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Initial (broken lines) and final (full lines)  stable structure of a dense protein-dimer droplet: the black 
curves show the density in the dimer droplet as a function of distance from the droplet center and  the 
red curves are for the monomer species. 
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be considered phenomenologically using concepts from Classical

Nucleation Theory(CNT)12. This will result in simple analytic

expressions for the size of the stable clusters as functions of the

properties of the original solution and of the concentration and

pressure of the secondary species. This analytic relation opens the

door to the determination of these properties from experiment.

Our second contribution is the formulation of a detailed Dynamic

Density Functional Theory (DDFT) model based on the same as-

sumptions and used to confirm the phenomenological predictions

while providing a more fundamental means of investigating the

nature of the clusters.

2 Phenomenology

For the sake of concreteness, we will assume that the secondary

population is composed of dimers. All of the subsequent devel-

opment can be trivially adapted to other possibilities. We then

begin by postulating a simple mass-balance reaction model for

the conversion of monomers into dimers and vice-versa. Calling

the monomer number density n1 and the dimer density n2 this

takes the form

dn1

dt
=−2k1n2

1 +2k2n2 (1)

dn2

dt
= k1n2

1 − k2n2

where the factors of two ensure that the total number of protein

molecules, n = n1 +2n2 within any small volume element, is con-

served in the absence of spatial inhomogeneities. The square of

the monomer density occurs because two monomers must meet to

form a dimer. This gives a relation between the equilibrium densi-

ties of k1n
(eq)2
1 = k2n

(eq)
2 . The rate equations can be solved exactly

and it is found that the non-conserved difference n1 −2n2 relaxes

exponentially at long times with time constant
√

k2
2 +8nk1k2.

Now, let us consider a pure solution of dimers and we as-

sume that conditions are such that the fluid nucleates a dense

phase. In the capillary approximation used in CNT, it is as-

sumed that the density inside a cluster having radius R is con-

stant, n2 (r < R) = n
(0)
2 and equal to the density of the homoge-

neous, condensed phase, while the density outside the cluster,

n2 (r > R) = n
(∞)
2 is also constant. In this case, the rate of growth

of a sufficiently large supercritical cluster is, under the diffusion-

limited conditions expected to dominate for macromolecules in

solution, given by13

dR

dt
= aR−1,a = Dn

(∞)
2

βP
(

n
(0)
2

)

−βP
(

n
(∞)
2

)

(

n
(0)
2 −n

(∞)
2

)2
(2)

where D is the tracer diffusion constant for a dimer molecule in

solution, P(n2) is the pressure for the dimers at density n2 and

β = 1/kBT with T the temperature and kB Boltzmann’s constant..

This gives the classic result R ∼ t1/2.

Now, let us consider the effect of adding monomers to the pic-

ture. Outside the cluster, the monomers and dimers will reach

equilibrium so we have that k1n
(∞)2
1 = k2n

(∞)
2 . We assume that the

monomers and dimers have no interaction aside from excluded

volume effects. In this case adding monomers to the cluster raises

its free energy so that one expects the monomers to be expelled

by diffusion leading to the hypothesis that the monomer concen-

tration inside the cluster is very low, n
(0)
1 ≃ 0. Clearly, the re-

alization of this condition will depend on diffusion being suffi-

ciently fast compared to the rate of production of the monomers.

In terms of the dimer concentration within the cluster, the net

effect (conversion of dimers to monomers and expulsion of the

monomers) is a simple extinction reaction that lowers the total

number of dimers, N2 = 4π
3 n2R3, according to dN2/dt = −k2N2.

Since the free energy of the cluster will be minimized by main-

taining a dimer density near that of the thermodynamically sta-

ble condensed phase, this leads to a reduction in the size of the

cluster given by dR/dt =−k2R/3.

