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We explore the static length in glass-forming hard-sphere liquids revealed by the response of dynamical properties (diffusion
coefficient D and « relaxation time 7) to a regular array of pinned particles. By assuming a universal scaling form, we find data
can be excellently collapsed onto a master curve, from which relative length scales can be extracted. By exploiting a crystal-
avoiding simulation method that suppresses crystallization while preserving dynamics, we can study monodisperse as well as
polydisperse systems. The static length obtained from dynamical property Q (T4 and D) scales as logQ ~ &Y, with y ~ 1.

1 Introduction

The origin of sluggish motions in supercooled liquids is still
a matter of debate. Under the general view of cooperative
motion in glass-forming liquids, growing (or diverging) relax-
ation times should be associated with one or more growing (or
diverging) length scales.

On the one hand, a dynamic correlation length, characteriz-
ing the growth of spatially heterogeneous dynamics as temper-
ature decreases, can be extracted from multipoint space-time
correlation functions 2. This correlation length depends on
the delay time, and reaches its peak value near the alpha re-
laxation time 7,. However, although the relaxation time and
dynamic length both grow as the temperature decreases, it has
been suggested they might not be directly related. The ques-
tion remains unsettled, whether dynamic heterogeneity is the
origin or only a consequence of glassy dynamics.

On the other hand, many efforts have been made to identify
a “hidden” static length responsible for the slow dynamics.
Since it is difficult to identify any amorphous order parameter
from the apparently unchanged structure during glass forma-
tion, static lengths are often computed either from spatial cor-
relations of some a priori local order, such as icosahedrons?,
polytetrahedrons® or medium-range crystalline order®, or by
an “order-agnostic” approach, including the point-to-set (PTS)
technique’ and excess plastic modes analysis®. It is unclear
whether static lengths estimated by different approaches agree
with each other.

One of the most studied static lengths is the PTS length &.
A general procedure?!! of obtaining &ps, motivated by ran-
dom first-order transition (RFOT) theory, is as follows. All
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particles in an equilibrated system outside of a spherical re-
gion of radius R are frozen, while the inner particles are al-
lowed to relax in the presence of the frozen boundary. The
RFOT theory predicts that for R >> &, the subsystem inside
the cavity should decorrelate from its initial state in favor of
configurational entropy; whereas for R < &, the subsystem is
trapped into the initial state due to the cost of surface tension
(mismatch on the boundary). To measure whether the sub-
system of radius R can eventually switch to a different state,
the long time limit of an global overlap function Qw(R) is in-
troduced. The PTS length is defined as the radius for which
Qoo (&ps) falls below some small value.

Although defined by static overlap, the PTS length might
be generally regarded as the characteristic length over which
the fixed boundary conditions imposed by pinning particles
affect the dynamics of nearby particles. This interpretation
suggests that we can reveal the static length from the response
of some dynamical property (such as the particle self-diffusion
coefficient) to an imposed pinning field.

In several recent works, the effect of pinned particles on
structural relaxation has been studied in systems with soft po-
tentials >, To extract a correlation length, these authors
have made different theoretically motivated assumptions for
how the structural relaxation time 7, depends on pinning
strength, such as Ty ~ exp(Ac) with ¢ the pinning concen-
tration !> or Inty ~ exp(Bz) with z the distance from the
wall 1313,

There is some variation in recent glass literature in how the
terms “static” and “dynamic” length are used. In Refs. 13 and
15, correlation lengths obtained by this approach are called
“dynamic”, although they are not obtained from multipoint
space-time correlation functions, to distinguish them from the
“static” PTS length extracted from analysis of overlap at long
times in the presence of pinning. In this work, we obtain a
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Fig. 1 Confining length dependence of diffusivity for monodisperse
and polydisperse systems (at ¢ = 0.56), for periodic array and
random pinning.

length scale by analyzing the effect of pinning on dynamical
properties (self-diffusion coefficient and structural relaxation
time). Although our length scales are obtained from the re-
sponse of dynamical properties to pinning, we follow the ear-
lier usage and call these lengths “static”, to emphasize that
they are not obtained from multipoint correlation functions
and do not depend on a choice of time delay.

In this work, we use molecular dynamics (MD) simulation
of monodisperse hard-sphere systems to learn how dynamical
properties change as the pinning length scale varies, and ex-
tract static correlation lengths from scaling analysis without
assuming a specific functional form. Two typical dynamical
properties are examined in this work, namely the diffusion co-
efficient D and alpha relaxation time 7.

