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We show that flowing multicomponent suspensions of deformable capsules display

segregation based on shape. Theory shows excellent agreement with simulations.
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Abstract

We present detailed simulations and theory for flow-induced segregation in suspensions of de-

formable fluid-filled capsules with different shapes during simple shear flow in a planar slit. This

system is an idealized model for transport for blood cells and/or drug carriers in the microcircula-

tion or in microfluidic devices. For the simulations, an accelerated implementation of the boundary

integral method was employed. We studied the binary mixtures of spherical and ellipsoidal cap-

sules, varying the aspect ratio κ of the ellipsoid while keeping constant either (a) equatorial radius

or (b) volume. Effects of a variety of parameters was studied, including κ, volume fraction and

number fraction of the spherical capsules in the mixture. In suspensions where the ellipsoids have

the same equatorial radius as the spheres, capsules with lower κ marginate. In suspension where

the ellipsoids have the same volume as the spheres, ellipsoidal (both oblate and prolate) capsules

are seen to demarginate in a mixture of primarily spherical capsules. To understand these results,

a mechanistic framework based on the competition between wall-induced migration and shear-

induced collisions is presented. A simplified drift-diffusion theory based on this framework shows

excellent qualitative agreement with simulation results.

∗ Corresponding author. E-mail: mdgraham@wisc.edu

1

Page 3 of 41 Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



I. INTRODUCTION

Blood is a multicomponent suspension whose particulate components consist primarily

of red blood cells (RBCs) along with trace amounts of other components such as leukocytes

and platelets. The key physical differences between the leukocytes, platelets and RBCs are

their relative shape, size and rigidity: RBCs are biconcave discoids, while the leukocytes

are spherical and non-activated platelets are disk-like; the leukocytes are larger than RBCs,

while the platelets are smaller; both are considerably stiffer than RBCs [1, 2]. Under physi-

ological conditions, both the leukocytes and the platelets in blood segregate near the vessel

wall [3, 4], a phenomenon known as margination, while the RBCs migrate away from the

wall forming a so-called cell-free layer [1, 2]. Margination of leukocytes and platelets has

substantial physiological significance in the processes of inflammation and hemostasis [3, 4].

Recent advances in lab-on-a-chip (LOC) technology and vascular-targeted carriers (VTCs)

offer an unique opportunity to improve disease diagnosis and treatment by providing highly

localized delivery of therapeutic agents. Understanding the segregation behavior of confined

multicomponent suspensions as a function of physical parameters such as size, shape and

deformability can provide explanations for experimental observations and guiding principles

for design of LOC devices and VTCs. Recent work [5–7] has shed light on how particle size

and membrane deformability affects segregation behavior and the mechanisms behind it; the

role of particle shape is still poorly understood and is the focus of the present work.

The past decade has seen the emergence of particle shape as an important design pa-

rameter for controlling biological responses of drug delivery carriers [8–15]. The shape of

drug delivery carriers have been shown to affect their blood circulation, phagocytosis, en-

docytosis and targeting [8, 16–18]. Studies of the margination and adhesion propensity

with endothelial wall of ellipsoidal micro- and nanoparticles designed for vascular-targeted

drug delivery has also shown shape as an important parameter [12, 13, 19]. The effect of

particle shape on segregation has been characterized to some extent for suspension of rigid

micro- and nanoparticles. Gentile et al. [12] observed that disk-shaped and hemi-spherical

nanoparticles had higher “margination” propensity than spherical particles. However, what

they observed is not margination per se but rather sedimentation of particles and particles

of different shapes had different densities – their studies were of single-component suspen-

sions without a dominant component playing the role that RBCs play in blood. Doshi et
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al. [19] studied spherical particles of three different sizes; 1, 3 and 6 µm and elliptical disks,

circular disks and rods stretched from them. They showed that adhesion propensity to

endothelial wall in a synthetic microvascular network (SMN) increased with higher aspect

ratio (prolateness increases with aspect ratio), with the difference amplifying at larger size

and bifurcation junction. The walls of the SMN were coated with bovine serum albumin

(BSA) while the particles were coated with anti-BSA antibody and increased adhesion of

higher aspect ratio particles can be attributed to enhanced contact area provided by them for

receptor-mediated adhesion than shape-induced localization near wall in single component

system. In an in vivo study, Decuzzi et al. [20] showed that discoidal particles accumulate

more than spherical, hemispherical or cylindrical particles in most organs aside from the

liver, where cylindrical particles have the highest accumulation. Toy et al. [21] showed that

gold nanorods marginate more than gold nanospheres. Mesoporous silicon particles of dif-

ferent shape were studied by Adriani et al. [22], who showed that disk-like particles showed

the highest adhesion propensity.

The inspiration to use physical properties like shape to control biological function comes

from biology itself where one can find, for example, a wide variety of bacterial shapes that

enable specific functions [23]. Moreover, the biconcave discoid shape of RBCs is often

attributed to the avoidance of filtration of RBCs in the spleen [24, 25]. In diseases such as

sickle-cell anemia or malaria, RBCs tend to change their shape and several continuous shape-

based separation techniques have been developed recently [26, 27] which could be used for

their diagnosis. These separation techniques could be used for cell-sorting and purification

as well. A recent discovery showing that proteins sense membrane curvature [28–31] has

escalated the position of vesicle shape from a passive consequence of cellular activity to

the prime player in cell growth, division and movement. These recent advancements and

opportunities point to the need for a systematic understanding of shape-mediated flow-

induced segregation in multicomponent suspensions.

It is important to note that all of the above-mentioned in vitro studies just described

suffer from a major drawback; they did not consider margination in the presence of RBCs but

rather examined only a single component in solution. This issue was recently experimentally

addressed by Thompson et al. [13], who studied margination of spherical and ellipsoidal

micro- and nanoparticles in reconstituted blood in a microfluidic chamber lined with human

umbilical vein endothelial cells. They reported that ellipsoidal microparticles with high

3
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aspect ratio showed higher margination compared to their spherical counterparts in both

laminar and pulsatile flow. The results reported above are for rigid VTCs and suggest that

rigid non-spherical particles with higher aspect ratio have a higher degree of margination

compared to rigid spherical particles. Researchers [32, 33] have been able to develop non-

spherical functional liquid-crystal deformable droplets which could be used as VTCs in

future. We would like to remind readers that our own RBCs, WBCs and platelets are

deformable as well. How shape would affect the segregation and margination of deformable

particle is not characterized and is the focus of this work.

Recently, there have been some computational studies on the margination of particles

in presence of the RBCs to complement the experimental studies noted above. Tan et al.

[34] showed that RBCs enhance the margination of rigid spherical nanoparticles leading to

higher binding. They also reported experimental observations validating results obtained in

simulations. Müller et al. [35] found that margination of stiffer micro- and nanoparticles

increases with increasing hematocrit and particle size. Spherical particles showed better

margination than ellipsoidal particles; however ellipsoidal particles have slower rotational

velocity in the cell-free layer which would result in higher binding seen in experiments. In a

simulation of nanoparticles with binding affinity at wall in absence of RBCs, Tan et al. [36]

showed that rods have higher binding than spherical particles which is dependent on their

initial contact points and orientations to the wall. They also found higher concentration

of nanoparticles in bifurcation region; an observation seen by Doshi et al. [19] in their

experiments. Apart from studies of nanoparticles of various shapes in both presence and

absence of RBCs, a number of computational studies have addressed leukocyte margination

[37–39] and platelet margination [40–43] in presence of RBCs, where authors varied size,

shape and membrane deformability altogether to study margination behavior. The absence

of a systematic variation of shape of deformable particles, which is critical for understanding

its role in the margination behavior and underlying mechanism, provides motivation for the

present work.

