cos

(
2π

c

)
+ cosα

)
sec2

(
α

2

))
. (8)

The radius r of the cylindrical and spherical parts of the soft-
material phase is taken to be the same, in order to avoid a curva-
ture discontinuity in the soft material region. As a result, As and
Ah = A0−As can be expressed in terms of l and r:

As = As,cylinder +As,sphere = E(π−θ)rl +4πr2 , (9)

Ah = na =
nη

4
l2 tan

(
α

2

)
(10)

By definition, all sphere parts sum up to one complete sphere.
The turning angle of each cylinder part is π − θ to satisfy the
smoothness of the surface at the boundary between hard material
and soft material. Expressions for l̄ = l/

√
A0 and r̄ = r/

√
A0 can

be obtained by rearranging the above equations to yield

l̄ =

√
4

nη
(1− f )cot

(
α

2

)
, (11)

r̄ =

√
E2 (π−θ)2 l̄2

64π2 +
f

4π
− E (π−θ) l̄

8π
(12)

The total energy is now easily obtained taking into account that
only the soft material contributes to the bending energy, and that
the total boundary length between the phases is nη l = 2El. The
dimensionless energy becomes

ui = κ̄

[
E(π−θ)l̄

2r̄
+4π

]
+2Γ̄El̄ , (13)

where we use the subscript "i" to indicate the isotropy of the Pla-
tonic solids.

Figure 3 shows the resulting phase diagram in κ̄ − Γ̄ space,
at a fixed area fraction f = 0.5 (we shall investigate the depen-
dence on f below). Indicated are the regions in which each of
the shapes discussed (spherical – S, fragmented – F, polyhedral
– indicated explicitly) is energetically the lowest; note that both
axes are logarithmic. Unsurprisingly, fragmentation is favorable
for large enough Γ̄, while for κ̄ → 1, the spherical solution is re-
covered for small enough Γ̄ (this is the single-phase limit). The re-
gion of polyhedral shapes takes up the lower left of the diagram,
where κ̄ is small enough so that faceting of the hard material
gives a large energetic benefit, while Γ̄ is small enough so that
the formation of the polyhedral soft phase (with its long inter-
phase boundary) does not override this faceting benefit. We will
show below that this general appearance of the phase diagram is
very robust against changes in modeling.

Within the polyhedral region of the diagram, it is remarkable
that octahedral and icosahedral solids are never energetically op-
timal – the entire region is taken up by tetrahedra, cubes, and

Fig. 3 Phase diagram indicating energetically lowest shapes, comparing
Platonic solids with spherical shapes (S) and fragmented shapes (F) for
f = 0.5. Only Platonic solids with c = 3 appear in the phase diagram:
tetrahedra (n = 4), cubes (n = 6), and dodecahedra (n = 12).

dodecahedra, all with coordination number c = 3. We shall see
below that this result is true for semiregular polyhedra as well:
only c = 3 structures show up as lowest-energy states. This is in-
triguing because (i) icosahedra, the preferred shape of buckling
induced by topological defects, are not only suppressed, but en-
tirely absent; and (ii) the polyhedral ground states here are of a
robust type – even in the low- f limit, a small perturbation to the
structure will keep the coordination number at c = 3, while it will
change for larger c. This indicates that polyhedral symmetries can
be broken continuously.

This preference for c = 3 is straightforward to show analyti-
cally: the total energy of Platonic solids contains two linear terms,
so it can be written as ui = Cκ ( f ,n,c)κ̄ +CΓ( f ,n,c)Γ̄. One finds
that CΓ and Cκ of the octahedron are larger than those of the
cube for any f value, so that the cube is always energetically bet-
ter than the octahedron. In the same way, the two coefficients
of the icosahedron are always larger than those of the dodecahe-
dron. Hence, it is sufficient to only consider Platonic solids with
c = 3.

