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We explore the static length in glass-forming hard-sphere liquids revealed by the response of dynamical properties (diffusion

coefficient D and α relaxation time τα ) to a regular array of pinned particles. By assuming a universal scaling form, we find data

can be excellently collapsed onto a master curve, from which relative length scales can be extracted. By exploiting a crystal-

avoiding simulation method that suppresses crystallization while preserving dynamics, we can study monodisperse as well as

polydisperse systems. The static length obtained from dynamical property Q (τα and D) scales as logQ ∼ ξ
ψ
s , with ψ ≈ 1.

1 Introduction

The origin of sluggish motions in supercooled liquids is still

a matter of debate. Under the general view of cooperative

motion in glass-forming liquids, growing (or diverging) relax-

ation times should be associated with one or more growing (or

diverging) length scales.

On the one hand, a dynamic correlation length, characteriz-

ing the growth of spatially heterogeneous dynamics as temper-

ature decreases, can be extracted from multipoint space-time

correlation functions1,2. This correlation length depends on

the delay time, and reaches its peak value near the alpha re-

laxation time τα . However, although the relaxation time and

dynamic length both grow as the temperature decreases, it has

been suggested they might not be directly related3. The ques-

tion remains unsettled, whether dynamic heterogeneity is the

origin or only a consequence of glassy dynamics.

On the other hand, many efforts have been made to identify

a “hidden” static length responsible for the slow dynamics.

Since it is difficult to identify any amorphous order parameter

from the apparently unchanged structure during glass forma-

tion, static lengths are often computed either from spatial cor-

relations of some a priori local order, such as icosahedrons4,

polytetrahedrons5 or medium-range crystalline order6, or by

an “order-agnostic” approach, including the point-to-set (PTS)

technique7 and excess plastic modes analysis8. It is unclear

whether static lengths estimated by different approaches agree

with each other.

One of the most studied static lengths is the PTS length ξps.

A general procedure7,9–11 of obtaining ξps, motivated by ran-

dom first-order transition (RFOT) theory, is as follows. All
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particles in an equilibrated system outside of a spherical re-

gion of radius R are frozen, while the inner particles are al-

lowed to relax in the presence of the frozen boundary. The

RFOT theory predicts that for R ≫ ξps, the subsystem inside

the cavity should decorrelate from its initial state in favor of

configurational entropy; whereas for R≪ ξps, the subsystem is

trapped into the initial state due to the cost of surface tension

(mismatch on the boundary). To measure whether the sub-

system of radius R can eventually switch to a different state,

the long time limit of an global overlap function Q∞(R) is in-

troduced. The PTS length is defined as the radius for which

Q∞(ξps) falls below some small value.

Although defined by static overlap, the PTS length might

be generally regarded as the characteristic length over which

the fixed boundary conditions imposed by pinning particles

affect the dynamics of nearby particles. This interpretation

suggests that we can reveal the static length from the response

of some dynamical property (such as the particle self-diffusion

coefficient) to an imposed pinning field.

In several recent works, the effect of pinned particles on

structural relaxation has been studied in systems with soft po-

tentials12–15. To extract a correlation length, these authors

have made different theoretically motivated assumptions for

how the structural relaxation time τα depends on pinning

strength, such as τα ∼ exp(Ac) with c the pinning concen-

tration12,14 or lnτα ∼ exp(Bz) with z the distance from the

wall13,15.

There is some variation in recent glass literature in how the

terms “static” and “dynamic” length are used. In Refs. 13 and

15, correlation lengths obtained by this approach are called

“dynamic”, although they are not obtained from multipoint

space-time correlation functions, to distinguish them from the

“static” PTS length extracted from analysis of overlap at long

times in the presence of pinning. In this work, we obtain a
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Fig. 5 (a) Static lengths obtained from master curve construction of diffusion coefficient (triangles) and alpha relaxation time (diamonds) as a

function of φ ; dashed lines are power law fits. Also included are “Kauzmann” critical lengths (disks) extracted from fitting inspired by RFOT

theory29. (b) D and τα versus the static length ξs obtained from the corresponding quantity, with ξ ∗
s at φ = 0.53 used as reference.

dently hinder the motions of unpinned particles — the growth

of
〈

∆r2(t)
〉

and decay of Fs(t) become slower with increasing

m or decreasing ℓc. Moreover, the pinning effect is more pro-

nounced in the more dense system — a smaller value of m is

sufficient to freeze the system — consistent with an increasing

static length scale. In other words, the glass transition can also

be induced by pinning particles in a dense liquid with φ < φg

or T > Tg, which opens a new way to study the glass transi-

tion25.