The combined effect of the reaction and of diffusion gives an

evolution equation for the radius of the form

dR

dt
= aR−1

− k2R/3. (3)

In this simple relation, the term driving growth scales more

weakly than the term opposing growth which is the opposite of

what happens in classical nucleation theory. As a consequence,

the dynamics are reversed: small clusters tend to grow while large

clusters tend to shrink until the cluster reaches a stable, stationary

size as is reflected in the exact solution to Eq.(3),

R2 (t) = R2
s +

(

R2 (0)−R2
s

)

e−
2k2

3
t , Rs =

√

3a

k2
. (4)

These expressions link accessible experimental quantities such

as the cluster size and the rate of relaxation of the system to the

parameters governing the model. In particular, they in princi-

ple give experimental access to the rate constants since one ex-

pects the exterior dimer concentration, n
(∞)
2 , to be in equilibrium

with the monomer concentration outside the droplet (k1n
(∞)2
1 =

k2n
(∞)
2 ) so that measurement of the respective concentrations, to-

gether with knowledge of k2, allows the determination of k1 and

thus complete characterization of the reaction between the two

species.

3 Microscopic model

To test these ideas, we now describe a microscopic model that in-

corporates the growth of a super-critical droplet and the excluded

volume interaction of the monomer and dimer species. Our ap-

proach is based on Dynamic Density Functional Theory (DDFT)

which is commonly used to describe the dynamics of over-damped

systems (such as colloids and macromolecules in solution) under

conditions such that thermal fluctuations may be ignored14–16. In

DDFT, the fundamental quantity is the time-dependent local den-

sity (or equivalently, concentration) n(r; t). The diffusion-limited

growth of a super-critical droplet in a pure solution of dimers (i.e.

with no monomers present) is governed by

dn2 (r; t)

dt
= D2∇·n2 (r; t)∇

δF [n2]

δn2 (r; t)
(5)
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where D2 is the tracer diffusion constant for the dimers. The

free energy functional will be taken to have the squared-gradient

form16,17

F [n2] =
∫

{

f2 (n2 (r; t))+
1

2
g2 (∇n2 (r; t))2

}

dr (6)

where f2 (n2) is the Helmholtz free energy per unit volume for

a homogeneous fluid at density n2 and g2 is a constant that can

be calculated from the interaction potential18. In the following,

the dimers will be described generically using a Lennard-Jones

interaction potential in which case good parameterizations are

available in the literature19. In the limit of low densities, the gra-

dient term is negligible and the Helmholtz free energy goes to the

ideal gas form f2 (n2)→ f (id) (n2) = n2 lnn2Λ
3
−n2 so that the left

hand side of the DDFT equation reduces to D2∇
2n2 , i.e. it be-

comes the diffusion equation. Thus, one may think of DDFT as a

generalization of the diffusion equation that accounts for particle

interactions.

To generalize to two species, the free energy functional is

replaced by one depending the local densities of both species,

F [n1,n2], and a second DDFT equation is included for n1. In the

present case, we must also include the chemical reactions thus

giving

dn1 (r; t)

dt
= D1∇·n1 (r; t)∇

δF [n1,n2]

δn1 (r; t)
−2k1n1 (r; t)2 +2k2n2 (r; t)

(7)

dn2 (r; t)

dt
= D2∇·n2 (r; t)∇

δF [n1,n2]

δn2 (r; t)
+ k1n1 (r; t)2

− k2n2 (r; t)

In principle, for a non-ideal system we should replace the con-

centrations occurring in the chemical reaction terms by the corre-

sponding activities. Here, we keep the simple form given above

for the sake of comparison to the phenomenological model and

defer further discussion of this point to the Conclusions.

Finally, the form of the free energy functional must

be specified. Since the monomers are supposed to be

above their critical point, we simply treat them as hard

spheres with hard-sphere diameter d so as to account for

excluded volume effects. The final form we employ is

F [n1,n2] =
∫

{

fhs (n1 (r; t) ;d)+
1

2
g1 (∇n1 (r; t))2

}

dr (8)