2 Method

The hard-sphere fluid is the simplest system that exhibits a
glass transition, at a volume fraction ¢, ~ 0.591617 In ex-
periments on colloidal hard-sphere suspensions, particles can
be pinned using optical tweezers 8. To avoid crystallization
above the freezing point ¢f ~ 0.495, a moderate polydisper-
sity in particle size s is usually introduced. However, poly-
dispersity does alter the dynamics, especially in the vicinity
of glass transition. For polydisperse hard spheres at high ¢,
small particles may remain diffusive while large ones are al-
most arrested, so that the ideal monodisperse glass transition
is smeared out!?.

To avoid this artifact, we exploit a crystal-avoiding (CA)
hybrid Monte Carlo method that suppresses crystallization in
monodisperse hard spheres while preserving the dynamics>°.
Although pinning some particles tends to frustrate crystalliza-
tion, we find that the monodisperse hard-sphere system still
crystallizes readily at low pinning fraction (¢ < 6%). To pre-

Fig. 2 Self-diffusion coefficient D and alpha relaxation time 7, as a
function of ¢ for monodisperse and polydisperse system (s = 0.08).
Dashed and solid lines are MCT fits. Inset: aging of diffusion
coefficient D at ¢ = 0.59 as a function of equilibration time 7 .

vent crystallization and to be consistent across different pin-
ning fractions, we employ the CA method for all simulations
reported here.

Results are reported in standard hard-sphere units: mean
sphere diameter o, mean sphere mass m and temperature kg T
are taken to be unity.

3 Results

While random pinning has been proposed as the best candidate
for studying static correlation?!, we focus here on periodic ar-
ray pinning, in which particles nearest to the corresponding
nodes of am x m x m grid are pinned, so that the pinning frac-
tion is ¢ = m> /N. The confining length 4. is then defined as
£, = L/m, with L the system size. In this way, £, is unaffected
by variations that may arise by random pinning, as a result of
fluctuations in the locations of pinned particles. Array pinning
also avoids spatial heterogeneity induced by randomly pinned
particles, that may mimic intrinsic dynamical heterogeneity.
Some modified random pinning schemes>>>* have been used
for similar purposes.

Fig. 1 compares the effect of pinning on diffusivity for
monodisperse and polydisperse systems with array and ran-
dom pinning at ¢ = 0.56, as an example. It is evident that
fluctuations in both particle sizes (polydispersity) and pinned
particle positions (random pinning) diminish the liquid-glass
transition.

We consider hard-sphere systems of N = 2000 particles for
¢ ranging from 0.53 to 0.58. For each ¢, initial configurations
are generated using the Lubachevsky-Stillinger algorithm and
then equilibrated. For unpinned monodisperse systems, we
calculate the self-diffusion coefficient D (extracted from the
long-time limit of mean square displacement (MSD)) and al-
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Fig. 3 Pinning effect on mean-squared displacement (Ar?(¢)) and
intermediate scattering function Fs(go,) for monodisperse systems
at ¢ =0.53 and ¢ = 0.57. The confining length /. ranges from
infinity down to 1.39¢ for ¢ = 0.53, and from infinity down to
2.040 for ¢ =0.57. Dashed lines are fits described in main text.

pha relaxation time 7Ty (defined as the time at which the inter-
mediate incoherent scattering function Fy(g,Te) equals 1/e,
with ¢ = 6.5 near the first peak in S(g)), and compare to re-
sults for polydisperse systems (see Fig. 2).

The dramatic increases in both 1/D and 74 are well de-
scribed by a power-law divergence,

1/Dor T~ (9. — )77, (1)

inspired by mode-coupling theory (MCT). We fit the data
log1/D and log Ty versus ¢ to Eq. (1) using standard non-
linear regression and find that for monodisperse systems, ¢, =
0.586+0.003, y=12.5+0.5 for 1 /D and ¢. = 0.584 £0.002,
Y =2.6+0.4 for 7. For our polydisperse system (s = 0.08),
we have ¢, = 0.586 +£0.001, y =2.2+0.1 for 1/D and
¢ = 0.584+0.001, y=2.4+£0.2 for 74. Although the MCT
calculation for hard-sphere systems using the Percus-Yevick
approximation gives a much smaller @ pcT ~ 0.52%4, ¢, ob-
tained here agrees well with the experimental glass transition
in colloidal suspensions, ¢, ~ 0.59. 16,17