At high pinning concentration, our simulation time is

unavoidably limited compared to the slow relaxation time.

Nonetheless, we can estimate the diffusion coefficient D from

the slope of a linear plot of MSD versus time assuming the dif-

fusive region has been reached. Likewise, we can obtain the

the alpha relaxation time τα as the 1/e time of Fs(q0, t) with

the final decay fit to a stretched exponential. Since the config-

uration of unpinned particles is automatically in equilibrium

after pinning22,26, the measured MSD and Fs(q0, t) are correct

equilibrium values, i.e., they do not show aging; and the accu-

racy of estimated D and τα is only limited by the simulation

time. In fact, our values for D and τα are reasonably robust,

in that we find since no significant change in our results when

we use longer runs at selected state points.

Having obtained D and τα for an array of values for φ and

confining length ℓc, we can extract static lengths ξs from a dy-

namic scaling assumption. For ℓc ≫ ξs, unpinned particles

can barely “feel” the presence of pinned particles, and dy-

namic properties are governed by the static correlation length

ξs. As ℓc decreases and becomes comparable to ξs, the dy-

namics crosses over from being governed by ξs to ℓc.

Assuming this crossover behavior depends only on the ratio

of characteristic lengths ℓc/ξs, a given dynamic property Q at

different φ and ℓc can be described by a scaling form

Q(ℓc;φ)

Q(∞;φ)
= f

(

ℓc

ξs(φ)

)

, (3)

in which Q is either 1/D or τα , and f (x) is a dimensionless

scaling function. A master curve can be constructed by hori-

zontally shifting the curves of Q(ℓc;φ)/Q(∞;φ) plotted versus

logℓc. Up to an overall prefactor, the static length ξs(φ) for

each φ can be determined from the corresponding shift factor.

To construct the master curve without knowing the form of

f (x), we define the “smoothness” of a given set of n points as

the arc length of its linear interpolation curve. A better col-

lapse of our data (Fig. 4) with fewer twists and turns result in

a smaller arc length. The master curve is obtained by hori-

zontally shifting raw data points and numerically minimizing

the arc length with respect to the shift factors, with φ0 = 0.53

taken as reference and left unshifted. (See Appendix for de-

tails.)

As shown in Fig. 4, normalized data for both D and τα col-

lapse onto smooth master curves that span nearly four decades

for diffusion coefficients and six decades for α relaxation

time, confirming our scaling assumption (Eq. 3). An analo-

gous data collapse τα versus system size N1/3 has been pre-

viously reported in systems without pinning, using the static

length obtained from the minimum eigenvalue of the Hessian

matrix27. However, because of the rather weak dependence of

τα on system size, the range of τ spans less than one decade.

We find that the diffusion coefficient and relaxation time be-

come decoupled as the pinning concentration increases, con-

sistent with recent reports28. Despite this behavior (related to

the breakdown of the Stokes-Einstein relation, see below), we

find that the scaling form Eq. 3 describes both the diffusion

coefficients and relaxation times very well (see Fig. 4).

Based on RFOT theory and renormalization group method,
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Ref. 29 predicts τα with random pinning scales as logτ ∼

1/(cK −c) for high T > TK, where c is the pinning concentra-

tion and cK the “Kauzmann” concentration at which the con-

figurational entropy Sc vanishes. If we fit the raw data for

τα at different φ to this form and extract the static length as

ξs = (ρcK)
−1/3, the results are in line with those from our

master curve construction (see Fig. 5). However, it is difficult

to obtain robust values for ξs by this procedure, since the fit-

ting parameters are so sensitive that we must exclude certain

data at high pinning fractions to get reasonable values (see

SM). In contrast, the master curve covers a wider range of

data and is more robust.

