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the dynamic structure factor, S(q, t), and the wavenumber de-

pendent short-time diffusion function, D(q), based on the gener-

alized Lennard-Jones-Yukawa SALR model, HIs were completely

disregarded. Another complication in the theoretical description

of cluster states arises from the presence of additional time and

length scales associated with the distributions of cluster lifetimes,

sizes and charges. This hampers a clear distinction between col-

loidal short-time and long-time regimes as it can be made for a

homogeneous suspension of individually diffusing monodisperse

particles. An interesting experimental observation pointing to

these complications is the surprising observation that the short-

and long-time self-diffusion coefficients for salt-free lysozyme so-

lutions deduced from neutron spin echo (NSE) data share roughly

the same concentration dependence4.

In this work, we present a generic theoretical study of short-

time diffusion and rheological transport properties of a SALR

model system where the salient HIs are accounted for. We use

an isotropic hard-core plus two-Yukawa pair potential, V (r), con-

sisting of soft SA and LR Yukawa potential parts respectively.

This SALR potential is frequently used in studies of microstruc-

tural properties and phase behavior3,8,13,14. It describes phe-

nomenologically the orientationally averaged short-range attrac-

tion of globular proteins, and the for low salinity systems long-

ranged electric double layer repulsion originating from the pro-

tein charges and surface-released counterions.

The considered SALR systems are all in the homogeneous

dispersed-fluid phase state where most particles diffuse individ-

ually. However, the tendency of clustering is noticeable also in

this phase as hallmarked, e.g., by the occurrence of an IRO peak

in S(q) that grows with increasing α and φ as the transition line

to the cluster-fluid phase is approached.

This transition line marks a microphase separation into clus-

ters owing to the suppression of macroscopic phase separation

by the long-range repulsive part5,6,15. Combinations of density

functional theory and a perturbation theory approach, with the

clusters modeled for simplicity as spherical, suggest a first-order-

like phase transition between the two thermodynamically stable

phases, characterized by the discontinuous jump of the cluster

size above a critical colloidal density11,16.

For the calculation of equilibrium (short-time) diffusion and

rheological properties in the dispersed-fluid phase such as the

hydrodynamic function, H(q), and the high-frequency low-shear

viscosity η∞, we can thus use an easy-to-apply toolbox17 of well-

tested analytic methods where HIs are included, namely a hybrid

of the Beenakker-Mazur (BM) and hydrodynamic pairwise addi-

tivity (PA) methods18–21. This BM-PA hybrid scheme requires S(q)

and the radial distribution function, g(r), as the only input. The

static input can be calculated, to excellent accuracy for the ho-

mogeneous fluid-phase region as we are going to show in com-

parison with Monte-Carlo (MC) simulation data of g(r), using

the thermodynamically self-consistent Zerah-Hansen (ZH) inte-

gral equation scheme. This scheme interpolates between the soft

mean-spherical closure for small distances of particle pairs and

the hypernetted chain closure for large distances22,23. For dis-

persions with a hard-core plus purely repulsive Yukawa potential

such as charge-stabilized colloids, the BM-PA hybrid method gives

results in good overall agreement with simulation and experimen-

tal data17,18,24,25. It can be expected to provide semi-quantitative

results for the considered homogeneous SALR systems. Its ana-

lytic simplicity makes the BM-PA scheme a convenient tool for

assessing general dynamic trends.

The description of the SALR model is given in Sec. 2. In Sec.

3, we discuss the salient features of the static input S(q) and g(r)

required for the BM-PA calculations of short-time dynamic proper-

ties. Our results for self- and collective diffusion properties, and

the sedimentation coefficient of SALR systems are presented in

Subsec. 4.1. The high-frequency viscosity, and the performance

assessment of two generalized Stokes-Einstein relations, are dis-

cussed in Subsec. 4.2. Our conclusions are contained in Sec. 5.