2.4.2 Isotropic Polyhedra and Area Fraction Dependence

One way of making analytical progress towards shapes of lesser
symmetry is to compute averaged properties in the spirit of a
mean-field model. While only the five Platonic solids exist, the
formulas given above are well-defined as a function of n and c.
The same conclusion as for Platonic solids holds for arbitrary n:
the energies ui for c = 3 are always lower than for higher coordi-
nation number. Thus, we analyze the model for arbitrary n at co-
ordination number c = 3. This is inspired by work on polyhedral
foam bubbles25,26, for which it was shown that all geometrical
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Fig. 4 (a) Phase diagram of isotropic polyhedra with constant area
assumption and f = 0.5. The polyhedral region shows explicit results up
to n = 19, with the optimal number of faces increasing as Γ̄ increases
and κ̄ decreases. (b) Changes in the phase diagram of (a) with varying
area fraction. All polyhedral shapes are indicated as region P. (c), (d)
Phase diagrams of isotropic polyhedra with constant volume
assumption. For all area fractions, the shape of the phase domains is
not significantly different from the constant area model.

properties of typical polyhedra with n faces in a realistic setting
are very closely matched by those obtained from the generalized-
n formulas (foam bubbles always have c = 327). Figure 4a shows
that there is indeed a continuous progression of the "optimal" face
number, while the overall shape of the P region in the phase dia-
gram is hardly changed over Fig. 3.

In Fig. 4b, we also see how the phase regions depend on the
area fraction: For smaller f , fragmentation occurs at lower Γ̄,
as the bending energy penalty for fragmentation is less. The P
region is only slightly affected by changes in f ; only for small f
does it become significantly diminished at higher κ̄: because of
the strong curvature (small r) entailed by small f , a smaller κ̄ is
necessary to make faceting energetically favorable.

A very general feature observed in the polyhedral region of the
phase diagram is the increasing number of facets n in the opti-
mal polyhedron for lower Γ̄ and higher κ̄. As the total length of
polyhedral edges grows as n1/2, smaller Γ̄ is necessary to stabilize
larger n, while the higher n in turn leads to larger dihedral angles
and relatively smaller contributions of edges to curvature energy.
Therefore, the region for which a given n is energetically optimal
stretches to higher κ̄ for higher n. It has to be stressed that these
isotropic polyhedra are not constructible for n 6= 4,6,12 and must
be interpreted as typical mean-field representatives of a given n.

The isotropic polyhedra described here represent significant,
but shallow energy minima: Evaluating the energy of an isotropic
polyhedron with n+ 1 or n− 1 faces for a combination of Γ̄ and
κ̄ at the center of the region where n is the optimum number,

one finds that the relative energy differences are always less than
4% for all f and n values considered. This is similar to the anal-
ogous foam bubbles, the isotropic Plateau polyhedra, although
those show even smaller energy variations of less than 1%26. As
in foam bubbles, the energy difference between neighboring face
numbers becomes smaller as n increases, and asymptotically the
relative deviation scales as [ui(n+ 1)− ui(n)]/ui(n) ∝ 1/n. Hence,
we would expect polyhedral shapes at small n to be less suscepti-
ble to shape changes or trapping in local minima due to fluctua-
tions.

2.4.3 Alternative Models and Comparison with Simulations

Are the shapes of the regions in the analytical phase diagrams ro-
bust with respect to changes in the modeling assumptions? We
tested this question by changing the constraints of the analytical
model from imposing constant area to imposing constant volume
V0 and using V 1/3

0 as the normalizing length scale. While we do
not give the explicit formulas here, the energy contributions are
computed in a similarly straightforward way to Section 2.4.1. The
resulting phase diagrams are only very subtly changed (Fig. 4c,
d): all qualitative features are entirely preserved, and the quanti-
tative change in the phase boundaries is small (the P region κ̄(Γ̄)

boundary differs by ≈ 5% for moderate f values and less than
12% even for extreme f .) Furthermore, all optimal polyhedra are
still three-fold coordinated. This shows that the precise nature
of the energy functional is not important for the overall appear-
ance of the phase diagram. This robustness had indeed been ar-
gued in the simulation work of SVO, where both area and volume
elasticity had been implemented, with the outcomes only weakly
dependent on the choice of moduli.