Relative deformability, size and shape are the primary physical properties that determine

segregation behavior in multicomponent suspensions. How each of these physical properties

alone lead to segregation behavior is still very poorly understood. Past direct simulation

studies that focus on the margination of platelets [40, 41], leukocytes [38, 39] and drug

delivery particles [34, 44] suffer from a major drawback that the individual components differ

4
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simultaneously in size, shape and membrane deformability. Moreover, in these studies, one

component is always very dilute – the effect of the fraction of individual components in a

mixture on the overall segregation behavior has not been thoroughly explored.

A series of controlled computational studies on the effect of deformability and size on

margination was recently done [5, 7, 45]. The role of membrane deformability alone was

investigated [5, 7] in plane Poiseuille flow and simple shear flow respectively, of a binary

suspension of neo-Hookean capsules. In both flow situations, when stiffer particles are dilute

in suspension, they undergo margination. However, when flexible particles are the dilute

component, they enrich around the centerline, a phenomenon termed “demargination”. The

effect of particle size was also studied [7]. When small particles are dilute in suspension, they

undergo margination. On the other hand, when large particles are the dilute component,

they demarginate.

To explain the observations of size and membrane deformability, these authors proposed

a qualitative mechanism [5] incorporating the two key sources of wall-normal particle motion

in confined suspensions: (i) wall-induced hydrodynamic migration away from the wall; (ii)

hydrodynamic pair collisions. In multicomponent suspensions, two types of pair collisions

occur: (a) homogeneous collisions, which are between two particles of the same type and

(b) heterogeneous collisions, which are between two particles of different type. Pair collision

studies showed that stiff or small particles had larger post-collisional cross-stream displace-

ment than flexible or large particles in a heterogeneous pair collision, while the displacements

in homogeneous collisions of either species were between these two limits. They looked into

the escape tendency of the dilute component in the near wall region and suggested that larger

cross-stream displacement of stiff (or small) particle in heterogeneous collision compounded

by their slower migration velocity than flexible (or big) particle will pose a stronger barrier

for their escape to the bulk region leading to margination of the component. By the same

argument, demargination was suggested to occur for flexible (or big) particles in suspensions

of primarily stiff (or small) particles. They introduced an idealized master equation (ME)

model – a set of integrodifferential equations – and employed a novel hydrodynamic Monte

Carlo (HMC) simulation technique to solve it [6]. (See [46, 47] for related studies of single-

component confined suspensions.) The ME model incorporates both sources of wall-normal

particle motion and the HMC approach allows delineation of the role of each of these sources

in the segregation behavior. In the case of segregation by deformability at constant size, it

5
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was shown that at low volume fraction, heterogeneous collisions lead to segregation while

at higher volume fractions both wall-induced migration and heterogeneous collisions have

comparable contributions, while in size segregation the difference in migration velocities is

dominant [7]. Approximating the collisions as small and occurring only between particles

on nearby streamlines and considering a binary suspension where one component is present

only in trace amounts, Henŕıquez et al. [48] reduced the ME model to a pair of differential

equations in drift-diffusion form – we denote this as the “simplified drift-diffusion” (SDD)

model. In simple shear, this model is analytically solvable, and the solution for the trace

component contains a “margination parameter” M , which incorporates the migration and

collision parameters and whose value determines the segregation behavior. If M < 1 then

the trace component marginates; otherwise it demarginates. Additionally, if M < −1 then

all particles of the trace component are driven to the wall, complete “drainage” of the trace

component from the bulk suspension is predicted. In the present work we apply this model

to shape segregation, showing that it qualitatively captures the observed simulation results.

In light of the above discussion, the aim of the present work is to investigate segrega-

tion behavior during plane Couette flow in binary suspensions of elastic capsules where

the components differ in shape alone. This study complements prior studies of the elastic

capsule model that focused on segregation by size and deformability [5–7, 45, 48]. While

the elastic capsule model does not capture all aspects of cell properties and dynamics, this

disadvantage is outweighed by the ability to use this model to separately consider effects of

size, deformability and shape contrast on the margination process. As will be illustrated in

Sections IV-V, margination can be understood based on a small number of general processes

that are applicable regardless of the details of the system at hand.

The setup, formulation and numerical methods are detailed in Sec. II. Detailed results

on the effect of relative concentration of individual components, aspect ratio and volume

fraction on segregation of capsules of different shapes is presented in Sec. III. A mechanistic

understanding based on the two key sources of wall-normal capsule motion is then provided

in Sec. IV, providing insight into the segregation behavior seen in Sec. III. Finally, in Sec. V,

we extend the SDD theory [48] to explain the shape-mediated segregation seen in our results.

6
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II. PROBLEM FORMULATION AND IMPLEMENTATION

A. Overview

We consider here a suspension of deformable fluid-filled elastic capsules confined between

two parallel plates as shown in Fig. 1 and subjected to simple shear flow with shear rate γ̇.

Simple shear flow was intentionally chosen to isolate the effect of shear on margination. Shear

and how it mediates hydrodynamic interactions between cells and walls is the dominant effect

near blood vessel walls even in the case of pressure-driven flows. Only near the channel

center, where wall effects cancel out, does the gradient in shear rate present in pressure-

driven flow play a substantial role in dynamics of deformable-particle suspensions, as has

been demonstrated for stiffness segregation in prior computational work [5]. For this slit

geometry, periodic boundary conditions are applied in x and z directions with spatial periods

Lx and Lz, respectively (Fig. 1). In the y direction, no-slip velocity boundary conditions

are applied at the two walls y = 0 and y = 2H (Fig. 1). Both the suspending fluid and the

fluid enclosed by the capsules are Newtonian and incompressible with the same viscosity µ

and density ρ, i.e. the viscosity ratio λ = 1 is unity and the capsules are neutrally buoyant.

FIG. 1: Schematic of a binary suspension of spherical (in red) and ellipsoidal (in blue) capsules subjected to simple shear
flow in a planar slit with height 2H.

A binary suspension of capsules with spherical and axisymmetric ellipsoidal (spheroidal)

rest shapes is considered. The two broad cases considered in this work are: (i) ellipsoidal

capsules having the same equatorial radius a as the radius as of spherical capsules, and (ii)

ellipsoidal capsules having the same volume V as the volume Vs of the spherical capsules.

7
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Shape is changed by varying aspect ratio κ = b/a, where b and a are the polar and equatorial

radii (or semi-axes), respectively. Thus, κ < 1 and κ > 1 represent oblate and prolate,

respectively. In case (i), the volume of the ellipsoidal capsules V = κVs, while in case

(ii), the equatorial radius of the ellipsoidal capsules is a = (as/κ)
1/3. The non-dimensional

capillary number Ca = µγ̇a/Gc measures the ratio of viscous and elastic stresses on the

capsule, where a is the equatorial radius of the capsule of interest and Gc is the surface shear

modulus of the capsule membrane. The capillary number is kept constant at Ca = 0.5 for

both components in all simulations. At Ca = 0.5 and λ = 1, spherical capsules are in tank-

treading regime while ellipsoidal particles are in the swinging regime as indicated by single

capsule simulations. Length is non-dimensionalized with as and time is non-dimensionalized

with γ̇. The scale of the cells and domain are taken to be small, so the Reynolds number

Re = ργ̇H2/µ is much less than unity.