2 Two-Yukawa SALR model

The hard-sphere plus two-Yukawa SALR pair potential V (r) used

in our theoretical study of short-time diffusion and rheological

properties reads explicitly26,27,

βV (x) =







∞ x < 1

α
[

−K1
e−z1(x−1)

x +K2
e−z2(x−1)

x

]

x ≥ 1 .
(1)

Here, x = r/σ is the inter-particle center-to-center distance, r, in

units of the particle diameter σ , and β = 1/(kBT ) is the reduced

inverse temperature with Boltzmann constant kB and temperature

T . Moreover, z1 and z2 determine the range of the attractive and

repulsive Yukawa potential parts in units of σ , respectively, and

K1 = αK1 and K2 = αK2 are the respective SA and LR reduced

potential strengths. To obtain a systematic variation of the po-

tential shape, and to reduce the number of adjustable potential

parameters, we follow Costa et al.14 in demanding that

α =−βV
(

x = 1+
)

, (2)

which implies that K2 = 1−K1. Accordingly, α is identified as

the depth of the potential well at two-particle contact in units of

kBT . It plays thus the role of an interaction strength parameter

equal to the inverse of the reduced effective temperature T ∗. In

the high-T ∗ limit for which α = 0, the two-Yukawa soft potential

contribution in Eq. (1) is negligible, and the particles behave

then as hard spheres. Like in Ref.14, we use the values K1 =

1.6306, K2 = 1−K1 = 0.6306, z1 = 10 and z2 = 0.5 describing SALR

potential curves of constant effective attraction range, x0 = 1.1,

for varying α > 0, defined as the distance where V (x) crosses the

null line, changing its sign from negative to positive values.

In our study, α = 1/T ∗ is varied in the interval [0− 3] so that

for the maximal potential depth, −3kBT , particles in contact can

still disintegrate by thermal motion. With increasing α, the po-

tential well deepens, and a shallow potential barrier of height

βV (xmax)≈ 0.36α develops at xmax ≈ 1.33, followed for distances

x > xmax by the monotonic decay of the potential in the range set

by 1/z2. The second virial coefficient, B∗
2(α), taken in units of the

hard-sphere reference value, (2π/3)σ3, which characterizes the

total interaction strength, increases from its value 1 at α = 0 to 28

at α = 3. Note that with increasing α, the depth of the attractive

well and the height of the potential barrier are both enlarged for
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of two particles with a third one fitting snugly in between (see

also12). For α values where the IRO-peak has developed, and for

pair separations x ≥ 2π/yc = xc where yc = qcσ ≈ 2.1, a broad re-

gion of g(x) with values weakly enhanced above one is observed

(see the inset of Fig. 2) that extends roughly across two parti-

cle diameters indicative of the mean transient cluster size11. In

this larger distance region, g(x) has for α = 3 a shallow inflection

point at xc ≈ 3 marked in the inset by the vertical dashed arrow.

We have used various indicators to make sure that the consid-

ered SALR systems belong to the dispersed-fluid phase region:

Firstly, according to Fig. 2, the MC simulation calculations of

g(r) are in excellent agreement with the ZH scheme results ap-

plying to a homogeneous fluid-like system. As a stringent accu-

racy check, this agreement includes also the contact values g(σ+)

for all considered systems. The NVT-ensemble MC simulations

have been performed for N = 4096 particles in a cubic simulation

box, with periodic boundary conditions and pair potential cutoff

at rcut = 10σ .

Secondly, the IRO peak heights are all well below the critical

value Scrit(qc) ∼ 2.7, obtained by Godfrin et al.5 as an empirical

criterion for the two-Yukawa SALR model signaling in the here

considered concentration range a first-order transition from the

dispersed-fluid to the cluster-fluid phase. The IRO peak position

qc is shifting to larger values as φ is increased (cf.2). Thirdly, in

the reduced temperature-concentration two-Yukawa SALR phase

diagram determined by Godfrin et al. (cf.5), the state points rep-

resenting our systems are located above the liquid-liquid phase

separation line of the attractive reference system, and well within

the dispersed-fluid phase region. In comparison, the cluster-fluid

phase is located inside the liquid-liquid phase separation region

of the associated Noro-Frenkel reference attractive potential sys-

tem5.