+
∫

{

fLJ (n2 (r; t))+
1

2
g2 (∇n2 (r; t))2

}

dr

+
∫

{

f
(ex)
hs

(n1 (r; t)+n2 (r; t) ;d)− f
(ex)
hs

(n1 (r; t) ;d)− f
(ex)
hs

(n2 (r; t) ;d)
}

dr

The third line accounts for the mutual excluded volume inter-

action of the two species: we treat both as hard spheres of di-

ameter d and replace their individual hard-sphere contributions

to the excess free energy by one dependent on the sum of the lo-

cal densities. (Note that the excess part of the free energy is just

f (ex) = f − f (id): we only replace the excess part because the ideal

contributions are already accounted for.) If either density is zero,

this interaction term vanishes. Of course, a dimer with twice the

mass of a monomer and the same density would have a diameter

about 25% larger but for simplicity we ignore this relatively small

difference. Similarly, we take g1 = g2 = gLJ and D1 = D2 since we

expect the differences in these coefficients to be of no physical im-

portance. A final simplification is that we do not include a cross

term involving the gradients. This model is a generalization of the

model used by Huberman to discuss the appearance of striations

in a reacting system20. Huberman’s model was constructed in the

approximation of a single active reactant with an autocatalytic

chemical reaction out of equilibrium. Here, the presence of two

species participating in an equilibrium reaction is fully accounted

for. This necessarily requires adding an additional contribution

to the free energy and, most importantly, the third line in Eq.(8)

which accounts for the most basic excluded-volume interaction of

the two species. Note that in this setting the conservation condi-

tion n1 +2n2 = const. no longer holds locally.

The Lennard-Jones potential introduces a length scale, σ , and

an energy scale ε. In the following, temperature will be reported

in the scaled units T ∗ = kBT/ε and all lengths will be scaled by

σ . We also take the hard-sphere diameter d = σ : typical prescrip-

tions such as Barker-Henderson21 change this by a few percent

but for present purposes this difference is unimportant. A time

scale, τ, is introduced such that D2τ/σ2 = 1. After scaling, the

available parameters are the monomer background density, the

dimer supersaturation, the scaled temperature and the scaled re-

action coefficient k∗1. The dimer reaction constant is determined

via the equilibrium condition k∗1n
(∞)∗2
1 = k∗2n

(∞)∗
2 . We report re-

sults here for T ∗ = 0.8 and supersaturation n
(∞)
2 /n

(coex)
2 = 2 where

n
(coex)
2 is the vapor density at coexistence at this temperature. Un-

der these conditions the density in the vapor is n
(∞)∗
2 = 0.012 and

in the condensed phase n∗2 = 0.85. The background monomer den-

sity is taken to be 5 times that of the dimer phase. In reality, this

ratio is thought to be much greater8 but the computational cost

of the calculation increases with this ratio so our choice repre-

sents a compromise. The only remaining parameter is k∗1 which is

discussed below.
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Fig. 1 Behavior of the cluster radius as a function of time (both in

dimensionless units) for three different values of the reaction parameter,

k∗1 = 8.75×10−4 (upper curve), 7.5×10−4 (middle curve) and 10−3 (lower

curve). In each case, two initial configurations are used: one with a

small initial displacement of the critical cluster, and one with a large

initial displacement. In all three cases, both initial conditions lead to the

same final cluster radius thus demonstrating the stability of the final

cluster.

Our calculations were performed assuming spherical symme-

try with boundary conditions appropriate for an open system (see

Supplementary Material† for technical details). We began by lo-

cating the critical cluster for the pure dimer system. With the cho-

sen parameters, this has radius R∗

c = 5.2. We then make this su-

percritical by increasing its radius an amount ∆R and then adding

in the monomers. Further details are given in the Supplementary

Material† as are details of the numerical algorithms used to inte-

grate the DDFT equations. Also discussed there are the question

of the definition of the radius to use for comparing the capillary

model to the DDFT and the agreement between the two theories

for the case of the growth of a super-critical droplet in a single-

component system.

The evolution of the cluster radius for three different values of

the reaction constant is shown in Fig. 1. In each case, two ini-

tial displacements are used: an "under" displacement of one unit

(broken lines) and an "over" displacement of 9 units (full lines).

The fact that the under- and over-displaced clusters evolve to the

same final cluster is strong empirical evidence for the stability of

the final cluster. The structure of the stable cluster is shown in

Fig. 2 where it can be seen that most of the monomer species is

expelled from the cluster except in the interfacial region.