As can be seen in Fig. 5(a), the static length ξs grows mildly

by a factor of two or so over the range of φ accessible to our

simulations, comparable with previous observations in a wide

variety of systems10,30–32. Our results can be well fit by a

power law,

ξs ∼ (φs −φ)−ν , (4)

yielding φs = 0.593 ± 0.001, ν = 0.32 ± 0.01 for D; and

φs = 0.589 ± 0.001, ν = 0.34 ± 0.01 for τα . Although the

values for φs are slightly larger than our results for φc obtained

from fitting the divergences in D and τα , they agree within sta-

tistical error. To see the relation between the static length and

dynamics, we plot 1/D and τα versus ξs in Fig. 5 (b). The re-

sults can be fit either by a power-law form, Q∼ ξ z
s , or by an ac-

tivated scaling behavior, logQ ∼ kξ
ψ
s , yielding z = 10.6±0.6,

ψ = 1.2± 0.3 for 1/D and z = 10.5± 0.7, ψ = 1.2± 0.2 for

τα .

Within the RFOT theory, scaling relations of the form

logτα ∼ ξ
ψ
s and ξs ∼ (1/Sc)

1/(d−θ)
are expected, where Sc

is the configurational entropy and d is the space dimension.

While ψ ≈ 1 is generally quoted which agrees with our result,

the value of exponent θ is controversial, varying from 0.3 to

2.3.33–35. Nevertheless, by assuming the Kauzmann volume

fraction φK ∼ φs and Sc ∼ (φK − φ)β , with β = 0.30± 0.04

approximated from a law-power fit of the Sc(φ) data in Ref.

36 (which also gives φ(Sc = 0) ≈ 0.587 ∼ φs), we estimate

θ ≈ 2.1 for hard-sphere systems.

We note that the ξs obtained from D grows more slowly

than the length obtained from τα , suggestive of the decoupling

of 1/D and τα with increasing φ (see Fig. 2), signaling the

breakdown of the Stokes-Einstein relation. Since this break-

down can be qualitatively understood as the consequence of

dynamic heterogeneity — D is dominated by the mobile parti-

cles while τα results from the immobile ones — the difference

between ξs from D and ξs from τα may also arise from differ-

ently weighted averages of a spectrum of static lengths present

in the system7. Despite the growing discrepancy between 1/D

and τα and their corresponding ξs, the proportionality con-

stants k in the relations log1/D ∼ kξs and logτα ∼ kξs are

nearly identical (assuming the two static length scales coin-
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Fig. 6 Comparison of static lengths obtained from scaling and

master curves, and PTS lengths from configurational overlap. Static

lengths are normalized by their values at φ = 0.52.

cide at low φ ).

We have also applied our methods to bidisperse particles,

and compare the static lengths obtained from our scaling

and master curves to PTS lengths obtained from configura-

tional overlap. Following Ref. 30, we randomly pinned an

equimolar binary mixture of N=2000 particles with a diam-

eter ratio 6:5. We perform standard event-driven MD for

φ=0.52,0.55,0.56,0.57 and 0.58 and check that the pressures

and diffusion coefficients are consistent with those reported

in Ref. 30. The resulting static lengths is shown in Fig. 6 as

a function of φ , which agree reasonably well with the PTS

lengths previously reported.30

4 Summary

To conclude, we present a simple way of extracting static

lengths based on the response of dynamic properties to an

external pinning field. By exploiting a recently developed

crystal-avoiding method, we simulate the monodisperse hard-

sphere metastable fluids and calculate D and τα in the pres-

ence of a periodic array of frozen particles. (We use a periodic

array (here simple cubic) to minimize local heterogeneity in-

duced by random pinning locations; however, we expect that

other lattices or even pinning sites with liquidlike correlations

would behave similarly.) We find a universal scaling descrip-

tion of dynamic crossover as a function of confining length

ℓc over the range of φ studied. A master curve is constructed

by optimizing its “smoothness”, from which we extract static

lengths ξs for both D and τα , which grow moderately with in-

creasing φ as the dynamics slows dramatically. The two ξs

obtained for D and τα decouple at higher φ , suggesting a dis-

tribution of static lengths in different regions of the system.