For the most concentrated system with φ = 0.15 and α = 3,

an additional shallow peak in the MC-generated g(x) becomes

visible at x ≈
√

3, corresponding to the distance between a pair

of spheres where an orthogonally aligned dimer of two touching

spheres fits snugly in between12. Yet, also this system of largest

concentration and interaction strength belongs to the dispersed-

fluid phase region.

Note that additionally to the ZH-closure employed in the

present work, alternative Ornstein-Zernike closure relations have

been used for SALR systems that are of comparable accuracy.

For example, Costa et al.14 employ the modified hypernetted

chain approximation by Rosenfeld and Ashcroft28, and the self-

consistent Bomont-Bretonnet29,30 closures, respectively. In the

context of two-Yukawa potential systems, the importance of ther-

modynamic self-consistency of the used integral equation scheme

is discussed by Kim et al.31.

4 Dynamic properties

For the dispersed-fluid phase, the (colloidal) short-time regime

of overdamped Brownian motion is unequivocally given by τB ≪
t ≪ τD, where t is the correlation time. Here, τB is the characteris-

tic relaxation time of particle momentum fluctuation correlations

which is several orders of magnitude smaller than the character-

istic diffusion time, τD = a2/d0, where d0 is the single-particle

diffusion coefficient of a monodisperse dispersion32. For t ≪ τD,

a Brownian particle has diffused a tiny fraction of its radius a

only. This allows for calculating short-time dynamic properties

from pure equilibrium averages32.

Experimentally, the short-time regime can be probed using dy-

namic light scattering or neutron-spin-echo (NSE) measurements,

depending on particle sizes and other characteristics of the sys-

tem. In both scattering methods, the dynamic structure factor,

S(q, t), quantifying spatio-temporal correlations of thermal con-

centration fluctuations is determined as a function of wavenum-

ber q and correlation time t. The rate of its short-time exponential

decay,

S (q, t ≪ τD) = S (q)exp
[

−q2D(q) t
]

, (3)

is characterized by the short-time diffusion function, D(q), which

can be expressed by the ratio18

D(q) = d0
H(q)

S(q)
, (4)

of the hydrodynamic function, H(q), and the static structure fac-

tor S(q) = S(q, t = 0). The function H(q) contains information

about short-time diffusion processes on colloidal length scales

∼ 1/q. It an be expressed by an equilibrium average invoking a

specific combination of the translational hydrodynamic mobility

matrix tensor elements, µµµ i j, relating the hydrodynamic force on

a particle j to the resulting velocity change of a particle i caused

by the solvent-mediated HIs. For the hypothetical case of hydro-

dynamically non-interacting particles, one has H(q) = 1, indepen-

dent of q and concentration φ . Any wavenumber dependence of

H(q) is a hallmark of the influence of the HIs. The hydrodynamic

function can be expressed by the sum,

H(q) = Hd(q)+
dS

d0
, (5)

of a wavenumber dependent distinct part, Hd(q), which ap-

proaches the value zero for large q, and a self part equal to the

short-time self-diffusion coefficient, dS, expressed in units of d0.

Thus, H(q → ∞) = dS/d0. The coefficient dS quantifies the ini-

tial slope of the particle mean-squared displacement in a concen-

trated dispersion. In the absence of HIs, Hd(q) is identically zero,

and dS reduces to d0. Theoretically, H(q) can be interpreted as a

short-time reduced generalized sedimentation velocity in a homo-

geneous dispersion subjected to a spatially oscillating weak force

field of wavelength 2π/q. Accordingly,

K = H (q → 0) =
Vsed

V0
(6)

is the dispersion sedimentation coefficient in a uniform (e.g.,

buoyancy corrected gravitational) force field, with Vsed denoting

the mean sedimentation velocity in a concentrated dispersion that

reduces to the single-particle sedimentation velocity V0 at infinite

dilution.