Alternatively, the same data can be equally well fit by an
Voge-Fulcher-Tammann (VFT)-like form

1/D or o ~exp[A/(do— )] (2)

with ¢o = 0.605 £0.006 for 1/D and ¢y = 0.599 +0.002 for
7o, for the monodisperse system, and @y = 0.604 £+ 0.002 for
1/D and ¢p = 0.599 £0.001 for 7 for our polydisperse sys-
tem. Although the dynamics appears barely altered by small
polydispersity when the system is far from glass transition,
strong aging is observed at ¢ = 0.59 in monodisperse sys-
tems (Fig. 2 inset); in contrast, aging in polydisperse systems
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Fig. 4 Normalized diffusion coefficient D(£;,9)/D(ce, ¢) and o
relaxation time g (£c, ¢)/To (o0, @), for different ¢ and confining
length ¢.. Raw data with error bars (one standard error) are in gray.
Dashed lines are guides for the eye.

at ¢ = 0.59 is much less pronounced, because of the decou-
pling of dynamics of small and large particles'®. As we shall
see below, the glass transition can also be induced by pinning
particles even at ¢ < ¢, hence polydispersity should be ex-
pected to affect dynamics under pinning whenever the system
becomes glassy. Indeed, we observe a weaker pinning effect
on dynamics for polydisperse systems (see Fig. 1).

To expose a static length using pinning, an array of parti-
cles are frozen in an equilibrated configuration, while the re-
maining unpinned particles are allowed to move. For each
¢, we vary the number of pinned particles m> from zero up
to the value at which the system is essentially frozen dur-
ing the simulation. The confining length is related to m as

l/o = (%)1/3 /m. For each ¢ and m, MSD and F(qo,?)
are averaged over five independent initial configurations, with
at least five realizations of array pinning for each initial config-
uration. Up to 10 pinning realizations are used at higher ¢ and
higher pinning fraction, where run-to-run fluctuations in MSD
and structural relaxation function become larger. (Since the
center of mass of unpinned particles can diffuse due to colli-
sions with pinned particles, all particle positions are calculated
with respect to the mean position of the unpinned particles.)
Fig. 3 illustrates the pinning effect on MSD and F(¢) for
¢ =0.53 and ¢ = 0.57. The array of pinned particles evi-

This journal is ©@ The Royal Society of Chemistry [year]

Journal Name, 2010, [voll, 1-6 |3



Soft Matter

2.0F 7
¢/

1.8¢ &frome, /)
~ A

1.6}

W@ 1.4} 'y f
1.2} BT g from D
gg )
1.0f -

053 054 055 056 057 058
¢

— Aexp(k &)
---- B¢

16

2.0

14 18

&s/bs

Fig. 5 (a) Static lengths obtained from master curve construction of diffusion coefficient (triangles) and alpha relaxation time (diamonds) as a
function of ¢; dashed lines are power law fits. Also included are “Kauzmann” critical lengths (disks) extracted from fitting inspired by RFOT
theory 2. (b) D and 7, versus the static length & obtained from the corresponding quantity, with &S at ¢ = 0.53 used as reference.

dently hinder the motions of unpinned particles — the growth
of (Ar*(t)) and decay of F(t) become slower with increasing
m or decreasing /.. Moreover, the pinning effect is more pro-
nounced in the more dense system — a smaller value of m is
sufficient to freeze the system — consistent with an increasing
static length scale. In other words, the glass transition can also
be induced by pinning particles in a dense liquid with ¢ < ¢
or T > T, which opens a new way to study the glass transi-
tion?.

At high pinning concentration, our simulation time is
unavoidably limited compared to the slow relaxation time.
Nonetheless, we can estimate the diffusion coefficient D from
the slope of a linear plot of MSD versus time assuming the dif-
fusive region has been reached. Likewise, we can obtain the
the alpha relaxation time 74 as the 1/e time of Fy(qgo,?) with
the final decay fit to a stretched exponential. Since the config-
uration of unpinned particles is automatically in equilibrium
after pinning >>2°, the measured MSD and F;(qo, ) are correct
equilibrium values, i.e., they do not show aging; and the accu-
racy of estimated D and 7y is only limited by the simulation
time. In fact, our values for D and 7, are reasonably robust,
in that we find since no significant change in our results when
we use longer runs at selected state points.