Scaling relations between dynamical quantities and the static

lengths of the form τα ∼ exp(kξ
ψ
s ) and ξs ∼ (φs − φ)1/(d−θ)
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In glassy hard-sphere fluids, with varying particle volume fraction and distance between pinned 
particles, particle diffusivities and structural relaxation times both collapse to master curves, 
revealing a growing static length scale.

XDr
2
HtL\

10-1 100 101 102 103 104
10-2

10-1

100 f=0.53

m=0-9

f=0.57

m=0-6

F s
Hq 0,

tL

10-1 100 101 102 103 104
0.0
0.2
0.4
0.6
0.8
1.0

f=0.53

10-1 100 101 102 103 104
f=0.57

t t

Fig. 3 Pinning effect on mean-squared displacement hDr

2(t)i and
intermediate scattering function F

s

(q0, t) for monodisperse systems
at f = 0.53 and f = 0.57. The confining length `c ranges from
infinity down to 1.39s for f = 0.53, and from infinity down to
2.04s for f = 0.57. Dashed lines are fits described in main text.

Alternatively, the data can be equally well fit by an expo-
nential form

1/D or t

a

⇠ exp [A/(f0 �f)] . (2)

with f0 = 0.605± 0.006 for 1/D and f0 = 0.599± 0.002 for
t

a

for the monodisperse system, and f0 = 0.604± 0.002 for
1/D and f0 = 0.599± 0.001 for t

a

for our polydisperse sys-
tem. Although the dynamics appears barely altered by small
polydispersity when the system is far from glass transition,
strong aging is observed at f = 0.59 in monodisperse sys-
tems (Fig. 2 inset); in contrast, aging in polydisperse systems
at f = 0.59 is much less pronounced, because of the decou-
pling of dynamics of small and large particles19. As we shall
see below, the glass transition can also be induced by pinning
particles even at f ⌧ fg, hence polydispersity should be ex-
pected to affect dynamics under pinning whenever the system
becomes glassy. Indeed, we observe a weaker pinning effect
on dynamics for polydisperse systems (see Fig. 1).

To expose a static length using pinning, an array of parti-
cles are frozen in an equilibrated configuration, while the re-
maining unpinned particles are allowed to move. For each
f , we vary the number of pinned particles m

3 from zero up
to the value at which the system is essentially frozen dur-
ing the simulation. The confining length is related to m as

`c =
⇣

pN

6f

⌘1/3
/m. For each f and m, MSD and F

s

(q0, t) are
averaged over five independent initial configurations and at
least five realizations of array pinning. (Since the center of
mass of unpinned particles can diffuse due to collisions with
pinned particles, all particle positions are calculated with re-
spect to the mean position of the unpinned particles.)
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Fig. 4 Normalized diffusion coefficient D(`c,f)/D(•,f) and a

relaxation time t

a

(`c,f)/t

a

(•,f), for different f and confining
length `c. Raw data with error bars (one standard error) are in gray.
Dashed lines are guides for the eye.

Fig. 3 illustrates the pinning effect on MSD and F

s

(t) for
f = 0.53 and f = 0.57. The array of pinned particles evi-
dently hinder the motions of unpinned particles — the growth
of

⌦
Dr

2(t)
↵

and decay of F

s

(t) become slower with increasing
m or decreasing `c. Moreover, the pinning effect is more pro-
nounced in the more dense system — a smaller value of m is
sufficient to freeze the system — consistent with an increasing
static length scale. In other words, the glass transition can also
be induced by pinning particles in a dense liquid with f < fg
or T > Tg, which opens a new way to study the glass transi-
tion25.

At high pinning concentration, our simulation time is
unavoidably limited compared to the slow relaxation time.
Nonetheless, we can estimate the diffusion coefficient D from
the slope of a linear plot of MSD versus time assuming the dif-
fusive region has been reached. Likewise, we can obtain the
the alpha relaxation time t

a

as the 1/e time of F

s

(q0, t) with
the final decay fit to a stretched exponential. Since the config-
uration of unpinned particles is automatically in equilibrium
after pinning22,26, the measured MSD and F

s

(q0, t) are correct
equilibrium values, i.e., they do not show aging; and the accu-
racy of estimated D and t

a

is only limited by the simulation
time. In fact, our values for D and t

a

are reasonably robust,
in that we find since no significant change in our results when
we use longer runs at selected state points.
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