We will use the letter ‘S’ to denote spherical particles, the letter ‘P’ to denote prolate

particles, and the letter ‘O’ to denote oblate particles. The number fraction of the spherical

capsules in a given suspension is denoted Xs. The number fraction of the oblate (or prolate)

capsules can be obtained from Xs as: Xo(or Xp) = 1 − Xs. The suspension as a whole is

characterized by its overall volume fraction φ. In the case of suspensions of spheres and

constant-radius ellipsoids, as Xs changes the volume fraction will change (because the two

components do not have the same volume). In this case, we will report mixture volume

fraction as φs which is the volume fraction when all capsules are spherical.

B. Capsule model and surface discretization

The capsule membranes follow the neo-Hookean model. The strain-energy density W of

the membrane in this case can be expressed as function of the principal stretch ratios, λ1

and λ2 [49]:

W =
Gc

2

[
I1 − 1 +

1

I2 + 1

]
(1)

where I1 and I2 are given by

I1 = λ2
1 + λ2

2 − 2, I2 = λ2
1λ

2
2 − 1. (2)

8
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The elastic forces in the membrane are computed using the finite element approach of Char-

rier et al. [50], which is based on the principle of virtual work. Implementation details of

this approach can be found in [51, 52]. The surface of each capsule is discretized into N∆

triangular elements with linear basis functions employed over each element. In the present

study, we took N∆ = 320, corresponding to 162 discretization nodes. As shown earlier [5],

very long simulation times are required to reach steady state, and this mesh resolution keeps

the computational time requirement manageable.

The computation of the boundary integral in Eq. 3 discussed below, requires the knowl-

edge of the hydrodynamic traction jump across the interface (∆f). This is obtained from

the membrane equilibrium condition, which requires that the hydrodynamic forces on any

infinitesimal area of the membrane balance by the elastic forces in the membrane. Hence

∆f can be obtained from the knowledge of the elastic stresses. In the model used here,

there is no bending resistance of the capsule membrane. In this case compressive stresses in

the membrane can lead to membrane buckling. To circumvent this problem, capsules were

slightly pre-inflated following the work of [53] with inflation ratio I = a/a0 − 1, where the

rest radius a of the capsule of interest is larger than the unstressed radius a0. Here we set

I = 0.1 as in previous studies [5, 45] and did not observe any buckling instabilities. Note

that preinflation can also arise naturally in experiments due to osmotic effects [54]. Prior

work has shown that aside from preventing buckling instabilities of the membrane, the effect

of preinflation on dynamics is small [53].

C. Fluid velocity calculation: Boundary integral method

The Reynolds number for the problem is sufficiently small so that the fluid motion is

assumed to be governed by the Stokes equation. Under these assumptions, one may write

the fluid velocity u at any point x0 in the domain as [55]:

uj(x0) = u∞
j (x0)−

1

8πµ

Np∑

n=1

∫

Sn

∆fi(x)Gji(x0,x) dS(x) (3)

where u∞(x0) is the undisturbed simple shear velocity at the point x0, S
n denotes the surface

of capsule n, ∆f(x) is the hydrodynamic traction jump across the interface, while G is the

Green’s function. Note that the sum in the above expression is over all the Np capsules

9
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in the system. A crucial aspect of the above formulation is that the Green’s function G is

taken to satisfy the boundary conditions imposed at the system boundaries, so the integrals

above only involve the internal (interfacial) boundaries; if the Green’s function for any other

geometry is employed (e.g. free-space), additional integrals over the domain boundaries will

arise in Eq. 3. The undisturbed flow velocity u∞ is considered to be simple shear,

u∞(x, y, z) = γ̇(y −H)ex, (4)

where H is the half-height of the channel (Fig. 1), and ex is the unit vector in the x direction.

To determine the velocity field we use the accelerated boundary integral method of Kumar

et al. [51] which is based on general geometry Ewald like method (GGEM) developed by

Hernandez-Ortiz et al. [56]. The key idea in this approach is to split a Dirac-delta force

density into a smooth quasi-Gaussian global density ρg(r) and a second local density ρl(r)

given by the following expressions:

ρg(r) =
α3

π3/2
e−α2r2

(
5

2
− α2r2

)
, (5a)

ρl(r) = δ(r)− ρg(r), (5b)

where α−1 is the length scale over which the delta-function density δ(r) has been smeared

using the quasi-Gaussian form above, while r is the position vector relative to the pole

of the singularity. The solution associated with the local density is known analytically, is

short ranged and is neglected beyond a length scale of O(α−1) from its pole. The analytical

solution is obtained assuming a free-space boundary conditions while the solution associated

with global density is computed numerically ensuring that the boundary condition associated

with overall problem is satisfied [51, 56]. The periodic x and z directions are represented

using Fourier series while a Chebyshev Galerkin scheme is used in the y direction. The

number of corresponding modes in x, y and z directions are Nx, Ny and Nz, respectively.

Based on extensive tests in [51], we set αhm = 0.5 to minimize numerical error. Here, hm

is mean mesh spacing associated with the global solution and α is taken as 4/as. Kumar et

al. [51] have shown that the computational cost associated with this method is O(N lnN)

for the slit geometry, where N is proportional to the product of total number of capsules in

system, Np and the number of triangular elements N∆ on the capsule surface.

10

Page 12 of 41Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



TABLE I: Parameter specification in various simulations. For all simulations, the capillary number based on equatorial
radius Ca is 0.5, the confinement ratio C is 5.08 and neo-Hookean membrane law is used.

Set Shape1 Shape2 κ Xs a/as V/Vs φs

A S O {0.4,0.6,0.75} 0 – 1 1 {0.4,0.6,0.75} {0.05,0.1,0.15}

B S P {1.33,1.5,1.63} 0 – 1 1 {1.33,1.5,1.63} {0.05,0.1,0.15}

C S O {0.25,0.3,0.4} 0 – 1 {1.59,1.49,1.36} 1 {0.05,0.1,0.15}

D S P {1.63,1.8,2.0} 0 – 1 {0.85,0.82,0.79} 1 {0.05,0.1,0.15}

Each time step in the solution procedure begins with the computation of the hydrody-

namic traction jump ∆f – this is computed using the approach outlined above in Sec. II B.

Following this, we compute the velocity at all surface element nodes using the scheme just

described. The surface element nodes are then advanced in time using the second order ex-

plicit Adams-Bashforth method. The time step ∆t is set adaptively to satisfy ∆t = 0.1Cah,

where h is the minimum node to node distance (the closest nodes do not have to be on the

same capsule) [51]. We employ an overlap correction procedure in an auxiliary step [51],

which maintains a minimum separation δmin = 0.025as between the surfaces of any two

capsules. Briefly, a pair of overlapping capsules are moved apart along their line of center

in z direction until δmin is achieved. Several hundred to more than a thousand time (strain)

units are required for the capsule distribution to reach a statistically stationary state.

Table I shows the set of simulations performed in this study with their specific choices of

parameters. The domain is 20.31as × 10.15as × 10.15as in the x, y, and z directions for all

these simulations. Thus, the confinement ratio C = H/as for all sets of runs is 5.08. The

total number of capsules is 24, 48 and 72 at φ = 0.05, 0.10 and 0.15 respectively. As can be

seen, we have performed four main sets of simulations denoted by A, B, C and D in the table.

These sets of simulations address the effect of the number fraction of the spherical capsule

Xs on the segregation behavior in combination with several other parameters including

shape, equatorial radius and volume of the ellipsoidal capsules as well as volume fraction.

Additionally, to examine the effect of box size, simulations for set A were repeated in a

bigger box of size 20.31as × 20.31as × 10.15as with 96 capsules and φs = 0.10. The box size

effect was found to be negligible as seen in Fig. 14, which is presented in Sec. III C.