Additionally to H(q) characterizing short-time diffusion, as a

rheological short-time property of likewise hydrodynamic origin

we calculate the high-frequency viscosity, η∞, which can be mea-

sured using a low-amplitude oscillatory shear rheometer operated

4 | 1–8
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Fig. 3 Hydrodynamic function, H(q), calculated using the BM-PA hybrid

method with the structural input presented in Fig. 1, for φ = 0.1 and the

same values of α (same color code) as in Fig. 1. Inset: Concentration

dependence of the short-time self-diffusion coefficient, dS/d0, for various

values of α as indicated.

at a frequency large compared to 1/τD
33. In the hypothetical case

of a non-dilute dispersion without HIs, η∞ reduces to the viscosity

expression η0(1+ 2.5φ), including the Einstein intrinsic viscosity

contribution for no-slip spheres.

Similarly to earlier theoretical studies of short-time dynamic

properties in suspensions with purely repulsive interactions18,

we calculate H(q) using the second-order BM method19–21 for

its wavenumber dependent distinct part, Hd(q), for which the

method makes reliable predictions as shown in numerous com-

parisons with elaborate hydrodynamic force multipoles simula-

tions and experimental data for non-SALR dispersions18,25. As

regards the calculation of the self-part dS of H(q), and likewise

of η∞, the PA method18 is used that accounts for the full two-

body HIs part including lubrication effects. The hybrid BM-PA

scheme has been successfully applied to hard-sphere and charged-

stabilized suspensions, as well as to BSA protein solutions un-

der non-SALR conditions17,34. A detailed account of the BM-PA

hybrid scheme with numerous applications is given in18,24, and

its extension to particles with internal hydrodynamic structure

such as microgels is described in17. We merely note here that

while the bare PA method with its exact account of two-body

lubrication works well for the self-diffusion coefficient and the

high-frequency viscosity up to the largest considered concentra-

tion φ ≤ 0.15, for φ & 0.08 it has the tendency to overestimate the

q-dependent oscillations in Hd(q). This has been demonstrated for

purely repulsive Yukawa systems by the comparison with Stoke-

sian dynamics simulations35, and a similar trend is observed like-

wise for SALR systems.

4.1 Diffusion properties and sedimentation coefficient

Results for H(q) obtained by the BM-PA scheme with ZH static

structure factor input are shown in Fig. 3, for the same system

parameters as in Fig. 1. To our knowledge, this is the first theo-

retical prediction of a low-q IRO peak in H(q). This peak of H(q)

emerges first at larger interaction strengths α > 1.5 as the IRO

peak of S(q), and in the considered parameter range it does not

supersede the next-neighbor peak of H(q). Note that the oscil-

lations in H(q) are triggered by the ones in S(q) which explains

why the positions of the IRO and next-neighbor peaks in H(q) are

practically coincident with the respective positions, qc and qm, of

S(q). It is further noticed that the hard-sphere H(q) for α = 0 is

essentially an upper bound for the curves of H(q) at non-zero α,

for wavenumbers located to the right of the IRO peak region. The

next-neighbor peak values, H(qm), are smaller than one which is

indicative of a significant influence of the near-distance part of the

HIs. In contrast, H(qm) is larger than one for lower-concentrated

systems having purely LR25.

0 5 10 15
y = qσ

0

0.5

1

1.5

2

d 0 / 
D

(q
)

Fig. 4 Inverse, d0/D(q), of the short-time diffusion function, D(q), in

units of the single-particle diffusion coefficient d0, obtained using the

results for S(q) and H(q) in Figs. 1 and 3, respectively. The color code is

the same as in Fig. 1. To highlight the strong influence of the HIs, the

dashed lines depict d0/D(q)|no HI = S(q) for α = 0.1 (black) and α = 3

(magenta), respectively, describing hydrodynamically non-interacting

particles characterized by H(q) = 1.