A quick estimate also shows that the assumption of constant
area is appropriate for thin-shelled vesicles: The stretching energy
for small area change is

Ustretch =
1
2

KA

∫ (
∆A
A

)2
dA , (14)

if ∆A/A is the local area strain. From the elasticity theory of a
homogeneous thin layer, the relation between the bending mod-
ulus and the area stretch modulus is KA = 12κb

h2 , where h is the
shell thickness. Assuming uniform stretch, the non-dimensional
stretching energy of a hard-material sphere is

ustretch = 24π

(
R
h

)2(
∆A
A

)2
(15)

A truly thin shell in practical vesicle applications typically has
R
h ∼ 102 − 103. In order to balance or surpass the O(1) bend-
ing and line energies defined above, ∆A/A only needs to exceed
10−4 − 10−3. Hence, the constant area assumption is accurate;
in the following, we continue to discuss the implications of the
constant-area model and compare its predictions directly with
those of SVO.

The simulations of SVO did not allow for fragmentation into
more than one vesicle, so that there is no direct analogue of the
"F" regions in our phase diagrams. The lack of fragmentation
is related to the way line tension was implemented in the nu-
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Fig. 5 Comparison between the numerical simulations of SVO (left) and
the present theoretical model (right). The phase diagrams show (a) κ̄

and Γ̄ for f = 0.5; (b)Γ̄ and f for κ̄ = 0.03.

merics, where the number of simulation contact sites between
domains was penalized, but not physical length of the bound-
ary. The numerical parameter in the phase diagrams of SVO
is "Γ/κhard", where Γ represents an energy, not a line tension.
The values are based on a computational mesh (lattice) of unit
distance, and a vesicle whose radius R is 11.5 times that dis-
tance21. Furthermore, κhard is a numerical bending modulus
in a triangular grid, which is related to the continuum bending
modulus κh by κh/κhard =

√
3/228. This demonstrates that, for

comparison of "Γ/κhard" from SVO with our dimensionless line
tension (Γ̄ = Γ

√
A0/κh), the former needs to be multiplied by

k = 4m
√

π/3×11.5, where m is the mean number of intersections
of mesh edges across the boundary between the two phases, per
mesh edge length. A straightforward calculation shows that for a
regular triangular mesh (unit edge length), this number is

m = 1√
3π

∫ 2π

0 (|sinφ |+ |sin(φ +π/3)|+ |sin(φ −π/3)|)dφ

= 4
√

3/π ≈ 2.205 . (16)

This means the multiplication factor between the numerical
and analytical axes of line tension is k ≈ 103.8. Figure 5 shows
that, indeed, the axis values are about two orders of magni-
tude different. Consulting figure 5 of SVO affords a somewhat
more quantitative estimate: for f = 0.5, fully segregated (spher-
ical) shapes are obtained for Γ/κhard >∼ 0.01, where the phase
boundary location is made explicit for a bending modulus ratio
of κ̄ = 0.03. In our model this boundary value is Γ̄ ≈ 1.04, in
essentially exact agreement with the factor k above.

Not everywhere in the phase diagrams of SVO is the bound-
ary between P and S regions as clear, however. The simulations
designate another class of shapes as "domains", indicating cases

where the hard components form multiple domains (no complete
segregation), but where the overall shape of the vesicle was not
clearly polyhedral. There was no quantitative criterion employed
to define the "domain" state, but it was assigned by visual inspec-
tion (R. Sknepnek, personal communication). In particular for
larger f , the large surface area covered by soft, rounded struc-
tures means that all structures with a polyhedral pattern of hard-
material patches were classified as "domains". Conversely, the
limit of κ̄ → 1 blurs the distinction between the materials and
provides a very low energy threshold between full segregation
and smaller domains – in these cases, the true lowest-energy state
may be that of segregation, but it may not be reached within ac-
cessible computational times.