11
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(a) Xs = 0.1

(b) Xs = 0.9

FIG. 2: Simulation snapshot for the mixture of oblate (κ = 0.6, blue) and spherical capsules (red) with (a) Xs = 0.1 and (b)
Xs = 0.9. Both species have same equatorial radius with φs = 0.10. Here and henceforth, we will represent oblate and
spherical capsules by the colors blue and red, respectively.

III. RESULTS

A. Equatorial radius held constant

We begin this section with results for the case where both spherical and ellipsoidal cap-

sules have the same equatorial radius. This case corresponds to simulation sets A and B

in Table I. The volume of the ellipsoidal capsules varies linearly with aspect ratio κ and

thus, the overall volume fraction φ will vary with Xs. The volume fraction at any Xs is

φ = (Xs + κ(1 − Xs))φs in these cases. We will first discuss the case φs = 0.10 and the

cases κ = 0.6 and κ = 1.33. Results for varying κ and φs are discussed later in Sec. III A 2.

Simulation snapshots for different values of Xs are shown in Fig. 2 for set A and Fig. 3 for

set B.
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(a) Xs = 0.1

(b) Xs = 0.9

FIG. 3: Simulation snapshots for mixtures of prolate (κ = 1.33, green) and spherical capsules (red) with (a) Xs = 0.1 and
(b) Xs = 0.9. Both species have same equatorial radius with φs = 0.10. Here and henceforth, we will represent prolate
capsules by the color green.

1. Particle distribution in the wall normal direction

The simplest way to examine segregation is to look into the steady state mean absolute

distance of a species ‘α’ from the channel wall defined as d̄α = 〈〈|y−ywall|〉Nα
〉ts , where 〈m〉n

represents the average of quantity m in the range of quantity n. Here, Nα is the number

of capsules of species α and ts is the time interval, after steady state is reached, in which

temporal averaging is done, which is taken to be ts = 2000−3000 for all the results presented

in this work. It is noteworthy that steady state is typically reached after initial 1000 strains

of the simulation.

We first consider the mixture of oblate and spherical capsules. From Fig. 4(a), we observe

that d̄ for both species decreases with the increase in Xs . This is expected as the d̄ for

the pure spherical capsule suspension is smaller than that for pure oblate capsules and the

mixture will behave more like the spherical capsule case as Xs increases. We also observe

that the oblate capsules stay closer to the wall and the margination tendency, quantified as
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FIG. 4: Steady state d̄ as a function of Xs for the mixture of (a) oblate (κ = 0.6) and spherical, and (b) prolate (κ = 1.33)
and spherical capsules. Also shown is the steady state d̄ of the total suspension. Both capsules have same equatorial radius
with φs = 0.10.

|d̄s − d̄o|, increases with increase in Xs .

Now we turn to the mixture of prolate and spherical capsules. In Fig. 4(b), we observe that

as Xs increases, prolate capsules move toward the center while spherical capsules marginate.

The d̄ for both species increases with increase in Xs . This is contrary to the behavior of

oblate capsules in mixture we saw in earlier paragraph.

To see more detail of the capsule distributions, we now examine the number density of

the center of mass of a given species as a function of the y-coordinate normalized by the

mean number density n of that species; we denote this as n̂(y). If the distribution were

uniform, then this quantity would have a value of one throughout. Note that a subscript

‘s’, ‘o’ or ‘p’ may be used in n̂ to specifically refer to the spherical, the oblate or the prolate

capsules, respectively; the same convention is followed later for denoting other quantities.

To compute n̂(y), the channel height is divided into bins and then capsules are assigned

to bins based on their center of mass coordinates. The number of capsules in each of the

bins is then normalized by the value expected in that bin based on a uniform distribution

in the wall normal direction. Temporal averaging of distribution profile is done in the range

of ts = 2000 − 3000 using a block averaging technique [57] with blocks of 100 strain units.

Block size was selected such that auto-correlation between distribution profiles was less than

5%. Typical error bars are shown in Fig. 11(e).

Fig. 5(a),(b) shows the distribution of capsules in a pure suspension of oblate, spherical

or prolate capsules. Two things are immediately clear from these plots. First, there are two

peaks, one sharper peak closer to the wall and another broader peak closer to the centerline.
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Second, the thickness of the cell-free layer (CFL), the region near the wall with absence of

center of mass of capsules, increases with the decrease in κ. A mechanistic explanation for

this observation is provided in Sec. IV. The peaks in the n̂(y) profile indicate some layering

in the pure suspensions. Similar effects have been seen in the simulation of capsules [5, 7]

and drops [58].

Now, we direct our focus to the binary mixtures of capsules of different shapes. Fig. 5(c),(d)

shows results for the case where spherical capsules are dilute relative to ellipsoidal (Xs =

0.1). In the mixture of oblate and spherical capsules, shown in Fig. 5(c) and Fig. 2(a), we

see that spherical capsules demarginate i.e. they have higher tendency to be found near

centerline, while the oblate capsules are pushed more towards the wall compared to pure

suspension, as evidenced in the decrease of the CFL thickness and the higher peak near the

wall. In Fig. 5(d) (simulation snapshot in Fig. 3(a)), we examine the mixture of prolate and

spherical capsules, spheres being dilute. The CFL thickness for prolate capsules increases

compared to the Xs = 0 case, indicating that the prolate capsules have moved closer to the

center. On the other hand, spherical capsules are observed to marginate: i.e. they have

higher tendency to be found near the wall.

Next, we examine the case where ellipsoidal (oblate or prolate) capsules are in the dilute

regime (Xs = 0.9). In a mixture of oblate and spherical capsules (Fig. 5(e) and Fig. 2(b)), the

oblate capsules are strongly depleted in the center of channel (n̂(y) = 0 near the centerline)

and are concentrated near the wall. In the mixture of prolate and spherical capsules, shown

in Fig. 5(f) (simulation snapshot in Fig. 3(b)), the prolate capsules strongly demarginate,

with the peak concentration near the centerline.

To summarize, the above results indicate that in a mixture of capsules with the same equa-

torial radius and varying κ, the component with lower/higher κ will marginate/demarginate

when present in trace amount. We discuss the mechanistic origin of this observation in

Sec. IV.

2. Effects of aspect ratio and volume fraction

Now we briefly turn our attention to a more fine-grained examination of the role of κ.

Fig. 6(a) shows the distributions at various κ of oblate capsules in a pure suspension (Xs =

0) and Fig. 6(b) shows the distribution when the the oblate capsules are dilute (Xs =
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0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

2.5

3

y/H

n̂

P
S

(b) pure prolate and spherical (Xs = 0, 1)
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FIG. 5: Normalized number density distributions n̂(y). The channel wall is at y = 0 and the centerline at y = H. The κ of
oblate and prolate capsules is 0.6 and 1.33, respectively with φs = 0.10. Both species in the mixture have the same equatorial
radius. (a) Xs = 0 and Xs = 1: Pure species (oblate and spherical capsules), (b) Xs = 0 and Xs = 1: Pure species (prolate
and spherical capsules), (c) Xs = 0.1 in oblate-sphere mixture, (d) Xs = 0.1 in prolate-sphere mixture, (e) Xs = 0.9 in
oblate-sphere mixture and (f) Xs = 0.9 in prolate-sphere mixture.
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FIG. 6: Normalized number density distribution of oblate capsules n̂o(y) at several κ for the (a) Xs = 0 and (b) Xs = 0.9.
Both capsules have the same equatorial radius with φs = 0.10.