0 0.05 0.1 0.15
φ

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

K

α = 0
α = 1
α = 2
α = 3

0 0.5 1 1.5 2 2.5 3
α

0.4

0.45

0.5

K

Fig. 5 Concentration dependence of the sedimentation coefficient,

K =Vsed/V0, for different values of α as indicated. The inset depicts the

non-monotonic α dependence of K for φ = 0.1.
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The BM-PA scheme supplies also results for the reduced short-

time self-diffusion coefficient, dS/d0 = H(q → ∞), depicted in the

inset of Fig. Fig. 3. Triggered by the rising RDF contact value with

increasing α accompanied by an enhanced transient clustering

tendency, dS decreases monotonically with increasing α and φ ,

taking values below those for hard spheres, namely dS(α = 0,φ),

at the same concentrations. In fact, transient clustering slows

self-diffusion both at short and long times as it has been shown

theoretically for sticky hard spheres, and hard spheres with ad-

ditional square-well attraction36–38. While dS is lowered in sys-

tems with enhanced SA having no LR, in systems with pure LR

such as in a low-salinity suspension of charge-stabilized particles,

the decline of dS with increasing φ is less pronounced than for

the hard-sphere reference system, showing typically a fractional

φ 4/3 concentration dependence24. Incidentally, an enhancement

of self-diffusion for systems with LR only, and its slowing for sys-

tems having solely SA, can be expected both regarding dS and the

long-time self-diffusion coefficient dL, with dL < dS, that quantifies

the long-time slope of the mean-squared displacement39. That dS

decreases with increasing α when the strength both of the SA and

LR potential parts are enlarged in proportion to each other is due

to the rapid O(r−4) long-distance decay of the hydrodynamic self-

mobility tensor associated with dS
32, putting thus more weight to

the near-contact region of g(r). The monotonic decrease of dS

with increasing concentration explains why the α-independent

isosbestic points seen in S(q) are absent in H(q). The distinct part

Hd(q), however, shares the wavenumber locations, {qiso
i }, of isos-

bestic points with S(q), except for the two smallest ones which

are not present in Hd(q).

We proceed in discussing the sedimentation coefficient, K =

H (q → 0), whose monotonic decrease with increasing φ is shown

in Fig. 5. The predicted sedimentation velocity for the considered

non-zero α values is smaller than the sedimentation velocity of

the corresponding hard-sphere system, i.e. K(α > 0,φ)< K(0,φ).

This reflects the overall dominant influence of the LR part regard-

ing sedimentation which is known in systems with pure LR to

lower the sedimentation velocity18,24. The additional influence of

the SA part is seen in the, on first sight, surprising non-monotonic

α-dependence of K exemplified in the inset of Fig. 5 for φ = 0.1:

K decreases for small α and constant φ , with a subsequent mod-

erate increase for larger α once it has passed through a minimum

at α ≈ 1.8. The non-monotonic behavior of K as a function of

α is a consequence of the delicate interplay of the SA potential

part which by its own enhances sedimentation, with the LR part

that has the opposite effect. Different from self-diffusion which

is most strongly influenced by the near-distance part of the HIs,

as a collective property K is also strongly affected by the O(r−1)

long-distance part of the HIs. In this context, we refer to a re-

cent multiparticle collisions dynamics (MPCD) simulation study

by Moncha-Jorda et al.40, for the sedimentation coefficient of

a dispersion of Brownian particles with short-range interactions

only where the SA dominates (i.e., B∗
2 < 0). In their systems, the

slope of the low-φ linear form of K changes from negative to posi-

tive values when B∗ is lowered roughly below −0.87. Due to tran-

sient clustering, a non-monotonic φ dependence of K is observed

for B∗
2 ≈ −1.42. Moncho-Jordá et al. note further that their sys-

tems belong to the homogeneous fluid-phase region such as ours.