The latter distinction is on display in the comparison of Fig. 5a
for a fixed f = 0.5. There is very good agreement concerning the
vertical boundary between P and S regions of the κ̄− Γ̄ phase di-
agram (at Γ̄ ≈ 1), and the horizontal boundary becomes equally
well described when the domain regions are interpreted as be-
longing to S. Conversely, in the Γ̄− f diagram of Fig. 5b, it is
the horizontal and left-hand vertical boundaries that are well-
represented, while the large- f structures classified as "domains"
in the simulation should be interpreted as polyhedral (with a very
wide soft-phase area around each edge). The overall appearance
of the phase diagram is qualitatively and semi-quantitatively re-
produced by the theory, and the quantitative agreement along the
unambiguous P-S boundary encourages further exploration of the
theory’s predictions for polyhedral shapes.

Yet another approach investigated in a paper precedent to
SVO20 shows qualitatively similar equilibrium shapes as well.
In that work, two-component vesicles with different stretch and
bending moduli in the two phases are simulated, but without
line tension. Consequently, the soft lattice elements tend to form
single-width edges to reduce the high bending energy of the hard
material for small f , so that polyhedral structures are formed.
These are reported to often lack maximum symmetry20 and to
prefer three-fold edge coordination, again in agreement with the
present work. By contrast, at moderate to large f , isolated soft-
lattice sites are located randomly on the flat facet regions in20

and a continuous soft phase fails to form, as line tension does
not promote cohesive separate domains. Nevertheless, this work
is another indication that non-icosahedral polyhedra of reduced
symmetry are a common feature of two-component systems re-
gardless of the details of the energy functional.

3 Breaking Polyhedral Symmetries
In deriving the formulas for isotropic polyhedra of arbitrary face
number n above, we were inspired by work in foams26, where an
analogous method showed very good agreement with real (actu-
ally constructible) polyhedra of the same n. However, it is also
known that there are greater differences in geometry (and over-
all energy) between isotropic and real foam polyhedra for small
n, where the detailed arrangement of facets has a larger effect on
overall energy. In particular, it was found that some polyhedra
with small face number can reach energetically lower states than
their isotropic analogs, whether constructible or not (Andrew M.
Kraynik, personal communication). To probe whether irregular
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polyhedra can be energetically favorable over isotropic polyhe-
dra for two-component vesicles, we now turn to other classes of
polyhedral shapes.

3.1 Semiregular Polyhedra
The semiregular polyhedra comprise, apart from the Platonic
solids, all 13 Archimedean solids and semiregular upright prisms
(those with equal edge lengths)29. All of their geometries are
known in closed form and result in formulas similar to those in
Section 2.4.1; explicitly, we obtain the total energy as

ua = κ̄

[
∑

j

Ea, j(π−θa, j)l̄a
2r̄a

+4π

]
+2Γ̄∑

j
Ea, j l̄a , (17)

where the index j counts the different types of adjacent-face oc-
currences. The dimensionless edge length (universal for each
Archimedean solid) is

l̄a =

√
(1− f )

ma
(18)

with ma satisfying the relation Ah/A0 = ma l̄2
a . The soft-phase ra-

dius is given by

r̄a =

√
∑ j E2

a, j
(
π−θa, j

)2 l̄2
a

64π2 +
f

4π
−

∑ j Ea, j
(
π−θa, j

)
l̄a

8π
. (19)

For instance, the truncated tetrahedron has 8 facets (4 equi-
lateral triangles and 4 regular hexagons), as shown in Fig. 1c.
The dihedral angle at the edge between a triangle and a hexagon
is θa,1 = cos−1 (− 1

3
)

and that between two hexagons is θa,2 =

cos−1 ( 1
3
)
. There are Ea,1 = 12 and Ea,2 = 6 edges of these types,

respectively, and mA is 7
√

3. The total energy follows from the
above equation as

ua,t = κ̄

[
4π +

(
9π−6θt,1−3θt,2

)
l̄t

r̄t

]
+ Γ̄

[
36

√
1− f
7
√

3

]
, (20)

with

l̄t =

√
1− f
7
√

3
(21)

and

r̄t =
1
2

√(9
2
−

3θt,1

π
−

3θt,2

2π

)2
l̄2
t +

f
π
−
(

9
2
−

3θt,1

π
−

3θt,2

2π

)
l̄t

 .