0.9). For pure suspensions, the CFL thickness as well as the peak near wall increases as

κ decreases. At the lowest value of κ studied here, κ = 0.4, we observe multiple peaks in

the distribution function indicating multiple layers, however animations reveal that only the

peak near the walls is representative of layers, while much of the interior region consists of

disorganized particles. As the oblate capsules become the trace component in the mixture,

they are increasingly marginated as κ decreases and when κ < 0.6, we observe complete

depletion of oblate capsules from the central region of the channel.

For a suspension of pure spherical capsules, the CFL thickness decreases as φs increases as

seen in the distributions shown in Fig. 7(a). This result is consistent with prior simulations

and theory [7, 46, 59, 60]. Also, the near-wall peak diminishes as φs increases; this occurs in

conjunction with a more uniform distribution over the rest of the channel. Fig. 7(b) shows

n̂s for Xs = 0.9 in the mixture of spherical and prolate (κ = 1.33) capsules. Spherical cap-

sules occupy central region of channel at all φs, while prolate capsules increasingly undergo

demargination (not shown). The near-wall peak shifts toward the wall as well as peak-height

decreases with increasing φs, just as in pure suspensions of spherical particles.

B. Volume held constant

Now, we direct our attention to binary mixtures in which all capsules have the same

volume V , simulation sets C and D in Table I. As discussed earlier, the equatorial radius

a of ellipsoidal capsules will scale as κ−1/3 in these sets of runs. Thus, oblate and prolate
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FIG. 7: Normalized number density distribution of spherical capsules n̂s(y) at several φs for (a) Xs = 1 and (b) Xs = 0.9 in
a mixture of spherical and prolate (κ = 1.33) capsules. Both capsules have same equatorial radius.

capsules will have larger and smaller a, respectively, compared to spherical capsules. We

first discuss the results for κ = 0.4 from simulation set C and κ = 2.0 from simulation

set D. Results for varying κ and φ are discussed in Sec. III B 2. Fig. 8 and Fig. 9 show

representative snapshots (taken at t = 3000). It is evident from these snapshots that both

oblate and prolate capsules demarginate when present in trace amount (Xs = 0.9), while

spherical capsules marginate when they are trace component (Xs = 0.1), in contrast to the

behavior we saw earlier in the constant radius case, Sec. III A.

1. Capsule distributions

We begin first by presenting in Fig. 10 the mean positions d̄ of capsules at several Xs at

φ = 0.10. In Fig. 10(a), where κ = 0.4, d̄ for both capsules increases with increasingXs , with

d̄ of spherical capsules always staying below that of oblate capsules. Thus spheres marginate

when present as the trace component. Notably, this is the opposite of the behavior seen at

constant radius (Sec. III A). In simulations of platelet margination, Reasor et al. [43] found

that spherical platelets marginate more than disk-shaped platelets with the same volume,

a tendency seen here as well. (However, their platelets were rigid and all rigid particles

marginate strongly in a suspensions of larger flexible ones [48], so it is likely that the effect

they observed in more closely related to the dynamics of particles rolling along a vessel

wall.) Further insight into this phenomenon is provided in Sec. IV. Fig. 10(b) shows that

the prolate capsules (here κ = 2) demarginate when present as trace, very similar to their
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(a) Xs = 0.1

(b) Xs = 0.9

FIG. 8: Simulation snapshots for mixtures of oblate (κ = 0.4, blue) and spherical capsules (red) with (a) Xs = 0.1 and (b)
Xs = 0.9. Both species have same volume with φ = 0.10.

behavior seen in the constant-radius case.

Fig. 11 shows number density profiles n̂(y) at various Xs . The result for pure suspensions

is shown in Fig. 11(a,b), where two things can be noticed immediately: a) the cell-free layer

thickness ld is the same for all three capsule shapes and b) the near wall peak for spherical

capsules is bigger than ellipsoidal capsules. A mechanistic explanation of these observations

presented in Sec. IV.

Next, we focus on mixtures. In Fig. 11(c,d), we present the case where spherical capsules

are in trace amount (Xs = 0.1). In the case of oblate and spherical capsules, shown in

Fig. 11(c) and Fig. 8(a), we see that oblate capsules occupy the region close to centerline

while the spherical capsules marginate. Prolate capsules are seen to have similar behavior

in Fig. 11(d) and Fig. 9(a). For the case where spherical capsules are primary (Xs = 0.9),

shown in Fig. 11(e,f)(snapshot in Fig. 8(b) and Fig. 9(b)) for oblate and prolate capsules,

respectively, the ellipsoidal capsules demarginate when they are present in trace amount.

We provide a mechanistic explanation for these trends in Sec.IV.
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(a) Xs = 0.1

(b) Xs = 0.9

FIG. 9: Simulation snapshots for mixtures of prolate (κ = 2.0, blue) and spherical (red) capsules with (a) Xs = 0.1 and (b)
Xs = 0.9. Both species have same volume with φ = 0.10.
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FIG. 10: Steady state d̄ as a function of Xs for the mixture of (a) oblate (κ = 0.4) and spherical capsules and (b) prolate
(κ = 2) and spherical. Also shown is the steady state 〈d̄〉 of the total suspension. Both capsules have same volume and
φ = 0.10.

2. Effects of aspect ratio and volume fraction

Now, we turn our attention to the effect of κ, while keeping the other parameters fixed.

Fig. 12(a) shows the distribution of prolate capsules in wall-normal direction for a pure
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FIG. 11: Normalized number density distributions n̂(y) for suspensions whose components have the same volume. The
aspect ratios κ of the oblate and prolate capsules are 0.4 and 2.0, respectively with φ = 0.10. (a) Xs = 0 and Xs = 1: Pure
species (oblate and spherical capsules), (b) Xs = 0 and Xs = 1: Pure species (prolate and spherical capsules), (c) Xs = 0.1 in
oblate-sphere mixture, (d) Xs = 0.1 in prolate-sphere mixture, (e) Xs = 0.9 in oblate-sphere mixture and (f) Xs = 0.9 in
prolate-sphere mixture.
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FIG. 12: Number density distribution of prolate capsules n̂p(y) at several κ for the (a) Xs = 0 and (b) Xs = 0.9
(prolate-sphere mixture). Both species have same volume with φ = 0.10.

suspension (Xs = 0) and Fig. 12(b) shows the distribution when they are present in the

trace limit (Xs = 0.9) at varying κ. For pure suspensions, we see that the CFL thickness

as well as the near-wall peak is the same for all three different κ (κ = 1.63, 1.8, 2). As the

prolate capsules become dilute, their near-wall peak decreases while their concentration at

the centerline increases (increasing demargination) with increasing κ.

To examine the effect of volume fraction, we present results for mixture of oblate (κ = 0.4)

and spherical capsules at Xs = 0.9 in Fig. 13. Normalized number density distribution of

oblate and spherical capsules is shown in Fig. 13(a) and (b), respectively. Oblate capsules

demarginates at all φ and are increasingly found near center of the channel as φ increase.

While for spherical capsules, the near-wall peak shifts toward the wall with increasing φ, just

as in pure suspensions of spherical particles (Fig. 7(a)), indicating that they are increasingly

pushed towards wall with increase in φ.