As a general remark, we note that different from self-diffusion

where the long-time coefficient dL in concentrated systems is sub-

stantially smaller than dS owing to pronounced dynamic caging

effects17, the short-time coefficient K can be expected to be only

slightly larger than its long-time counterpart.

Fig. 4 shows the inverse of the diffusion function, D(q), in

units of d0. According to Eq. (3), D(q) can be directly obtained

in a dynamic scattering experiment whereas an additional mea-

surement of S(q) is required to determine H(q). The figure high-

lights the importance of HIs by the comparison with the predic-

tion, d0/D(q)|no HI = S(q), for hydrodynamically non-interacting

particles (dashed lines in Fig. 4) which differs significantly from

the result with HIs included. Like for S(q), the IRO peak d0/D(qc)

for α = 3.0 is larger than the next-neighbor peak d0/D(qm). Fig.

4 serves further to explain how dS can be inferred approximately

from DLS and NSE experiments where only a finite wavenum-

ber band is accessed. As first suggested by Pusey41 and theo-

retically corroborated later by Abade et al.42, a decent estimate

of dS within a few percent error is given by D(q) evaluated at

a wavenumber q∗ equal to the first wavenumber situated to the

right of qm where S(q∗) = 1. Our results for dS and D(q) show that

this practical way of determining dS is applicable likewise to SALR

systems. However, if D(q) is evaluated instead at a wavenumber

q∗, with S(q∗) = 1, situated in between the IRO and next-neighbor

peaks, dS is significantly underestimated by about 15%. For a de-

cent estimate of dS it is thus necessary to cover a sufficiently broad

q-range extending beyond the next-neighbor peak region.

4.2 High-frequency viscosity and generalized Stokes-

Einstein relations

To arrive at a comprehensive assessment of short-time transport

properties of homogeneous SALR systems, we discuss next our

predictions for the high-frequency viscosity η∞. Its concentration

dependence is shown in Fig. 6.

0 0.05 0.1 0.15
φ

1

1.2

1.4

1.6

η ∞
 / 

η 0

α = 0
α = 1
α = 2
α = 3

Fig. 6 High-frequency limiting viscosity, η∞ (φ), in units of the solvent

viscosity η0, as a function of φ and for values of α as indicated.

Increasing the concentration implies more pronounced stress

relaxation and enhanced viscous dissipation, resulting in an en-
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larged viscosity. Furthermore, a monotonic increase of η∞ above

the corresponding hard-sphere result is observed with increasing

α. This should be contrasted with a dispersion having LR inter-

actions only, where η∞ is smaller than in a hard-sphere system of

equal concentration24. To comprehend this notice that the hydro-

dynamic shear mobility tensor coupling the hydrodynamic stress

dipole acting on a particle surface to the fluid rate-of-strain tensor

at the position of another particle is rather short-ranged43, with

an O(1/r6) asymptotic decay. The near-contact region of the RDF

has thus the strongest influence on the high-frequency viscosity

so that with increasing RDF contact value, η∞ is accordingly in-

creased.

As a useful application we discuss finally for our SALR systems

the applicability of two short-time generalized Stokes-Einstein

(GSE) relations relating η∞ to dS, and to the collective or gra-

dient diffusion coefficient, dC = D(q → 0), respectively. Consider

the two GSE functions ΛS and ΛC defined by

ΛS =
η∞ (φ)

η0

dS (φ)

d0
(7)

ΛC =
η∞ (φ)

η0

dC (φ)

d0

√

S (q → 0,φ) . (8)

If ΛS ≈ 1 independent of φ and α, then dS scales with the inverse

of η∞. Likewise, provided that ΛC ≈ 1 independent of φ and α,

dC is proportional to the inverse of the product of η∞ and the

square root of the osmotic compressibility factor S(0). The sec-

ond GSE relation for dC has been proposed by Kholodenko and

Douglas44, and it was applied in particular to protein solutions

(see, e.g.,34,45).
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0
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Λ
C
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φ