(22)
Comparing the ua values with the ui above, the phase diagrams

are altered wherever one of the non-Platonic shapes has a lower
energy. Again, we find that only structures with c = 3 ever show
up as energetically optimal, for similar reasons as before. This
leaves seven Archimedean solids with c = 3 and the semiregular
upright prisms with regular polygons of ηpr = 3,5,6, ... (ηpr = 4
is the cube). But intriguingly, of these semiregular polyhedra,
only two generate a lower-energy state than the regular poly-
hedra considered before: the two structures with the lowest n
in their subclass, the triangular prism (n = 5) and the truncated
tetrahedron (n = 8). As shown in Fig. 6a for f = 0.5, these poly-

Fig. 6 (a) Phase diagram containing isotropic polyhedra and
semiregular polyhedra. Only two semiregular polyhedra appear on the
phase diagram: the triangular prism (Pr) and the truncated tetrahedron
A(8). The Pr region is not visibly changed when irregular prisms of
arbitrary aspect ratio αpr are included. (b) The range of optimal αpr for
irregular prisms is almost independent of f . (c) Representative example
of a general prism with αpr = 0.8.

hedra actually exclude the (regular) tetrahedron from the phase
diagram. A small stripe between their domains indicates com-
binations of (Γ̄, κ̄) for which the cube is still optimal. At larger
n, however, isotropic polyhedra (whether real Platonic solids or
mean-field constructs) remain energetically favorable. Neverthe-
less, in a significant part of the polyhedral phase diagram is the
most symmetric structure not the energetically lowest, confirm-
ing our hypothesis that irregularity becomes more important (for
low-energy polyhedra) at small face number.

3.2 General Prisms
We explore the above-mentioned hypothesis further, asking
whether additional symmetry breaking will result in polyhedra of
even lower energy. This is relatively easy to execute for prismatic
shapes: while the semiregular prisms above are characterized by
equal edge lengths (the edge lengths lpr on the polygonal end
faces are equal to the height hpr of the prism), all formulas can
be evaluated for arbitrary aspect ratios αpr = lpr/hpr. The addi-
tional optimization parameter αpr potentially allows the energy
to be lowered. We focus on the triangular prism here (the only
one that proved optimal in the phase diagram above); the corre-
sponding areas of hard material and soft material can be written
in terms of hpr, lpr, and rpr,

Ah =

√
3

2
l2
pr +3hprlpr , (23)

As = 2πrprhpr +3πrprlpr +4πr2
pr . (24)

As the dihedral angle between a triangle and a rectangle is π

2 and
that between two rectangles is π

3 , the total energy follows as

upr = κ̄

[
4π +

3π l̄pr

2r̄pr
+

π h̄pr

r̄pr

]
+ Γ̄

[
12l̄pr +6h̄pr

]
, (25)

where

l̄pr =

√
3h̄2

pr +
2√
3
(1− f )−

√
3h̄pr (26)
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Fig. 7 (a) Asymptotic values κ̄0 of κ̄ at vanishing Γ̄. (b) Asymptotic
values Γ̄0 of Γ̄ at vanishing κ̄.

and

r̄pr =
1
2

√( h̄pr

2
+

3l̄pr

4

)2

+
f
π
−
(

h̄pr

2
+

3l̄pr

4

) (27)

For a given κ̄ and Γ̄, a unique αpr value can be determined to
minimize the total energy. One finds that, indeed, a prism with
α 6= 1 is the energetically lowest for all (κ̄, Γ̄), although the val-
ues only vary between 0.7 and 0.94, with a mean of about α ≈ 0.8
(Fig. 6b,c). These irregular triangular prisms beat the energy of
semiregular prisms; in a very small parameter, they are also en-
ergetically lower than the cube, but the resulting extension of the
Pr region in Fig. 6 is so slight as to be invisible if plotted. Over-
all, these irregular prismatic shapes are energetically lower than
any more regular polyhedral shape in a rather broad range of pa-
rameters, for moderate Γ̄ and small enough κ̄. It is also notewor-
thy that any shape transition between spherical and polyhedral
shapes will be the most abrupt (involve the largest change in con-
figuration) at this boundary where n = 5 triangular prisms are the
preferred polyhedral shape. This may compromise the accessibil-
ity of this particular ground state in a dynamical situation.