C. Effect of domain size

In order to ensure that the results presented above were generated in a large enough

simulation domain in the periodic directions, we conducted additional runs for a mixture

of oblate (κ = 0.75) and spherical capsules with the same equatorial radius a at φs = 0.10

in a simulation domain of 20.31as × 20.31as × 10.155as (with 96 capsules). Comparative

results for component distributions at Xs = 0.9 are shown in Fig. 14 and we note that the

differences are small.
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FIG. 13: Normalized number density distribution n̂(y) of (a) oblate and (b) spherical capsules at several φ for Xs = 0.9 in a
mixture of spherical and oblate (κ = 0.4) capsules. Both species have the same volume.
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FIG. 14: Normalized number density distribution of components n̂(y) at Xs = 0.9, φs = 0.10 in the mixture of oblate
(κ = 0.75, shown in blue closed circles) and spherical (shown in red closed triangles) capsules with same equatorial radius.
Results are shown for two different box size: 20.31as × 10.155as × 10.155as (with 48 capsules, shown with solid curve) and
20.31as × 20.31as × 10.155as (with 96 capsules, shown with dashed curve).

IV. MECHANISMS AND SIMPLIFIED MODEL

Above we presented detailed results for capsules having different shapes while maintaining

(a) same equatorial radius, and (b) same volume. On the surface, the results for these two

cases suggest contradictory trends. In this section, however, we show that the mechanistic

origins of binary suspension dynamics in both cases can be understood within the same

framework: as a competition between two key processes, (a) wall-induced migration, which

tries to push capsules toward the center of channel, and (b) shear-induced collisions, which

try to homogenize the capsule distribution.
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A. Wall-induced migration

In general, a suspended deformable object such as a drop, capsule, cell or flexible polymer

molecule subjected to shear flow near a no-slip wall will migrate normal to the wall even

in the Stokes flow limit [61, 62]. We have computed this migration velocity vm(y) for

isolated capsules in a slit domain of sized 10.155as × 10.155as × 10.155as. Again in all cases

Ca = 0.5. The simulation to compute vm at a given wall-normal position y begins by placing

the initially spherical capsule at that location. With time, the shape of the capsule as well

as the location of its center of mass evolves. We find the quasi-steady limit of the migration

velocity by holding the center of mass of the capsule fixed at a given location: at the end

of each time step, the capsule is translated so that its center of mass returns to its original

position; at steady state this displacement and the time step determine the quasi-steady

migration velocity. In general, the time scale of capsule shape evolution is much faster than

that of capsule motion in the wall-normal direction. As a result, except in the near-wall

region of the standard simulation (see [52]), the migration velocity obtained from the above

described scheme is very close to that from a standard simulation.

Fig. 15(a) shows vm(y) for capsules with the same equatorial radius and varying κ at

confinement ratio of C = 5.08. We observe that vm(y) increases with increasing κ; recall

that capsules with same equatorial radius have increasing volume as κ increases. Fig. 15(b)

shows vm(y) of capsules of the same volume and varying κ. Perhaps surprisingly, in this

case there is almost no change in vm with κ.

The trends shown in Fig. 15 clearly indicate that the volume of capsule plays a larger role

in determining migration velocity than its shape. Further insights into these results can be

gained from some theoretical considerations. To leading order far from walls a deformable

neutrally buoyant object in fluid can be treated as a symmetric force-dipole characterized

by the stresslet tensor S [61, 62]. In a semi-infinite domain with a no-slip wall at y = 0 the

migration velocity induced by the image of this dipole in the wall can be approximated as:

vm =
Km

y2
, (6a)

Km = −
9Syy

64πµ
. (6b)

For a spherical capsule in the limit of small Ca, Barthes-Biesel and Chhim [63] gave the
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FIG. 15: Migration velocity of a single capsule for varying κ with (a) same equatorial radius and (b) same volume.

following expression for the yy component of the stresslet:

Syy ∼ −µγ̇V Ca. (7)

Thus at constant Ca, the migration velocity is linearly proportional to its volume. Based

on our observations, we suggest that this dependence holds, at least to a very good approxi-

mation, for nonspherical capsules. This argument can be recast using dimensional analysis.

For a capsule with spherical rest shape in the point dipole limit,

vm
γ̇a

∼
a2

y2
f(Ca) (8)

or equivalently

vm ∼
γ̇V

y2
f(Ca), (9)

since V ∼ a3. For a nonspherical capsule the additional dimensionless group κ appears and

the above result directly generalizes to

vm ∼
γ̇V

y2
f(Ca, κ). (10)

Our results indicate that at least for the model under consideration here f(Ca, κ) is a very

weak function of κ.
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B. Pair collisions

In a dilute suspension of capsules, the capsule-capsule interactions can be treated as a

sequence of uncorrelated pair collisions [7, 47, 48, 64]. The probability of three-body or higher

interactions is at least an O(φ) smaller. Evidently, pair collisions will play an important part

in capsule transport. In a binary mixture two types of collisions will occur: (a) homogeneous

collisions where capsules of same type collide, and (b) heterogeneous collisions where capsules

of different type collide. Fig. 16 shows a schematic for the heterogeneous pair collisions.

FIG. 16: Schematic of capsule trajectories in a pair collision. Here α and β refer to the species types of the two colliding
capsules, δy is the pre-collision offset in the gradient direction, and ∆αβ and ∆βα are the cross-stream displacements of the
capsules α and β, respectively.

To examine the dependence of these collisions on aspect ratio and volumes, pair collision

simulations were performed in an effectively unconfined domain with side 30as in each di-

rection. Capsules of different shapes were initially placed symmetrically on either side of

the centerline with their equatorial plane parallel to the flow direction. The capsules have

a pre-collision offset of δy in the gradient direction, δz in the vorticity direction and 8a in

the flow direction (see Fig. 16). In this section, we will present result for pair-collisions

where δz = 0. The trajectories of capsules in homogeneous and heterogeneous pair collisions

between sphere and oblate ellipsoid (κ = 0.4, same a) for one such case with δy = 0.5 is

shown in Fig. 17. For this case, the final cross-stream displacement of the sphere (∆ss) is

higher than that of the ellipsoid (∆oo) in their respective homogeneous pair-collision. In a

heterogeneous pair collision, the oblate capsule displaces more than the sphere (∆os > ∆so).

This differential displacement has important consequences for the segregation.

Moving from this specific case, the steady-state cross-stream displacements ∆ of capsules

as a function κ is reported in Fig. 18. We begin discussion with the result for pair collisions
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FIG. 17: Relative trajectories for spherical (‘S’) and oblate (‘O’) with κ = 0.6 and same a in both homogeneous (S − S,
O −O) and heterogeneous (S −O, O − S) pair collisions. y0 is the initial position in y direction of a capsule.

of capsules with the same a, shown in Fig. 18(a). In all cases, we studied the pair collision

of a spherical capsule with an ellipsoidal (either oblate or prolate) capsule. The solid curve

shows ∆ for homogeneous collision of ellipsoidal capsules, while the dashed curves show

∆αβ of each capsule in a heterogeneous collision. The curves meet at κ = 1, the case of

homogeneous collision of spheres. Notice that the cross-stream displacement of an oblate

capsule is larger than for a spherical capsule in heterogeneous collision, so ∆os > ∆so, while

for homogeneous collision, ∆oo < ∆ss. In general, the order of displacement is as follows:

∆so < ∆oo < ∆ss < ∆os. An obvious trend emerges here: the capsule of high κ gets displaced

less in heterogeneous collision compared to their homogeneous collision while displaces low κ

capsule more in heterogeneous collision compared to their homogeneous collision. This trend

continues for the pair collision of spherical and prolate capsules as well where we observe

the following order: ∆ps < ∆ss < ∆pp < ∆sp.