The scaling relation between the stable radius and the reac-

tion constant k∗2 predicted by the capillary model, Eq.(4), is tested

against the numerical DFT results in Fig. 3. For lower values of

the dimensionless reaction coordinate, there are significant devi-

ations as is to be expected since the capillary model is only ac-

curate for large clusters. As the reaction rate decreases, and the

size of the stable cluster increases, convergence to the prediction

Fig. 2 Structure of the stable cluster for k∗1 = 7.5×10−5. The density

(concentration) of the monomer species (solid red line) and the dimer

species (solid black line) is shown as functions of distance from the

center of the cluster. The initial condition is also shown using

dashed-lines.

is evident.

4 Conclusions

We have shown that super-critical clusters, which would other-

wise be unstable with respect to growth, can be stabilized by

means of the combined effect of diffusion and a chemical reac-

tion. Diffusion - driven by thermodynamics - leads to the purifi-

cation of the cluster so as to lower its free energy. The purified

cluster is then in turn subject to degradation due to the conver-

sion of the dimer species to monomers. This dynamic process

can be successfully described by a simple capillary model as well

as more systematically investigated by means of a microscopic

Dynamic Density Functional Theory model. The two approaches

were shown to be in agreement. While these results were neces-

sarily achieved for specific choices of molecular interactions and,

particularly, for a specific chemical reaction, it is clear that the

arguments may be trivially adapted to other choices. We also

note that we used relatively simple squared-gradient free energy

functionals and that, while more complex functionals that more

fully incorporate the molecular potentials are available16, we do

not believe their use would change the results in any qualitative

manner.

The microscopic DDFT model presented here is a natural gen-

eralization of the standard reaction-diffusion model used to de-

scribe chemical reactions in spatially extended systems. The cru-

cial element in our formulation of this generalization is the free

energy functional and particularly the interaction term given in

the third line of Eq.(8). The free energy contribution can be

viewed as giving rise to a density-dependent diffusion constant

which, for the condensed phase, is negative thus driving growth

of a cluster rather than its diffusive evaporation as in ordinary dif-

fusion. The interaction term in the free energy is critical in that it
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Fig. 3 Predicted stable radius from the capillary model, Eq.(4),

compared to the results of numerical integration of the DFT model

(symbols) as a function of 1/
√

k∗2. With these variables, the prediction is

simply a straight line.

leads to a monomer diffusion constant that increases with increas-

ing density of dimers thus causing expulsion of the monomers

from the dimer cluster. This leads to a locally frozen nonequi-

librium steady state in which a current of dimers flows into the

cluster where they are converted to monomers and expelled in the

form of a corresponding outward current. In this state growth of

the droplet and the conversion of species are mutually quenched.

Since such a nonequilibrium state cannot persist indefinitely with-

out a driving force (due e.g., to mode-coupling effects not con-

sidered in the over-damped limit used here13), the clusters are

not expected to be stable indefinitely. Furthermore, shape fluc-

tuations are also likely to prove destabilizing since any devia-

tion from a spherical shape will lower the thermodynamic driv-

ing force for growth and potentially lead to irreversible shrinking

of the cluster to a size below the critical radius. Finally, as men-

tioned already earlier, in the results presented here the system is

actually treated as an open system spatially infinite, continually

replenished by monomers and coupled implicitly to an infinite

solvent13 that acts as a reservoir. This further postpones the es-

tablishment of a global equilibrium throughout.

We conclude with several observations concerning this mecha-

nism. First, there is no constraint on the free energy of the stable

droplet since the only requirement is that it be larger than the crit-

ical cluster. It could therefore have a free energy nearly as high as

that of the critical cluster (leading to a relatively low number of

such droplets in equilibrium) or it could have an arbitrarily low

free energy (leading to a large population).