4 Phase Boundaries
Given the relative simplicity and explicit nature of the energy for-
mulas, further insight into the location of the boundaries between
the S, F, and P regions can be obtained. Except for small f , the
fragmentation region F only bounds the spherical region S, and
the boundary can be written analytically by equating the total en-
ergy values, usph = u f rag. The result is a linear relation between κ̄

and Γ̄ at the boundary,

4π (1− f ) κ̄ +4π f − Γ̄
√

4π f (1− f ) = 0 . (28)

In the physical system, the vesicle undergoes budding in order to
achieve complete fragmentation. Although the current analysis
does not provide a prediction of an intermediate budding shape,
it qualitatively shows that the budding and the fragmentation of
heterogeneous vesicle is encouraged by strong line tension. In
the limit of κ̄ → 1 (single-component vesicle), the critical Γ̄ for
fragmentation is equal to

√
4π/

√
f (1− f ).

At the phase boundary between the polyhedra mode and the
sphere region, total energy values for these two modes are like-
wise equal. While the exact shape of the boundary depends on the
kind of polyhedron considered, the differences are very slight. We
will therefore use the isotropic-polyhedra formulas (6) – (13) for
evaluation. Specifically, the phase boundary is the envelope of

the family of curves usph(Γ̄, κ̄) = ui(Γ̄, κ̄,n), i.e., it is given by the
system of equations

usph(Γ̄, κ̄)−ui(Γ̄, κ̄,n) = 0 , ∂ui(Γ̄, κ̄,n)/∂n = 0 . (29)

The resulting expressions (involved, but analytically known) give
a parametric representation of the phase boundary (Γ̄(n), κ̄(n)).

It is also instructive to compute the asymptotes of the polyhe-
dral region in the limits of κ̄ → 0 and Γ̄→ 0. These prescribe the
extent of the P region, which (as shown above) is robust against
changes in modeling assumptions. As Γ̄ approaches zero, the
corresponding face number n goes to infinity and the asymptotic
value of κ̄ follows as (Fig. 7a)

κ̄0 =
( f −1)

(
1−
√

1− f
)

f −1− f
√

1− f
(30)

κ̄0 vanishes at both f = 0 and f = 1. The bending energy of
the polyhedra mode diverges as f → 0, so the sphere mode is
energetically better no matter what the value of κ̄ is. Conversely,
any concentration of bending energy is energetically costly when
f → 1. κ̄0 has a maximum value at f0 = 3/4. At f0, the polyhedral
shape range along the κ̄ axis is greatest, and we predict that this
area fraction should be the most advantageous for the generation
of polyhedral vesicles at small line tension.

The other asymptote is given by κ̄ = 0. Formally, this happens
when n = 3, but there is no constructible 3-faced isotropic shape;
therefore, n = 4 is the smallest realistic value. For small enough f ,
the shape transition occurs between the P and F regions instead
of between the P and S regions (cf. the f = 0.1 phase diagram in
Fig 4b). The critical area fraction ft can be calculated by compar-
ing total energies and it is found that ft ≈ 0.15115. In summary,
we have

Γ̄0 =


2π( f−1)√

π f (1− f )−2×33/4
√

1− f
f > ft

π

33/4
√

1− f 0 < f ≤ ft ,
(31)

and Γ̄0 is maximal for f = ft (see Fig. 7b). Γ̄0 does not approach
to 0 even when f → 0. No matter how small f is, there always
exists a boundary between soft material and hard material in the
P regime while the total energy of the fragmentation shape is
constant if κ̄ = 0. Setting f = 0 in (31), we obtain Γ̄0( f = 0) = π

33/4 .