In Fig. 18(b) we turn to the constant volume case. Here as well, the solid curve shows

∆ for homogeneous collision of ellipsoidal capsules, while the dashed curves show the ∆αβ

of each capsule in a heterogeneous collision. In this case, all the curves are nonmonotonic.

We can divide the plot into three regions: a) κ < 0.5: here, ∆os < ∆oo < ∆ss < ∆so, b)

0.5 < κ < 1.3: in this region ∆αα and ∆αβ are nonlinear and close to each other, and c)

κ > 1.3: in this region, where ∆ps < ∆pp < ∆ss < ∆sp.

If we put the results discussed in previous sections Sec. IVA and IVB together, a clearer

picture of segregation starts to emerge. The question we ask ourselves here is whether a

capsule stuck in near-wall region be able to escape to central region. We focus discussion

on the case of oblate and spherical capsule mixture, where both species have same radius.

27

Page 29 of 41 Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



0 0.5 1 1.5 2

0.1

0.2

0.3

0.4

0.5

0.6

κ

∆
/
a
s

E − S

S − E

E − E

0 0.5 1 1.5 2

0.1

0.2

0.3

0.4

0.5

0.6

κ

∆
/
a
s

E − S

S − E

E − E

FIG. 18: Post collisional cross-stream displacements of ellipsoidal (‘E’) and spherical (‘S’) capsules in homogeneous and
heterogeneous collisions as a function of κ for (a) capsules with same equatorial radius and (b) same volume. Other
parameters: δy = 0.5, δz = 0 and C = 15.

Consider two scenarios: a) when a slow migrating capsule (here oblate) is in near-wall

region surrounded by fast migrating capsule (here sphere); case of Xs = 0.9. In subsequent

collisions, capsule which displaces less in collision (here sphere) will push other capsule which

displaces more (here oblate) towards the wall. As oblate is migrating slowly and is pushed

more, it will marginate. In scenario b) a fast migrating capsule (here sphere) is in near-wall

region surrounded by slow migrating capsule (here oblate); case of Xs = 0.1. In subsequent

collisions, less displacing capsule in collision (here sphere) will push more displacing capsule

(here oblate) away, making its way to central region. As sphere is migrating faster and

displacing less, it will demarginate.

Using the above framework, we can similarly explain the demargination of prolate capsules

seen in mixture of prolate and sphere with same radius in Sec. IIIA. For capsules of same

volume, they have similar vm as seen in Sec. IVA. In such cases, segregation will be driven

by heterogeneous collisions. Using above framework, we can deduce that a less displacing

capsule in collision will push the capsule which displaces more towards wall. For ellipsoidal

(‘e’) and spherical (‘s’) capsules, ∆es < ∆se, thus above framework predicts that both oblate

and prolate will demarginate when present in dilute limit (case of Xs = 0.9) and sphere will

marginate when present in dilute limit (case of Xs = 0.1), which indeed is the case as seen

in results presented in Sec. III B.
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V. KINETIC DRIFT-DIFFUSION THEORY

In recent work, Henŕıquez et al. [48] gave a mathematical model for predicting flow-

induced segregation that formalizes earlier mechanistic arguments by Kumar and Graham

[45]. In this section we present aspects of this theory and apply it to the shape segregation

problem. Consider a dilute suspension (φ ≪ 1) containing Ns types of deformable capsules

undergoing simple shear flow in a slit. Quantities referring to a specific component α in

the mixture will have subscript α: for example nα is the number density of component α.

Consistent with the diluteness assumption, the shear rate γ̇ is assumed to be independent

of the local number densities and thus independent of position. In a dilute suspension

the capsule-capsule interactions can be treated as a sequence of uncorrelated pair collisions

[47, 58, 64]. The contributions of three-body or higher interactions is O(φ3) and is neglected

here. Since the capsules are deformable, they migrate away from the wall during flow

with velocity vαm(y) as described above. The evolution of the capsule number density

distributions can be idealized by a kinetic master equation that captures both the migration

and collision effects ([6, 7, 46, 47]). Assuming uniform capsule distributions in x and z, this

equation is

∂nα(y, t)

∂t
= −

∂

∂y

(
vαm(y)nα(y, t)

)
+

Ns∑

β=1

(∫ y

−(2H−y)

∫ ∞

−∞

{
nα(y −∆αβ

y , z −∆αβ
z , t)

× nβ(y −∆αβ
y − δy, z −∆αβ

z − δz, t)

− nα(y, z, t)nβ(y − δy, z − δz, t)

}
γ̇ |δy| dδzdδy

)
. (11)

The term γ̇|δy| in the integrand accounts for the relative velocity of approach of two capsules

separated far upstream by a wall-normal offset δy. In the important special case of a binary

suspension composed of a “primary” component (α =‘p’) and a “trace” component (α =‘t’),

such that np ≫ nt, only the term corresponding to β =‘p’ contributes to the sum – the trace

component is too dilute for its collisions to affect the behavior of the system. This is the

case we consider here.

Under the further conditions: (a) small collisional displacements i.e. ∆αβ
y /a ≪ 1, (b)

∆αβ
y are vanishingly small for large |δy|, and (c) terms involving (∆αβ)3 and smaller are

negligible, one can approximate the master equation by the following pair of drift-diffusion
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type equations [48]:

∂np

∂t
= −

∂

∂y

[
Kpm

(
1

y2
−

1

(2H − y)2

)
np −Kpc

∂γ̇np

∂y
np −

∂

∂y

(
Kpdγ̇n

2
p

)]
,

∂nt

∂t
= −

∂

∂y

[
Ktm

(
1

y2
−

1

(2H − y)2

)
nt −Ktc

∂γ̇np

∂y
nt −

∂

∂y
(Ktdγ̇npnt)

]
. (12)

We denote this as the simplified drift-diffusion (SDD) model. Notice that the primary

component dominates the collisional drift velocity (second term in RHS) and collisional-

diffusivity (third term in RHS) terms. Here, Kαm, Kαc and Kαd are migration, collisional

drift and collisional diffusivity coefficients, respectively, of capsules of type α, defined as:

vαm = Kαm

[
1

y2
−

1

(2H − y)2

]
, (13a)

Kαc = 2

∫ rcut

0

∆̂αp
y (δy)δy|δy| dδy, (13b)

Kαd =

∫ rcut

0

̂(∆αp
y )2(δy)|δy| dδy, (13c)

∆̂αp
y (δy) =

∫ rcut

−rcut

∆αp
y (δy, δz)dδz, (13d)

̂(∆αp
y )2(δy) =

∫ rcut

−rcut

{∆αp
y (δy, δz)}

2dδz. (13e)

In Eq. 13, rcut is the radius beyond which capsule-capsule interaction is assumed to be

negligible. An important feature of Eq. 12 is that steady state solutions with no-flux bound-

ary conditions at wall (y = 0) and centerline (y = H) can be solved analytically. Number

density distributions np and nt are found to be:

np =





0, y < ld

npc

(
1−

(
H−y

H−ld

)
2

(
y

ld

)(
2H−y

2H−ld

)

)
, y > ld

, (14)

nt =





0, y < ld

ntc

(
np(y)

npc

)M
, y > ld

, (15)

Here, npc and ntc are the number density of primary and trace component at centerline,
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FIG. 19: (a) Post-collisional cross-stream displacement ∆ss
y of spherical capsules in homogeneous collision as a function of

δz and (b) z-averaged post collisional cross-stream displacement (using Eq. 13(d)) ∆̂αβ
y (δy) as a function of δy for

pair-collisions between oblate (κ = 0.4) and spherical capsule.

respectively, ld is the cell-free layer thickness

ld = C

(
1−

√
Cφpc

2ηp + Cφpc

)
, (16)

where ηp = κm/(κc+2κd) is the ratio of nondimensional migration coefficient over collisional

coefficients and M is the so-called margination parameter,

M =
Kpc +Kpd

Ktd

(
Ktm

Kpm

−
Ktc +Ktd

Kpc + 2Kpd

)
. (17)

This dimensionless group captures the competition between the migration velocities of two

component and their collisional terms. The qualitative nature of the concentration profile

of trace component is determined by M . Four distinct regimes can be identified: a) M > 1:

trace component demarginates, b) 0 < M < 1: trace component weakly marginates, c)

−1 < M < 0: trace component moderately marginates, and d) M ≤ −1: trace component

strongly marginates. In this last case there is no steady solution for nt(y): initial conditions

evolve to a delta-function localized at y = ld, i.e. at the edge of the cell-free layer.