Having obtained D and 7, for an array of values for ¢ and
confining length £, we can extract static lengths & from a dy-
namic scaling assumption. For £ > &, unpinned particles
can barely “feel” the presence of pinned particles, and dy-
namic properties are governed by the static correlation length
&. As £ decreases and becomes comparable to &, the dy-
namics crosses over from being governed by & to /.

Assuming this crossover behavior depends only on the ratio
of characteristic lengths £ /&, a given dynamic property Q at

different ¢ and ¢ can be described by a scaling form

0(le;9) Le
0(:0) ‘f<e:s(¢>)’ )

in which Q is either 1/D or 74, and f(x) is a dimensionless
scaling function. A master curve can be constructed by hori-
zontally shifting the curves of Q(¢c;9)/Q(co; ¢) plotted versus
log/.. Up to an overall prefactor, the static length &(¢) for
each ¢ can be determined from the corresponding shift factor.

To construct the master curve without knowing the form of
f(x), we define the “smoothness” of a given set of n points as
the arc length of its linear interpolation curve. A better col-
lapse of our data (Fig. 4) with fewer twists and turns result in
a smaller arc length. The master curve is obtained by hori-
zontally shifting raw data points and numerically minimizing
the arc length with respect to the shift factors, with ¢y = 0.53
taken as reference and left unshifted. (See Appendix for de-
tails.)

As shown in Fig. 4, normalized data for both D and 7 col-
lapse onto smooth master curves that span nearly four decades
for diffusion coefficients and six decades for ¢ relaxation
time, confirming our scaling assumption (Eq. 3). An analo-
gous data collapse T, versus system size N 1/3 has been pre-
viously reported in systems without pinning, using the static
length obtained from the minimum eigenvalue of the Hessian
matrix 2’. However, because of the rather weak dependence of
To, On system size, the range of T spans less than one decade.
We find that the diffusion coefficient and relaxation time be-
come decoupled as the pinning concentration increases, con-
sistent with recent reports 3. Despite this behavior (related to
the breakdown of the Stokes-Einstein relation, see below), we
find that the scaling form Eq. 3 describes both the diffusion
coefficients and relaxation times very well (see Fig. 4).

Based on RFOT theory and renormalization group method,
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Ref. 29 predicts 7, with random pinning scales as logT ~
1/(ck —c) for high T > Tk, where c is the pinning concentra-
tion and ck the “Kauzmann” concentration at which the con-
figurational entropy S. vanishes. If we fit the raw data for
To at different ¢ to this form and extract the static length as
& = (pcK)’l/ 3 the results are in line with those from our
master curve construction (see Fig. 5). However, it is difficult
to obtain robust values for & by this procedure, since the fit-
ting parameters are so sensitive that we must exclude certain
data at high pinning fractions to get reasonable values (see
SM). In contrast, the master curve covers a wider range of
data and is more robust.

As can be seen in Fig. 5(a), the static length & grows mildly
by a factor of two or so over the range of ¢ accessible to our
simulations, comparable with previous observations in a wide
variety of systems %3032 Our results can be well fit by a
power law,

s ~ (¢s_¢)7v7 4)

yielding ¢, = 0.593 +0.001, v = 0.32 £ 0.01 for D; and
¢s = 0.589+£0.001, v = 0.34 +0.01 for 7,. Although the
values for ¢ are slightly larger than our results for ¢ obtained
from fitting the divergences in D and 74, they agree within sta-
tistical error. To see the relation between the static length and
dynamics, we plot 1/D and 7, versus & in Fig. 5 (b). The re-
sults can be fit either by a power-law form, Q ~ &Z, or by an ac-
tivated scaling behavior, log O ~ k&Y, yielding z = 10.640.6,
y=12+03for 1/Dand z=105+0.7, y = 1.24+0.2 for
Ta-

Within the RFOT theory, scaling relations of the form
logty ~ & and & ~ (l/Sc)l/(dfe) are expected, where S,
is the configurational entropy and d is the space dimension.
While y ~ 1 is generally quoted which agrees with our result,
the value of exponent 0 is controversial, varying from 0.3 to
2.3.3335_ Nevertheless, by assuming the Kauzmann volume
fraction ¢g ~ ¢ and S, ~ (ox — ¢)P, with B = 0.30+0.04
approximated from a law-power fit of the S;(¢) data in Ref.
36 (which also gives ¢(S; = 0) ~ 0.587 ~ ¢), we estimate
0 ~ 2.1 for hard-sphere systems.