Second, we have assumed that when the reaction removes

dimers the density of the cluster remains constant so that the net

effect is that the cluster shrinks in size. This only makes physical

sense if the reaction is in some sense slow compared to the process

of removing monomers from the cluster (i.e. diffusion). Were this

not the case, monomers would quickly build up within the clus-

ter and poison it leading to its collapse. In this context, it is also

worth noting that this differs somewhat from the original pro-

posal in Ref.8,9,11. There, it is stated that there will be an influx

of monomers which are then preferentially converted to dimers

thus leading to a depleted monomer density. However, we be-

lieve this neglects to take into account that the effect of excluded

volume will produce a diffusive tendency to reduce the densities

to their background values. For the dimers, this is counter-acted

by the thermodynamic tendency of the cluster to grow but for the

monomers, lacking this element, the effect can only be to lower

their density as confirmed by the DDFT calculations (see also the

Supplementary Information†).

Third, we note the generality of the mechanism leading to a

stable cluster with a characteristic size: a force driving growth

that scales more slowly than a force opposing growth. Regard-

less of the mechanisms giving rise to the forces, these are the

required elements. Clusters in other systems could be stabilized

by some other combination of growth-promoting and -opposing

forces provided the relative scaling satisfies this rule.

Fourth, one can contrast this mechanism to that stabilizing vesi-

cles. The latter consist of a volume with amphiphilic molecules

arranged on its surface so that their hydrophobic parts are inside

the volume, shielded from water, while their hydrophilic parts

are on the outside of the surface, exposed to the water. Within

the vesicle could be void, more of the apmphiphilic molecules or

some other substance. If the interior has a higher free energy

than the solution, the vesicle can be stabilized in the same man-

ner as proposed above: the surface dominates the free energy

of small vesicles leading to growth while the volume dominates

large vesicles leading to dissolution. However, in the case of vesi-

cles there is another factor: such a system can increase its surface

to volume ratio, and hence decrease its free energy, by becoming

non-spherical ( by becoming flat, in the extreme limit). In our

case, the free energy is minimized by a spherical shape so that

the mechanism favors the formation of spherical clusters.

Fifth, there is no scope within this model for ripening: i.e. the

growth of larger clusters at the expense of smaller ones. Some-

thing like ripening has in fact been reported by Li et al.9 albeit

with the unusual feature that the ripening stops while there is

still a finite population of clusters. If the present model were cor-

rect, this “ripening” would have to be reinterpreted: perhaps as a

slowly relaxing transient. As stated above, the reaction must be

slow compared to diffusion, as is reflected in the small dimension-

less reaction constants used in our work, and this could simply re-

sult in very slow dynamics for the entire system. Alternatively, it is

possible that the dimer to monomer reaction is suppressed within

the cluster (due to the high free energy barrier involved in remov-

ing a dimer from the condensed phase) and that the reaction is

most productive only in the boundary of the cluster (where the

dimer is in an energetically unfavorable state). In this case, the

reaction term in Eq.(3) would be a constant rather than scaling

as R (in fact, R would be replaced by the characteristic width of

the boundary region) and this would lead to algebraic rather than

exponential relaxation of the cluster to its stable size. To capture

this, the model could be modified by replacing the concentrations
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in the rate equations with more general expressions involving the

chemical affinities. Such an algebraic dynamics combined with

small reaction constants could well give transients that decay very

slowly and could therefore be interpreted as a transient ripening.

This is related to our sixth and final point. We mentioned above

that for consistency, we should replace the concentrations appear-

ing in the chemical reaction kinetics by the corresponding activi-

ties, ni(r, t)→ n
(0)
i exp(β µi(r, t)−β µi) where the local chemical po-

tential is µi(r, t)=
δF

δni(r,t)
and where µi is the chemical potential for

species i in the homogeneous system in which ni(r, t) = n
(0)
i . This

has not been used in the present work in order to explore the con-

sistency of the simple capillary model with the microscopic model

in the case that the relation between the two is most straightfor-

ward. We conjecture that the effect of the use of the activities will

be a suppression of the dimer to monomer reaction within the

cluster and an enhancement of the importance of the reaction in

the interfacial region, therefore possibly leading to the scenario

alluded to above of an algebraic rather than exponential relax-

ation. Preliminary calculations using the activities supports this

and the issue will be discussed more fully in a future publication.
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