0.8
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Λ
S

α = 0
α = 1
α = 2
α = 3

Fig. 7 Self-diffusion GSE function, ΛS(φ), defined in Eq. (7), for values

of α as indicated. Inset: corresponding curves for the

Kholodenko-Douglas collective diffusion GSE function ΛC(φ). The

dashed-doted black lines are accurate hard-sphere results (α = 0)

obtained from the analytic expressions for dS(φ) and η∞(φ) given in 17.

The approximate validity of these relations would be very use-

ful since η∞ is then determined more easily by a scattering exper-

iment where smaller amounts of particles are needed than in a

rheo-mechanical experiment. Various GSEs have been proposed,

and their applicability has been explored theoretically for hard-

sphere and charged-stabilized dispersions17,18,24. Our results for

ΛS(φ) and ΛC(φ) of SALR systems are shown in the main part of

Fig. 7, and its inset, respectively, for values of α as indicated.

Notice here the different ordinate scales in main figure part and

the inset. In the considered φ range, the maximal deviation of ΛS

from one is about 10%, showing that the GSE relation for dS is a

useful tool for semi-quantitatively assessing η∞ in a dynamic scat-

tering experiment. While the Kholodenko-Douglas GSE relation

for dC applies quite well to hard spheres, with ΛC(φ) being close

to one even at φ = 0.15, its applicability worsens significantly with

increasing α. Note again the approximate character of the BM-PA

scheme, as illustrated in Fig. 7 by the inclusion of the dashed-

dotted curves for ΛS(α = 0,φ) and ΛC(α = 0,φ), obtained from

accurate analytic expressions for the dS and η∞ of hard spheres17.

The deviations of the PA curves for α = 0 from these numerically

precise GSE functions is due to the underestimation of dS and η∞

at larger φ by the PA scheme which does not account for hydro-

dynamic shielding effects associated with non-pairwise additive

man-body HIs contributions. The individually smaller errors in dS

and η∞ introduced by the PA method are propagated by the GSE

functions ΛS and ΛC as described in Eq. (8).

5 Concluding remarks

In conclusion, our theoretical analysis has shown that the com-

petition of SA and LR leads to unusual features in the concen-

tration and interaction strength dependence of transport prop-

erties in the dispersed fluid-phase that are not encountered in

systems with either repulsive or attractive soft interactions. An

IRO peak signaling clustering tendencies is present also in the

hydrodynamic and diffusion functions which grows with increas-

ing interaction strength α. While the self-diffusion coefficient and

high-frequency viscosity change monotonically with increasing α,

the sedimentation coefficient behaves non-monotonically owing

to the subtle interplay of the SA and LR soft potential parts with

the short-range and long-range contributions of the HIs. We have

analyzed how a decent estimate of dS in SALR systems is obtained

from NSE and DLS experiments performed at a specific wavenum-

ber q∗ > qm with S(q∗) = 1, and we have assessed the applicability

of two GSE relations for dS and dC, respectively. Our general re-

sults are helpful as a prerequisite and reference in future studies

aimed to identify so far unknown dynamic features, e.g., in the

equilibrium cluster phase. Furthermore, the presented work is

of relevance to technological applications such as in the model-

ing of ultrafiltration of protein solutions where diffusion and vis-

cosity properties form key ingredients46–48. In future work, we

will explore the accuracy of the BM-PA method for systems in the

dispersed-fluid phase, and possible extensions of this method to

the equilibrium cluster phase, by the comparison with multipar-

ticle collision dynamics simulations. In addition, a comparison

of our analytic results with NSE measurements on low-salinity ly-

zosyme solutions is in progress.
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Unusual dynamic features in dispersions with competing short-range attrac-
tion and long-range repulsion
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