We will evaluate the predictions of this theory for a suspension where ellipsoidal capsules

are the trace component, specifically the Xs = 0.9 case described above. To do this, the

migration velocities vαm must be computed as well as the collision integrals, Eq. 13, which

require knowledge of the cross-stream displacements ∆αβ in pair collisions. These were
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FIG. 20: (a) Collisional drift coefficient Kαc, (b) collisional diffusion coefficient Kαd and (c) migration coefficient Kαm as a
function of κ for cases where capsule have same a and same V .

determined as described in the previous section. Pair collisions were studied with several δy

and δz for a capsule pair; these were varied in the range [0.1a, 2.5a] and [0.1a, 2.5a] for each

of the κ studied in table I. Fig. 19(a) shows results for homogeneous pair collisions while

Fig. 19(b) shows results for heterogeneous collision between oblate spheroids of κ = 0.4 and

spheres, where both capsules have same a. Observe that ∆y decays rapidly with δy and

δz. The trends of ∆y in Fig. 19(b) affirm the results shown earlier in Fig. 18. Similarly, to

compute wall-induced migration velocities vαm(y), simulations were performed for all κ listed

in table I.

Using the displacement functions ∆αβ(δy, δz), the integrals to compute Kαc and Kαd were

done using the trapezoid rule. In this work, rcut is kept at 2.5a based on results shown in

Fig. 19. Fig. 20(a) shows the Ktc, Fig. 20(b) shows Ktd and 20(c) shows Ktm for the cases

(a) capsules with same a and (b) capsules with same V . Values of Kpc, Kpd and Kpm are

given by these results evaluated at κ = 1. Trends in these parameters are all consistent with
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FIG. 21: Margination parameter M as a function of κ for (a) capsules with same equatorial radius and (b) same volume.
The region above the solid line (M = 1) is the demargination regime, while the region below the dashed curve (M = −1) is
the strong margination (drainage) regime.

the trends on the displacements and migration velocities described above.

With these coefficients in hand, the margination parameter M can be computed using

Eq. 17. Fig. 21 shows M as a function of κ for the case of (a) same a and (b) same V .

Fig. 21(a) shows that for oblate capsules, M < −1 for all three values of κ studied in

Sec. IIIA. The SDD theory thus predicts strong margination of the oblate capsules. We

indeed see this in the simulation results of Sec. III A. For prolate capsules, M > 1 for all

three κ values studied in Sec. IIIA. In this case, theory predicts demargination of trace

component which is indeed seen in the simulation results of Sec. III A. For the case when

the ellipsoidal capsules have the same V as the spherical, we see that M > 1 for all values of

κ. In this case, the theoretical prediction is that both oblate and prolate will demarginate;

this is also found in the simulations in Sec. III B.

One can also calculate the theoretical number density profile of the trace component with

the knowledge of M using Eq. 15. Fig. 22 shows the centerline normalized number density

n̂tc of trace component as a function of M . Very good agreement between simulations and

theory is found.

The SDD theory also predicts the thickness of cell-free layer ld (Eq. 16). This prediction

and the simulation results as a function of overall volume fraction φ are shown in Fig. 23 for

(a) same a, and (b) same V . In Eq. 16, the normalized centerline volume fractions from their

pure suspension runs were used. With increase in φ, ld decreases for all three species in their

pure suspension as seen both in simulation and theory. Furthermore, for the same a at a
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FIG. 22: Normalized number density of trace component at the center of channel versus margination parameter. Solid lines
are theoretical prediction while the symbols are taken from full boundary integral simulation presented earlier in Sec. III for
φs = 0.10.
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FIG. 23: Cell-free layer thickness obtained from SDD theory (dashed curve) and simulation (solid curve) as a function of
total volume fraction for (a) capsules with same a (κ = 0.6 for ‘O’ and κ = 1.33 for ‘P’) and (b) capsules with same V
(κ = 0.4 for ‘O’ and κ = 1.8 for ‘P’).

particular φ, lod > lsd > lpd: this trend is seen for both simulation and theory and is a reflection

of the trend of ∆αα in homogeneous pair collisions of these species. For capsules of same V ,

all three shapes studied have similar ld calculated from full simulation and predicted from

theory, a reflection of their migration trend (or more precisely, lack thereof). Although it is

not able to capture the precise values of ld, the simple theory clearly captures the correct

trends.
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VI. CONCLUSIONS

In this work, we investigated the flow-induced segregation behavior in binary suspensions

on neo-Hookean capsules subjected to simple shear flows in a planar slit. The two species

in the suspension differ only in shape as characterized by their aspect ratio. Shape was

varied by two approaches: (a) the two components had the same equatorial radius and

their aspect ratio was varied to change shape (b) the two components had the same volume

and their aspect ratio as well as equatorial radius was varied to change shape. The detailed

boundary integral simulations revealed that when equatorial radius is held constant, capsules

of lower aspect ratio marginate when present in trace amount in mixture dominated by higher

aspect ratio capsules, while when volume is held constant, ellipsoidal capsules demarginate

in mixture with spherical capsules.

A unifying trend between different segregation behaviors is presented in Sec. IV. Segre-

gation can be understood to result from a competition between wall-induced migration of

deformable capsules and shear-induced collisions. When equatorial radius is held constant,

migration velocity at a wall-normal position is found to be proportional to aspect ratio,

while it shows only a weak dependence on aspect ratio when volume is held constant. In

heterogeneous pair collisions of capsules with same radius, the capsule having lower aspect

ratio displaces more than the higher aspect ratio one. However, for capsules having the

same volume, spherical particles displace more than ellipsoidal particles. These features of

particle migration and pair-collisions shed significant light on the mechanistic insights which

explains particle distribution in suspensions reported above. The recently-developed simpli-

fied drift-diffusion theory [48] was extended to understand shape-mediated segregation and

was found to capture the key qualitative features of shape-segregation remarkably well.

The simplified drift-diffusion theory comprises substantial progress in the understanding

and prediction of segregation behavior in multicomponent suspensions of deformable parti-

cles. As its input, it requires only migration, drift and diffusion coefficients, which can be

obtained via simple experiments or computationally inexpensive simulations. The various

margination regimes and the drainage transition predicted by the theory are seen in full

simulations. The comprehensive study of how each of the individual physical aspects of cell

deformability and size [5, 7] and shape (this work) lead to experimentally observed segrega-

tion behavior, and the corresponding theoretical framework [48] provide a foundation for the
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understanding of flow-induced segregation in blood and applications such as lab-on-a-chip

and targeted drug delivery. In these more complex systems different components differ in

multiple properties (e.g. red and white blood cells differ in size, shape and flexibility); the

results presented here help disentangle the effects of these various differences.
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