5 Conclusions
An evaluation of a common free energy functional for two-
component vesicles for various analytically known shapes has
yielded robust predictions for the occurrence of polyhedral shapes
in the parameter space of line tension, bending modulus ratio,
and area fraction. The two distinct materials separate completely
when the line tension is sufficiently dominant. For intermediate
values of the line tension, the vesicle maintains a spherical shape
but the domains of the soft and hard materials segregate com-
pletely. For small enough line tension and large enough bending
modulus ratio this spherical solution is not optimal and gives way
to polyhedral solutions. In contrast to buckling by geometrical
frustration, icosahedral shapes are never the shapes of lowest en-
ergy, and in fact only polyhedra with coordination number three
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are found to be equilibrium shapes.
Isotropic polyhedra, while of maximum symmetry, are ener-

getically preferable only in a relatively small region of parame-
ter space, requiring small line tension and a bending modulus
ratio close to the one inducing segregation of the phases. In-
stead, we find that breaking symmetries (making the polyhedra
more irregular) actually results in shapes of lower total energy
at low face number. This is true for the truncated tetrahedron
(an Archimedean solid), reminiscent of shapes observed in car-
boxysomes15, and also for prismatic shapes, with we predict to
be prevalent at larger line tensions. Regular tetrahedral isotropic
shapes are not optimal within this model, although different types
of interaction between constituents (e.g nematic states3) can sta-
bilize such polyhedra. The successive improvement of energy
upon breaking of symmetries suggests that some of the experi-
mentally observed irregular shapes may be the result not of sta-
tistical variation, but of deterministic energy minimization.

The theoretical model can be potentially applied to other vesic-
ular structures like a thin elastic shell or virus capsid. It is not
confined to lipid bilayer membranes and we have shown that sig-
nificant changes in the modeling assumptions have very little ef-
fect on the overall appearance of parameter space regions, as long
as the main energy balance between bending and line tension is
maintained. An analogous study is easy to do for a modified en-
ergy functional with other dominant energy contributions as well.
Our results indicate general correlations between the shape of a
vesicle and its mechanical properties; thus, certain shapes can be
deliberately generated by carefully tuning the physical properties
and the relative composition of the materials. Conversely, a range
of material properties can be predicted from the vesicle shape ob-
served in experiment.

Although the present analysis explains the vesicle shape tran-
sition semi-quantitatively, it has several limitations. For a given
combination of parameters, our results show the ground state
shape only; in practice, the vesicle does not always succeed in
annealing to the ground state. A large variety of vesicle shapes
shown in both experiments and numerical simulations may be the
result of local energy minima. Furthermore, other shape modes
that we did not quantify here may lead to lower energy – hav-
ing shown that breaking symmetries can lead to improved en-
ergy, it is natural to wonder whether entirely irregular structures
might succeed in lowering the energy further. Experimental re-
sults seem to generally show polyhedra of a certain regularity,
however. We also remark that the simplified geometry of flat
faces, cylindrical edge structures, and spherical vertex regions is
likely to lead to systematic errors with respect to realistic vesi-
cles shapes that might be a concern at large fractions of the soft
phase. Finally, thermal effects are not taken into account here but
can be significant on the vesicle scale, which is often in the micron
and sub-micron range. Thermal fluctuations may blur the phase
boundaries in certain cases if the differences in energy between
structures are smaller than typical thermal energies. All of these
caveats can and should be addressed in future work, as they are
relatively straightforward to implement into the formalism pre-
sented here. The observation of polyhedral vesicle shapes, and
in particular the occurrence of less regular polyhedra, has been a

source of initial puzzlement, but modeling like the present theory
contributes to improving our ability to predict and interpret such
shapes, and eventually put them to use in applications.
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The equilibrium shapes of vesicles made from hard (red) and soft (blue) components are found to prefer 
lesser symmetry (e.g. prisms rather than cubes) over a wide range of parameters.  

312x148mm (192 x 192 DPI)  

 

 

Page 11 of 11 Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t