We note that the & obtained from D grows more slowly
than the length obtained from 7, suggestive of the decoupling
of 1/D and 7, with increasing ¢ (see Fig. 2), signaling the
breakdown of the Stokes-Einstein relation. Since this break-
down can be qualitatively understood as the consequence of
dynamic heterogeneity — D is dominated by the mobile parti-
cles while 7, results from the immobile ones — the difference
between & from D and & from T, may also arise from differ-
ently weighted averages of a spectrum of static lengths present
in the system’. Despite the growing discrepancy between 1/D
and Ty and their corresponding &, the proportionality con-
stants k in the relations log1/D ~ k& and log T, ~ k& are
nearly identical (assuming the two static length scales coin-

9
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Fig. 6 Comparison of static lengths obtained from scaling and
master curves, and PTS lengths from configurational overlap. Static
lengths are normalized by their values at ¢ = 0.52.

cide at low ¢).

We have also applied our methods to bidisperse particles,
and compare the static lengths obtained from our scaling
and master curves to PTS lengths obtained from configura-
tional overlap. Following Ref. 30, we randomly pinned an
equimolar binary mixture of N=2000 particles with a diam-
eter ratio 6:5. We perform standard event-driven MD for
¢=0.52,0.55,0.56,0.57 and 0.58 and check that the pressures
and diffusion coefficients are consistent with those reported
in Ref. 30. The resulting static lengths is shown in Fig. 6 as
a function of ¢, which agree reasonably well with the PTS
lengths previously reported. 3"

4 Summary

To conclude, we present a simple way of extracting static
lengths based on the response of dynamic properties to an
external pinning field. By exploiting a recently developed
crystal-avoiding method, we simulate the monodisperse hard-
sphere metastable fluids and calculate D and 7, in the pres-
ence of a periodic array of frozen particles. (We use a periodic
array (here simple cubic) to minimize local heterogeneity in-
duced by random pinning locations; however, we expect that
other lattices or even pinning sites with liquidlike correlations
would behave similarly.) We find a universal scaling descrip-
tion of dynamic crossover as a function of confining length
£ over the range of ¢ studied. A master curve is constructed
by optimizing its “smoothness”, from which we extract static
lengths & for both D and T, which grow moderately with in-
creasing ¢ as the dynamics slows dramatically. The two &
obtained for D and 7, decouple at higher ¢, suggesting a dis-
tribution of static lengths in different regions of the system.
Scaling relations between dynamical quantities and the static
lengths of the form 7, ~ exp(kEY) and & ~ (95 — ¢)'/(4—9)

This journal is © The Royal Society of Chemistry [year]
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with ¥ ~ 1 and 0 ~ 2 are consistent with RFOT, but inves-
tigations at higher ¢ are needed for more precise values. It
would be interesting to apply our method to systems with soft
potentials, and compare the results to static lengths obtained
by other methods.

Appendix

Here we depict how to obtain the shift factor for data col-
lapse (see Fig. 4) using arc-length minimization. In Fig. 7(a)
and (b), we exemplify our method by horizontally shifting the
data for normalized 7y versus log/. at ¢ = 0.55, while fixing
the data for ¢ = 0.53 as a reference. As we vary the shift,
the “smoothness” of the resulting linear interpolation curve
changes. In general, we find smaller arc length of the inter-
polation corresponds to better data collapse; the optimal shift
factor is obtained when the arc length is minimized. The same
method applies when more than two curves are shifted simul-
taneously, in which case the minimization is conducted over
multiple shift factors.

—

T Prleo @)

T Prleo @)

t/ (G

Fig. 7 An illustration of finding the shift factor that minimizes the
arc length of linear interpolation of the data. Left: data collapse for
two different shift factors. Right: arc length versus shift factor, with
corresponding shift factors in (a) and (b) marked.
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In glassy hard-sphere fluids, with varying particle volume fraction and distance between pinned
particles, particle diffusivities and structural relaxation times both collapse to master curves,
revealing a growing static length scale.



